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Abstract: Advanced remote sensing technology has provided spatially distributed variables for
estimating land–ocean heat fluxes, allowing for practical applications in drought monitoring, water
resources management, and climate assessment. This Special Issue includes several research studies
using state-of-the-art algorithms for estimating downward longwave radiation, surface net radiation,
latent heat flux, columnar atmospheric water vapor, fractional vegetation cover, and grassland
aboveground biomass. This Special Issue intends to help scientists involved in global change research
and practices better comprehend the strengths and disadvantages of the application of remote sensing
for monitoring surface energy, water, and carbon budgets. The studies published in this Special Issue
can be applied by natural resource management communities to enhance the characterization and
assessment of land–ocean biophysical variables, as well as for more accurately partitioning heat flux
into soil and vegetation based on the existing and forthcoming remote sensing data.

Keywords: land–ocean heat flux; downward longwave radiation; latent heat flux; fractional vegeta-
tion cover; remote sensing

1. Introduction

The world is currently confronted with historically unprecedented climate challenges,
particularly those related to land–ocean heat fluxes. To understand the exchanges between
energy, water, and carbon among the atmosphere, land and ocean remote sensing has
provided many observations, algorithms, and products to estimate and obtain energy and
biophysical variables at a large scale [1–4]. Although these algorithms and products are
widely applied to estimate regional or global heat fluxes, estimation results may differ
greatly due to differences in these algorithms and the forcing inputs [5–7].

Currently, an increasing number of advanced remote sensing algorithms and strate-
gies have been applied to estimate land–ocean variables, including downward shortwave
radiation [8–10], longwave radiation [11–13], surface net radiation [14–16], latent heat
flux [17–20], vegetation leaf area index [21–23], fractional vegetation cover [24–26], gross
primary productivity [27–29], and soil moisture [30–32]. For example, Yao et al. [17] pro-
posed a Bayesian model averaging (BMA) framework to integrate five traditional latent heat
flux algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS)
algorithm, the revised remote sensing-based Penman–Monteith algorithm, the Priestley–
Taylor-based algorithm, the modified satellite-based Priestley–Taylor algorithm, and the
semi-empirical Penman algorithm for improving global land surface latent heat flux esti-
mation. Subsequently, Jia et al. [24] developed a fractional vegetation cover algorithm that
is based on backpropagation neural networks (NNs) from PROSPECT + SAIL radiative
transfer model simulations for GaoFen-1 (GF-1) satellite canopy reflectance and the cor-
responding fractional vegetation cover values. Additionally, Zhang et al. [10] introduced
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an improved thin-plate smoothing spline algorithm to locally “calibrate” the downward
shortwave radiation product based on the reconstructed downward shortwave radiation
data from surface meteorological observations. Recently, Xu et al. [14] designed a down-
scaling scheme to produce a long-term (2002–2013) high-spatial-resolution (0.05◦) daily
ocean surface net radiation from J-OFURO3 (the third-generation Japanese Ocean Flux
Data Sets with Use of Remote Sensing Observations) data sets at 0.25◦ using Advanced
Very-High-Resolution Radiometer (AVHRR) top-of-atmosphere (TOA) observations and
other ancillary data. All in all, these novel remote sensing algorithms represent attractive
and efficient approaches for estimating land–ocean biophysical variables of interest on all
scales from different regional and global sites.

This Special Issue highlights the recent advances in land–ocean heat fluxes using
remote sensing. As guest editors, our objective is to encourage leading scientists to focus on
their research topics, using state-of-the science research methods in order to provide high-
quality peer-reviewed articles for this Special Issue of Remote Sensing. We have accepted
peer-reviewed manuscripts that focus on the retrieval and application of various land–ocean
heat fluxes variables. The theme of this Special Issue includes the total ocean columnar
atmospheric water vapor construction from microwave remote sensing data; Indian ocean
dipole (IOD) index prediction from a convLSTM deep learning method; downscaling an
evapotranspiration product using a deep learning method; the application of energy and
water cycle key parameters; satellite-based estimation of land surface longwave radiation
and latent heat flux; ocean surface net radiation estimation using satellite products; and
land surface fractional vegetation cover and grassland aboveground biomass estimation
from the optical remote sensing.

2. Overview of Contributions

The studies of this Special Issue cover a wide range of themes, from land surface energy
variables estimation to terrestrial biophysical parameters retrieval, to ocean surface energy
variables simulation. Here, we summarize the individual articles in the chronological order
of acceptance.

First, Feng et al. [33] produced a daily global land-surface downward longwave radi-
ation product with a 0.05 degree spatial resolution from 2000 to 2018 using the gradient
boosting regression tree (GBRT) algorithm driven by air temperature, relative humidity,
total column water vapor, downward shortwave radiation, and elevation. Compared with
other global land surface radiation products, the generated land surface downward long-
wave radiation product performed better than the CERES-SYN (clouds and Earth’s radiant
energy system synoptic version 4.1) data set and ERA5 reanalysis product. The generated
land surface downward longwave radiation product has a higher spatial resolution and
accuracy than the existing radiation data sets.

