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Abstract: This paper studies the numerical method for solving differential equations. The continuous
least square method (CLSM) is used to obtain the explicit solution for solving ordinary differential
equations (ODEs), partial differential equations (PDEs), and fractional differential equations (FDES), but
in this work, we consider the explicit results from CLSM approach and applied it on second-order ODEs.
Moreover, the L, norm is used to obtain the minimum approximation error. The numerical results
obtained has a good agreement with the exact solution with minimum approximation error. The explicit
results are supported by an example that was treated with Matlab and Matematica 11.
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1. Introduction

The CLSM is an important issue in solving ODEs, which play a great role in mathematical physics.
The efforts of finding several methods for solving problems of ODEs have been practiced by many
researchers (Eason, 1976; Loghmani, 2008; Katayoun, 2004). The discrete least square method
(DLSM) and the CLSM are used to solve 2nd-order ODEs with minimum approximation errors
(Ibrahim, 2020; Ibrahim & Ibrahim, 2022b). The CLSM approach is used to solve complex problems
involving ODEs, and FDEs (Ibrahim & Isah, 2021; Isah & Ibrahim, 2021). The authors in (Ibrahim &
Rababah, 2020; Rababah & Ibrahim, 2016a; Rababah & Ibrahim, 2016b; Rababah & Ibrahim, 2018)
introduced a numerical approximation approach that involves curves and surfaces which play a vital
role in numerical analysis. When it comes to the application perspective, the authors in (lbrahim,
2022ba; Ibrahim & Koksal, 2021a; Ibrahim & Koksal, 2021b; Salisu, 2021; Salisu & Abedallah, 2022)
make use of commutativity to study the relation and the sensitivity between systems, the idea can be
extended to investigate the commutativity and sensitivity using the CLSM approach.

This paper aims to promote numerical techniques for (ODES). The L, norm alongside the (CLSM) is
used to obtain the minimum approximation error and numerical approximate solution, respectively.

2. Preliminaries

In this research, the CLSM for solving ODEs is considered.
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L(y) = f(x)for x € domain Q,
W(y) = g(x) forx € domain 61Q.

Where L stands for the differential operator and Q indicates the domain in RY or R? or R3, while W
refers to the boundary operator. The approximate solution of ODESs can be written as

n
7= a:Ci(x0. [1]
i=1
Ci(X) and g; represent the weighted basis function and the coefficients (weights) respectively, the g;
is realized using the CLSM. Let the residual R, (X) and Ry, (X) be defined as
R, (x,7) = L(H)- f(x) for x € domain Q. [2]
Ry (x,¥9) =w (F) —g(x) for x € boundary §Q. [3]

Substituting Veyxqc: into Eq. (2) and Eq. (3) leads to Ry (X, Vexact) =0 and Ry (X, Yexact) = 0
respectively.

3. Material and Method

In this section we consider the CLSM, the CLSM is an approximation process that involves the use of
L, norm to solve ODEs, the gq; from Eq. (1) is obtained using the CLSM, considering the Minimize
error function as

E= fRf (x,7)dx + fRa,(x,y)dx. [4]

0N af

The first derivative of Eq. (4) concerning g; and equating to zero leads to

O0E
— =0, ori=1,..N,
dq; !
which yields
. OR; __OR; _
fRL(x,y) dx + fRW(x,y) dx=0 i=1,..,N. [5]
J dq; > dq;

Eqg. (5) is the algebraic equation that can be written in the form of

Ma=0»b [6]
Note that M is n X n matrix, a = [q1, 42,43, ---, 4] T, and some column vector b.
4. Results and Discussions

In this section, we make use of the results obtained from the CLSM and implement them by
considering an example.
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Example 1: Consider the 2nd-order initial value problem.

d?y dy I
S+ @+D—+V5y =0, y(0)=03  y'(0)=04 7]

where 0 < x < 1. Let

L(x,y)=%+(x+1)%+\/§y [8]
Step 1: Let the polynomial.
N
37=Zqix"+yo- [9]
i=1

Step 2: We set y, = 0.3 and gq; = 0.4 in Eq. (9) to satisfy the boundary condition.

