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Abstract: In this paper, a fractional order differential equation (FDEs), will be solved numerically through 

a new approximative technique based on Appell type Changhee polynomials. The operational of fractional 

order derivative will be constructed, then its application together with collocation method in solving 

fractional differential equations (FDEs) will be presented. The fractional derivatives in the FDEs are 

described in the Caputo sense. Some numerical examples are finally given to show the accuracy and 

applicability of the new operational matrix. 
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1. Introduction 

The discovery of its numerous applications in the domains of mathematics, physics, biology, 

chemistry, engineering, and others has made fractional differential equations (FDEs) an extremely 

appealing research subject (Kilbas, Srivastava, & Trujillo 2006; Ray, Chaudhuri & Bera, 2006). Due 

to their nonlocal nature, it was already understood that modeling of physical processes that depended 

not only on the instant time but also on the preceding time history could be accomplished efficiently 

using calculus of arbitrary order. As a result, the numerical solutions of physical-interested FDEs have 

received a lot of attention. However, because most FDEs lack analytic solutions, numerical approaches 

that allow for quick and reliable evaluation of approximate solutions in a variety of ways are essential. 

In the literature, there are several methods for solving FDEs, see (Ray, Chaudhuri, & Bera 2006; Yang, 

Xiao, & Su, 2010; Odibat 2011). The operational matrices with arbitrary order derivative and 

integration have been found for a variety of orthogonal and non-orthogonal polynomials, such as 

Chebyshev polynomials, Legendre polynomials, Jacobi polynomials and Genocchi polynomials 

(Doha, Bhrawy, & Ezz-Eldien, 2011; Saadatmandi, & Dehghan, 2010; Doha, Bhrawy, & Ezz-Eldien, 

2012; Isah & Phang, 2019; Isah & Phang, 2017), and many others. In this paper we will, for the first 

time, derive Appell type Changhee polynomials operational matrix of fractional derivative and apply 

it solve FDEs using the collocation approach. 

The paper is organized as follows: the second section covers the necessary mathematical preliminaries 

for fractional calculus. Changhee and Appell type Changhee  polynomials, some of their features, and  
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arbitrary function approximation are covered in section three. In part four, we develop the Appell type 

Changhee polynomials operational matrix of fractional order derivative, and in section five, we explain 

how the collocation points are employed to solve FDEs using these matrices. We solve various 

numerical examples in section six. We come to a conclusion in section seven. 

2. Preliminaries 

2.1 Fractional Integration and Derivative 

Many definitions for fractional order integration and differentiation are on the increase, but the most 

important are those utilized in the development of fractional calculus theory which are the Riemann – 

Liouville and Caputo fractional derivative definition, which are defined as follows: 

Definition 2.1 The integral 𝐼 due to Riemann and Liouville of fractional order 𝛼 of 𝑓(𝑡) is given by 

(Kilbas, Srivastava, & Trujillo 2006). 

𝐼𝛼 𝑓(𝑡) =
1

Γ(𝛼)
∫  (𝑡 − 𝜏)𝛼−1

𝑡

0

  𝑓(𝜏)𝑑 𝜏,   𝑡 >  0, 𝛼 ∈ ℝ+                 [1] 

Where, Γ( ̇ ) is the gamma function. Below are properties of  𝐼𝛼    
   

𝐼𝛼  𝐼𝛽 𝑓(𝑡) =  𝐼𝛼+𝛽𝑓(𝑡),      𝛼 > 0,   𝛽 > 0                                    [2] 

  𝐼𝛼  𝑡𝛽 =
Γ(𝛽+1)

Γ(𝛽+𝛼+1)
  𝑡𝛽+𝛼                                                              [3]   

The integration is linear i.e 

𝐼𝛼(𝜆 𝑓(𝑥) + 𝜇 𝑔(𝑥)) = 𝜆 𝐼𝛼𝑓(𝑥) + 𝜇 𝐼𝛼𝑔(𝑥)                             [4] 

With, 𝜆  and 𝜇 constants. 