Second, Liu et al. [34] developed a fractional vegetation cover estimation algorithm
for Fengyun-3 (FY-3) reflectance data. For this algorithm, the PROSAIL model was selected
to simulate high-quality training samples, including the simulated red and near-infrared
(NIR) reflectance data and the corresponding fractional vegetation cover values. Then,
a random forest (RF) regression algorithm for the fractional vegetation cover estimation
was built from the samples. Thus, the fractional vegetation cover in 2015 was estimated
using the developed RF regression algorithm. The validation showed that the proposed
algorithm had a satisfactory performance based on the Earth Observation LABoratory
(EOLAB) reference fractional vegetation cover data, which illustrated that FY-3 reflectance
data were capable of estimating reliable fractional vegetation cover.

Third, Sun et al. [35] employed an optimal interpolation (OI) algorithm to gener-
ate a high-spatial-resolution global ocean columnar atmospheric water vapor product
at 0.25 degree by fusing multiple microwave radiometer observations, including SSMIS
(Special Sensor Microwave Imager Sounder), WindSat, AMSR-E (Advanced Microwave
Scanning Radiometer for Earth Observing System sensor), AMSR2 (Advanced Microwave
Scanning Radiometer 2), and HY-2A microwave radiometer. The validation results showed
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that the fusion products generated by merging AMSR2 and HY-2A microwave radiometer
data have higher accuracy when compared with the water-vapor fusion products from
AMSR-E data. Therefore, AMSR-E data can be replaced with AMSR2 and HY-2A microwave
radiometer data.

Fourth, Chen et al. [36] evaluated the performance of the J-OFURO3 (the Japanese
Ocean Flux Data Sets with Use of Remote Sensing Observations, version3) sea-surface
net-radiation data set using buoy observations from 55 sites. The validation results showed
that the overall accuracy of J-OFURO3 sea-surface net radiation was satisfactory, but
an inconsistency issue occurred in long-term sea-surface net radiation variations. To
overcome this issue, a simple but effective correction algorithm was proposed to correct the
inconsistency of long-term sea-surface net-radiation variations. The results demonstrated
that the corrected J-OFURO3 sea surface net radiation product variations were more
reasonable, and its daily accuracy significantly improved.

Fifth, Yu et al. [37] estimated aboveground grassland biomass (AGB) using AVHRR,
MODIS, meteorological data, ancillary information, and 75 AGB ground-observations
from 1982 to 2018 in the Three-River Headwaters Region (TRHR) of China. To improve
the spatial representativeness of point-based observations, the GBRT algorithm was used
to upscale grassland AGB from point-based observations to a 1 km spatial resolution
using MODIS, meteorological, and other ancillary data. Then, a GBRT algorithm was
also used to upscale grassland AGB from a 1 km to 5 km spatial resolution using AVHRR
and meteorological and other ancillary data. The model produced validation results that
presented reasonable accuracy. This study also found that the annual variation in grassland
AGB in the TRHR increased significantly from 1982 to 2018, and this might be attributed
to increased precipitation and vegetation greening. A reliable long-term grassland AGB
product in the TRHR during 1982–2018 was generated using the proposed GBRT algorithm.

Sixth, Zhang et al. [38] proposed a data-fusion framework based on an extremely
randomized tree-fusion model (ERTFM) to produce high spatiotemporal resolution re-
flectance data by fusing the Chinese GaoFen-1 (GF-1) and MODIS reflectance data. Then,
based on the fused high-spatiotemporal-resolution reflectance data, a modified-satellite
Priestley–Taylor (MS–PT) model was used to estimate terrestrial latent heat fluxes. The val-
idation results demonstrated that the fused reflectance data using ERTFM presented close
similarity to the validated GF-1 images. Compared with other fusion methods, ERTFM had
a better performance in predicting surface reflectance. Importantly, ERTFM can be applied
to improve latent heat flux estimation with high spatiotemporal resolution and has shown
a great potential to promote agricultural development and water resources management.

Seventh, Peng et al. [39] developed an empirical scheme that included two conditional
algorithms: (1) Case 1 (when the length ratio of daytime (LRD) was greater than 0.4) using
downward shortwave radiation as inputs and (2) Case 2 (LRD ≤ 0.4) using downward
longwave radiation as inputs for ocean surface net radiation estimation. The validation
results showed that the performance of the proposed empirical scheme was satisfactory for
estimating ocean surface net radiation. However, because there were a limited number of
samples, the performances of the proposed algorithms were poor in high-latitude areas,
and the algorithms did not work in the case of LRD < 0.3.