Step 3: The residual

d?y

ay -
W‘F(X‘l‘l)a‘F\/_y. [10]

R(x) =

By replacing y(x) from Eq. (9) into Eq. (10), we will get:

2(vN . N o . N
R(x) = d” (B i +03 ) +(x+1) d(EiL14i%i +03) +v/5 (Z qix; + 0.3) [11]
i=1

dx? dx
Step 4: The minimum error is obtained by considering
1
E= f R?(x)dx. [12]
0

Step 5: The continuous least-square solution is obtained by solving Eg. (12).

9k _, for i=1,..,N [13]
— =0, or i=1,..,N,
aq;
1 OR
JR(x)—dx=0, i=1,..N. [14]
0 aq;

Substituting Eq. (11) into Eq. (14) for N = 3, we obtain the following matrices with the help of the
Matlab program

= (sv6099 890305)7 »=(ara00s) a=(q2)- 09

Solving Eq. (15) lead to

g, = 0.4,q, = —0.615629, g5 = 0.187878.
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And the approximate solution is given as

§ = 0.187878 x> — 0.615629 x% + 0.4 x + 0.3. [16]

The exact solution is given by

x2
Yerace = 0.2560850487909125¢ <1 HermlteH[ 145 — % \/_]
x 2
—0.5189851135455146Hypergeometrich1[ (1-+8)3 ( 5 \/_) D [17]

The approximate with exact solutions and error is depicted in Figure 1 and Figure 2 for N = 3
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Figure 1: The result of example 1 with N =3
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Figure 2: The error plots of Example 1 with N=3
For N = 5, we obtain the following matrices
45.61 61.61 77.88 94.25 16.51 q:
_ | 6161 89.03 11691 145.00 _ [ 21.20 _ | 43
D= , b= , a= [18]
77.88 11691 158.05 200.27 25.91 qs
94.25 145.00 200.27 258.15 30.62 ds

And the approximate solution is
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= —0.0649883x° + 0.209667x* — 0.0367039x3 — 0.535967x2 + 0.4x + 0.3. [19]

The approximate with exact solutions and the error plots are depicted in Figure 3 and Figure 4

respectively, for N =5
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Figure 3: The results of example 1 with N =5
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Figure 4: The Error plots of example 1 with N=6

The comparison between the exact CLSM and error are depicted in Figure 5 and Figure 6 for N = 3

and that of N = 5.
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Figure 5: The results of example 1 with N =3 and N=6
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Figure 6: The error plots of example 1 with N=3 and N=6

Table 1: Data of errors analysis with N=3 and N=6 for 2" - order ODE

X Y exact Y CLSM. y CLSM Errors with Errors with N =5
withN=3 |withN=5 |N=3

0 0.3 0.3 0.3 0 0

0.1 | 0.334628 | 0.334032 0.334624 0.000596543 418861 x 1077
0.2 | 0.358591 0.356878 0.358582 0.00171316 8.66736 x 107°
0.3 | 0.372317 0.36967 0.372312 0.00265057 431975 x 107°
0.4 | 0.376591 0.373524 0.376598 0.00306711 7.5654 x 107°
0.5 | 0.372476 0.369577 0.372494 0.00289852 0.0000175481
0.6 | 0.361227 | 0.358955 0.361243 0.00227139 0.0000166093
0.7 | 0.344201 | 0.342784 0.344205 0.00141683 445457 x 107°
0.8 | 0.322781 0.322191 0.322773 0.000590218 8.16031 x 107
0.9 | 0.298305 | 0.298303 0.298297 | 1.2752x 10~° 7.54997 x 107°
1.0 | 0.272007 | 0.2722489 | 0.272008 0.000242287 1.30805 x 107°

5. Conclusion

This paper investigates a numerical method for solving differential equations. The (CLSM) together
with the L, norm is used to find better approximation with the minimal error by solving differential
equations, The results obtained are shown to be equivalent with the exact solution with minimum error.

The results are supported with MATLAB and Wolfram Mathematica 11.
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