Definition 2: The derivative due to Riemann and Liouville of order 𝛼 (𝐷𝐿
𝛼 ) of a function 𝑓(𝑡) is 

defined as 

 𝐷𝐿
𝛼  𝑓(𝑡) =

𝑑𝑚

𝑑𝑡𝑚
 (𝐼𝑚−𝛼𝑓(𝑡)),      𝑚 − 1 < 𝛼 ≤  𝑚,   𝑚 ∈  ℕ                    [5] 

 
When modeling some real-world issues, the Riemann-Liouville definition has some drawbacks (Doha, 

Bhrawy, & Ezz-Eldien, 2011; Saadatmandi, & Dehghan, 2010). However, the Caputo's definition was 

meant to address such issues, and we utilize it as described in the following definition 

Definition 2.1 The fractional derivative 𝐷𝛼 in Caputo sense of a function 𝑓(𝑥) is defined as in (Doha, 

Bhrawy, & Ezz-Eldien, 2011; Saadatmandi, & Dehghan, 2010) by: 

𝐷𝛼𝑓(𝑥) =
1

𝛤(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝜏)

(𝑥 − 𝜏)𝛼−𝑛+1
𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,   𝑛𝜖 ℕ                  [6]

𝑥

0

 

The Caputo fractional derivative has the following properties 

𝐷𝛼𝐶 = 0, 𝑤ℎ𝑒𝑟𝑒 𝐶 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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𝐷𝛼𝑥𝜎 =
𝛤(𝜎 + 1)

𝛤(𝜎 + 1 − 𝛼)
𝑡𝜎−𝛼, 𝑖𝑓   𝜎 ∈ ℕ ∪ {0}  𝑎𝑛𝑑  𝜎 ≥ ⌈𝛼⌉                             [7] 

Where, ⌈𝛼⌉ denote ceil function. 

Caputo fractional operator also linear since 

𝐷𝛼(𝜆𝑓(𝑡) + µ𝑔(𝑡)) =  𝜆𝐷𝛼𝑓(𝑡) + µ𝐷𝛼𝑔(𝑡).                                  [8] 

with 𝜆 𝑎𝑛𝑑 µ constants. 

2.2. Changhee Polynomials and Some Properties 

It is well known that Changhee polynomials 𝐶ℎ𝑛(𝑥) and Changhee numbers 𝐶ℎ𝑛 are defined usually 

using the generating functions (Kim, Kim, & Seo, 2013; Lee et al., 2016). 

2

𝑡 + 2
(1 − 𝑡)𝑥 = ∑ 𝐶ℎ𝑛(𝑥)

∞

𝑛=0

𝑡𝑛

𝑛!
                                                      [9] 

And when 𝑥 = 0, 𝐶ℎ𝑛 = 𝐶ℎ𝑛(0) are the Changhee numbers, see (Kim, Kim, & Seo, 2013) 

The Changhee polynomials can also be obtained by  

𝐶ℎ𝑛(𝑥) =  ∑ 𝑆1(𝑛, 𝑙)𝐸𝑙(𝑥)

∞

𝑛=0

 

Where, 𝑆1(𝑛, 𝑙) and 𝐸𝑙(𝑥) are Sterling numbers of first kind and Euler polynomials respectively. 

However, the Appell type Changhee polynomials 𝐶ℎ𝑛
∗ (𝑥) are defined by the generating function 

given by 

2

𝑡 + 2
𝑒𝑥𝑡 = ∑ 𝐶ℎ𝑛

∗ (𝑥)

∞

𝑛=0

𝑡𝑛

𝑛!
                                                    [10] 

 

It was also established that the Changhee numbers 𝐶ℎ𝑛
∗ = 𝐶ℎ𝑛

∗ (0) are equal to the 𝐶ℎ𝑛 = 𝐶ℎ𝑛(0) see 

(Lee et.al 2016). Thus, for 𝑛 ∈  ℕ we can obtain the 𝑛𝑡ℎ degree Appell type Changhee polynomials 

by; 