Eighth, Li et al. [40] applied a convolutional LSTM (convLSTM) neural network to
calculate the long-term Indian Ocean Dipole (IOD) index by predicting the sea surface
temperature (SST) in the next seven months. Based on the analysis of complex temporal
and spatial relationships among marine atmospheric data, the wind field signal information
of the physical ocean was proposed to predict the IOD phenomenon from the combination
of prior knowledge of the physical ocean with the deep learning method. The experimental
results illustrated that the convLSTM could predict the anomaly of IOD better, and the IOD
index could generally fit the real IOD index variation trend well, which had an important
impact on the IOD phenomenon.

Ninth, Long and Cui [41] introduced a deep neural network-based global evapo-
transpiration product downscaling algorithm driven by satellite and meteorological data.
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This downscaling algorithm was successfully used to downscale Global Land Evaporation
Amsterdam Model (GLEAM) evapotranspiration product. The downscaled evapotranspi-
ration was found to have a high spatial resolution but to be consistent with the original
GLEAM evapotranspiration product. The validation at the Heihe River basin demonstrated
that the downscaled GLEAM evapotranspiration had high accuracy compared to ground
observations. The proposed downscaling algorithm bridges the gaps between the coarse
evapotranspiration product and the required finer product for local users.

Tenth, He et al. [42] investigated the mechanism of drought over the Mongolian Plateau
(MP) using MODIS, Himawari 8, and ERA5 reanalysis data sets. The aridity index (ADI)
(the ratio of potential evapotranspiration to precipitation) is used to detect the variations in
drought. The results illustrated that the annual average of ADI increased noticeably during
1979–2020. However, the temperature continued to increase from August to December
during 2016–2020, which might lead to an increase in potential evapotranspiration and a
decrease in soil moisture from August through December of the previous year. This study
demonstrated that global warming, land degradation, and increased surface net radiation
increase potential evapotranspiration and reduce soil moisture, leading to drought.

Eleventh, Jin et al. [43] documented that significant errors occurred when diurnal
data were used to replace diurnal–nocturnal data to estimate the daily sea-air CO2 flux
(F). Considering that the errors were mainly controlled with the partial pressure of CO2
in seawater (pCO2w) and the sea surface temperature (SST) in the control experiment,
pCO2w and SST equations of the nocturnal effect of the CO2 flux were established. The
nocturnal effect reduces the errors associated with using diurnal data to estimate the CO2
flux. The mean global daily CO2 flux estimated from the nocturnal effect and the sub-
regional pCO2w algorithm (cor_Fcom) was smaller by 0.75 mol m−2 y−1 than that based
solely on the sub-regional pCO2w algorithm (day_Fcom).

More importantly, the above information illustrates how the unprecedented record
length of earth observations from space-borne remote sensors, along with technological
advances in observations, modelling and simulation, and advances in artificial intelligence
(AI) techniques, enable new and transformative ways to undertake Earth System Science
research and applications in general, including the separation, detection, and analysis of
Land–Ocean fluxes. Combining those observations and methods, additional algorithms
to monitor and predict significant climate events could and have been developed. For
example, Geiss and Levy [44] developed algorithms to automate the detection of features
(e.g., structure and phases of the Inter-Tropical Convergence Zone (ITCZ) and the Asian
and Indian Monsoon) in climate data. Those automated and user-trained algorithms can
spatially and temporally analyze data and detect the presence of features using multi-
resolution analysis (MRA) via wavelet transform (WT), as well as fuzzy set theory (e.g.,
Bede [45]) rule/classification operators. They can search all locations in an image rather
than a specific latitude band, and they can be applied to different data sets and locations
without modification; moreover, the MRA makes it unnecessary to define a feature using
preset quantitative criteria. Levy [46], Geiss et al. [47], and Levy et al. [48] applied those
methods to 30-year record of daily TOA observations and other satellite ancillary data,
including different satellite data analyzed by Kumar et al. [49] and latent and sensible
heat flux over the global oceans retrieved from remote sensors and evaluated by Ben-
tamy et al. [50], showing some skills in predicting breaks in the monsoon associated with
intra-seasonal drought conditions, as defined by a monsoon break index developed from
precipitation data by Kumar and Dessai [51].

3. Conclusions

Advanced remote sensing algorithms for estimating land and ocean heat fluxes vari-
ables are a challenging scientific topic that will remain of great interest for many scientists
for upcoming decades. This Special Issue is aimed at summarizing the recent advances in
land–ocean heat fluxes using remote sensing. In general, remote sensing can improve land–
ocean heat flux estimations from three aspects, including algorithms development (empiri-
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cal algorithms, physical algorithms, and hybrid algorithms), product generation (vegetation
and carbon variables, water variables, and energy variables), and data applications (e.g.,
drought monitoring, El Nino and Southern Oscillation, Monsoon Intra-seasonal Oscillation,
CO2 flux analysis, and changing climate due to global warming). The manuscripts in this
Special Issue represent some important and meaningful progress in estimating land and
ocean heat fluxes variables using state-of-the-art satellite technology. Further work in this
research area is required to develop hybrid algorithms by combining physical process and
empirical parameters to better characterize land and ocean biophysical variables [52–55].
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