𝐶ℎ𝑛
∗ (𝑥) =  ∑ (

𝑛

𝑚
)𝐶ℎ𝑛−𝑚

∗ 𝑥𝑚                                              [11]

𝑛

𝑚=0

 

From equation (11) one can easily see that;  

𝑑

𝑑𝑥
𝐶ℎ𝑛

∗ (𝑥) =
𝑑

𝑑𝑥
𝑛𝐶ℎ𝑛−1

∗ (𝑥)                                             [12] 

And it is very clear from (12) we have  

𝐶ℎ𝑛
∗ (𝑥) = ∫𝑛𝐶ℎ𝑛−1

∗ (𝑠)𝑑𝑠 +  𝐶ℎ𝑛
∗                                               [13]

𝑥

0

 

It is also worth noting that  𝐶ℎ0
∗ = 1 and 2𝐶ℎ𝑛

∗ + 𝑛𝐶ℎ𝑛−1
∗ = 0, ∀ 𝑛 ≥ 1 
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One should also note the Appell type Changhee polynomials satisfy the identity (12)  

 

∫𝐶ℎ𝑛
∗ (𝑥)𝐶ℎ𝑚

∗ (𝑥)

1

0

𝑑𝑥 = ∑ ∑ (
𝑚

𝑖
)

𝑚−𝑖

𝑘=0

𝑚

𝑖=0

(−1)𝑚−𝑖−1(𝑚 − 𝑖)(𝑚−𝑖
𝑘

)𝐶ℎ𝑘
∗ (1)𝐶ℎ𝑖

∗

(2(𝑚 − 𝑖) − 𝑘 + 1 (2(𝑚−𝑖)−𝑘
𝑚−𝑖

)
               [14] 

 
 

3. Function Approximation 

Let  {𝐶ℎ1
∗(𝑥), 𝐶ℎ2

∗(𝑥),… , 𝐶ℎ𝑛
∗ (𝑥)} ⊂  L2[0,1]  be the set of Appell type Changhee polynomials and 

suppose that 

𝑌 =  𝑆𝑝𝑎𝑛 { 𝐶ℎ𝟏
∗(𝑥), 𝐶ℎ𝟐

∗(𝑥), … , 𝐶ℎ𝑛
∗ (𝑥) }. 

For  𝑔(𝑡) an arbitrary element of L2[0,1]  , 𝑔(𝑡) has a good and unique approximation in 𝑌, as 𝑌 is a 

finite dimensional subspace of L2[0,1] see (Kreyszig, 1978). If, say, 𝑔∗(𝑡) is the unique approximation 

of 𝑔(𝑡) we can have 

∀ 𝑦(𝑡) ∈  𝑌, ||𝑔(𝑡) − 𝑔∗(𝑡)||2 ≤ ‖𝑔(𝑡) − 𝑦(𝑡)‖2                                                 [15] 

But because 𝑌 is a closed subspace of L2[0,1], then according to (Kreyszig, 1978).    L2[0,1] =  Y ⊕

 Y⊥, where, Y⊥  denote the orthogonal complement of  𝑌, and so we have  𝑔(𝑡) = 𝑦(𝑡) + 𝑠(𝑡)  and 

then 𝑠(𝑡) = 𝑔(𝑡) − 𝑦(𝑡), which also means that 𝑔(𝑡) − 𝑔∗(𝑡) ∈  𝑌⊥. Therefore, this shows that 

∀ 𝑦(𝑡) ∈  𝑌  

〈 𝑔(𝑡) − 𝑔∗(𝑡), 𝑦(𝑡)〉 = 0                                                       [16] 

〈 . 〉 denotes inner product. 

Since𝑔∗(𝑡) ∈  𝑌, then there exists  𝑐1, 𝑐2, ⋯ , 𝑐𝑁 such that 

𝑔(𝑡) ≈  𝑔∗(𝑡) = ∑𝑐𝑖𝐶ℎ𝑖
∗(𝑥)

𝑁

𝑖=0

 =  𝐶𝑇𝐶ℎ∗(𝑥)                                      [17] 

Where  

𝑪 = [𝑐1, 𝑐2, ⋯ , 𝑐𝑁]𝑇 , 

𝐶ℎ∗(𝑥) = [𝐶ℎ1
∗(𝑥), 𝐶ℎ2

∗(𝑥),… , 𝐶ℎ𝑛
∗ (𝑥)]𝑇                                        [18] 

Using Equation (16) we have  

〈 𝑔(𝑡) − 𝐶𝑇𝐶ℎ∗(𝑥), 𝐶ℎ𝑖
∗(𝑥)〉  =  0 

For simplicity we can write  

〈 𝑔(𝑡), 𝐶ℎ∗(𝑥)〉  =  𝐶𝑇〈 𝐶ℎ∗(𝑥), 𝐶ℎ∗(𝑥)〉                                   [19] 

Where 〈 𝐶ℎ∗(𝑥), 𝐶ℎ∗(𝑥)〉 is an 𝑁 ×  𝑁 matrix. Let  
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𝑊 = 〈 𝐶ℎ∗(𝑥), 𝐶ℎ∗(𝑥)〉 = ∫𝐶ℎ∗(𝑠), 𝐶ℎ∗𝑇(𝑠)

𝑥

0

 𝑑𝑠                              [20] 

Thus 𝑊 can be calculated by using (14). And, from (19) and (20) we get 

       𝐶 =  𝑊−1 〈 𝑔(𝑡), 𝐶ℎ∗(𝑥)〉                                                     [21] 

 

4. Appell Type Changhee Operational Matrix of Fractional Derivative  

Consider the vector of Appell type Changhee 𝐶ℎ∗(𝑥) given in (18), then the Caputo fractional 

derivative of 𝐶ℎ∗(𝒙) can be written as 

𝐷𝛼𝐶ℎ∗(𝑥) = Ψ(α)𝐶ℎ∗(𝑥)                                                 [22] 

Where, Ψ(α) denotes the operational matrix of arbitrary order derivative of dimension  𝑁 ×  𝑁, which 

we will show how it is obtained the theorem below; 

Theorem (Main) 

Suppose 𝐶ℎ∗(𝑥) is the Appell type Changhee vector given in (17) and let 𝛼 > 0. Then, the operational 

matrix Ψ(α) shown in (22) is given by 

𝚿(𝛂) =   

[
 
 
 
 
 
 
 
 
 
 
 

𝜎1,1,1 𝜎1,2,1 … 𝜎1,𝑁,1

∑ 𝜎2,1,𝑘

2

𝑘=1

∑ 𝜎2,2,𝑘

2

𝑘=1

… ∑ 𝜎2,𝑁,𝑘

2

𝑘=1

⋮ ⋮ ⋯ ⋮

∑ 𝜎𝑚,1,𝑘

𝑚

𝑘=1

∑ 𝜎𝑚,2,𝑘

𝑚

𝑘=1

⋯ ∑ 𝜎𝑚,𝑁,𝑘

𝑚

𝑘=1

⋮ ⋮ ⋯ ⋮

∑ 𝜎𝑁,1,𝑘

𝑁

𝑘=1

∑ 𝜎𝑁,2,𝑘

𝑁

𝑘=1

⋯ ∑ 𝜎𝑁,𝑁,𝑘

𝑁

𝑘=1 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Where, 𝜎𝑚,𝑛,𝑘 is given by   

𝜎𝑚,𝑛,𝑘 = 𝑚!
𝐶ℎ𝑚−𝑘

∗

(𝑚 − 𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑐𝑛,𝑘                                  [23] 

 
𝐶ℎ𝑛−1

∗   is the Changhee number and 𝑐𝑛,𝑘 can be obtained from (21). 

Proof 

Consider the Appell type Changhee polynomial  Chm
∗ (x) of degree m, with m = 1,2,… , N, and by 

using (3)(4) and (10) we can have  
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𝐷𝛼𝐶ℎ𝑚
∗ (𝑥) = ∑

𝑚!𝐶ℎ𝑚−𝑘
∗

(𝑚 − 𝑘)! 𝑘!
𝐷𝑥𝑘 = 

𝑚

𝑘=1

 ∑
𝑚!𝐶ℎ𝑚−𝑘

∗

(𝑚 − 𝑘)! 𝑘!

Γ(𝑘 + 1)

Γ(𝑘 + 1 − 𝛼)
 𝑥𝑘−𝛼

𝑚

𝑘=1

= ∑
𝑚!𝐶ℎ𝑚−𝑘

∗

(𝑚 − 𝑘)! Γ(𝑘 + 1 − 𝛼)
 𝑥𝑘−𝛼                                                                                [24]

𝑚

𝑘=1

 

 

Approximating the function 𝑓(𝑥) = 𝑥𝑘−𝛼 using truncated Changhee series i.e.  

𝑓(𝑥) = ∑ 𝑐𝑛,𝑘𝐶ℎ𝑛
∗ (𝑥)

𝑁

𝑛=0

                                                      [25] 

Subsituting (25) into (24) we get  

𝐷𝛼𝐶ℎ𝑚
∗ (𝑥) = ∑ (∑

𝑚!𝐶ℎ𝑚−𝑘
∗

(𝑚 − 𝑘)! Γ(𝑘 + 1 − 𝛼)
 𝑐𝑛,𝑘  

𝑚

𝑘=1

)

𝑁

𝑛=1

𝐶ℎ𝑛
∗ (𝑥)

=  ∑ (∑ 𝜎𝑚,𝑛,𝑘  

𝑚

𝑘=1

)

𝑁

𝑛=1

𝐶ℎ𝑛
∗ (𝑥)                                                                                             [26] 

Where, 𝜎𝑚,𝑛,𝑘 is given in (23), thus, putting (26) in vector form becomes 

𝐷𝛼𝐶ℎ𝑚
∗ (𝑥) =  (∑ 𝜎𝑚,1,𝑘

𝑚

𝑘=1

   ∑ 𝜎𝑚,1,𝑘

𝑚

𝑘=1

   …     ∑ 𝜎𝑚,1,𝑘

𝑚

𝑘=1

)𝑪𝒉∗(𝒙)     𝑚 = 1,2,… ,𝑁        [27] 

This completes the proof. 

5. Collocation Methods Using Appell Type Changhee Matrix of Fractional Integration 

Consider the fractional multi-order differential equation of the form  

𝐷𝛼𝑦(𝑥) = ∑𝑎𝑗𝐷
𝜆𝑗 𝑦(𝑥)

𝑛

𝑗=1

+ 𝑎𝑛+1𝑦(𝑥) + 𝑔(𝑥)                             [28] 

Subject to 

 𝑦(𝑗)(0) = 𝑑𝑗,    𝑗 = 0,1,… , 𝑛 − 1                                                 [29] 

Where, 𝑎𝑗, 𝑗 = 0,1, … , 𝑛 + 1 are real constant coefficients and 𝑛 − 1 < 𝛼 ≤ 𝑛,     0 < 𝜆1 < ⋯ < 𝜆𝑛 <

𝛼.  

We first approximate 𝐷𝛼y(𝑥), 𝐷𝜆𝑗 𝑦(𝑥) 𝑎𝑛𝑑  y(𝑥) by means of Appell type Changhee polynomials as 

in (17) 

  𝑦(𝑥) = ∑ 𝑐𝑖𝐶ℎ𝑖
∗(𝑥)𝑁

𝑖=0  =  𝐶𝑇𝐶ℎ∗(𝑥)                                       [30]   

where, 𝐶𝑇𝐶ℎ∗(𝑥) are given in (18) 

Employing (22) on (30) we obtain  

𝐷𝛼y(𝑡) ≃ C𝑗Ψ
(α)𝐶ℎ∗(𝑥)𝑻,    𝑗 = 1,2,⋯ , 𝑛.                                    [31] 
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Similarly, 

 𝐷𝜆𝑗 𝑦(𝑥)) ≃ C𝑖Ψ
(λj)𝐶ℎ∗(𝑥)𝑻,    𝑖 = 1,2,⋯ , 𝑛.                             [32] 

Therefore, substituting (30), (31) and (32) in (28), we have 

CΨ(α)𝐶ℎ∗(𝑥)𝑇 = ∑𝑎𝑖𝐶Ψ(λj)𝐶ℎ∗(𝑥)𝑇

𝑛

𝑖=1

+ 𝑎𝑛+1𝐶
𝑇𝐶ℎ∗(𝑥) + 𝑔(𝑥)                [33] 

For the initial conditions in (29) we have 

CΨ(j)S(1)𝑇 = 𝛾𝑗    .                                                        [34] 

For the solution of (28), we put the collocation points  𝑥𝑖 =
𝑖

𝑁−1
+ 1,     𝑖 = 1,2,⋯ ,𝑁 − 1  on  (33) 

and we get 

CΨ(α)Ch∗(xi)
T = ∑aiCΨ(λj)Ch∗(xi)

T

n

i=1

+ an+1C
TCh∗(𝑥𝑖) + 𝑔(𝑥),  𝑖 = 1,2,⋯ ,𝑁 − 1          [35] 

Thus, (35) are 𝑛(𝑁 − 1) equations in C𝑖 . These equations and (34) make 𝑛(𝑁)  equations which can 

be solved easily and consequently we can obtain y(𝑥) given in (30). 

6. Application on Numerical Example 

We now consider some numerical examples and apply the method described. We used Maple 25 to 

carry out all the computations  

Example 1.  

Consider the equation  

𝐷𝛼𝑦(𝑥) + 𝑦(𝑥) = 𝑥2 + 2𝑥2−𝛼 ,     𝑛 − 1 < 𝛼 < 𝑛, 0 < 𝑥 < 1 

Subject to initial condition 𝑦(𝑘)(0) = 0, 𝑘 = 0,1,… 𝑛 − 1 

This equation has an exact solution 𝑦(𝑥) = 𝑥2 when  𝛼 = 1, we used this method with 𝑁 = 6 only, 

we obtained a result that fit very well with the exact solution as shown in figure1 below. Also we solve 

this problem when 𝛼 = 0.9 𝑎𝑛𝑑 0.8 in which we observed that as we move  𝛼 close to 1 our solution 

moves also close the solution of the equation when 𝛼 = 1. This is shown in Figure 2. 
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Figure 1: Comparison of exact and approximate solution for example 1 

 

 

Figure 2: Comparison of Approximate and exact solution with the approximate solutions when 𝛼 =

0.9 𝑎𝑛𝑑 0.8 

Example 2. 

We consider the following multi-term fractional differential equation which was solved in (Bhrawy, 

& Alofi, 2013)  

𝐷2𝑦(𝑥) − 2𝐷𝑦(𝑥) + 𝐷
1

2𝑦(𝑥) + 𝑦(𝑥) = 𝑓(𝑥),     𝑦(0) = 0, 𝑦′(0) = 0,    𝑥 ∈ [0,1]. 

Where, 𝑓(𝑥) = 𝑥3 − 6𝑥2 + 6𝑥 +
16

5√𝜋
𝑥2.5.  

𝑦(𝑥) = 𝑥3 is the exact solution to this problem. We solved this equation with 𝑁 = 10 using our 

method and compare the result to the exact answer illustrated in figure 3. This demonstrates that our 

solution is compatible with the exact solution. 
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Figure 3:  Exact and approximate solution comparison for example 2 

7. Conclusion 

We developed a new fractional order derivative matrix based on Appell type Changhee polynomials 

in this study, which is the first time Appell type Changhee polynomials have been used in the context 

of fractional differential equation solutions to our knowledge. In order to solve FDEs, this new 

operational matrix is used with the collocation points method. Our findings indicate that this new 

matrix is promising and can be utilized to solve a variety of difficult FDEs. 
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