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Abstract: In this paper, we develop a general method to analyze several different kinds of certain crossed 

repeated measures models (CRMM) which represent many situations occurring in repeated 

measurements on the same experimental units (individuals). Let ),,( 1111
 idrci YYY  be the vector of 

observations of the 
thi  individuals. It is assumed that the iY  are jointly normally distributed with mean 

i . We want to test hypotheses about i . In order to get powerful tests we make the simplifying 

assumptions that all measurements have the same variance 
2  and every pair of measurements that 

comes from (i) different bulls and different cows (ii) different bulls but with the same cow (iii) the same 

bull with different cows; have covariance's 2

2

1

2 ,,0   respectively. And every pair of 

measurements that comes from the same bull and the same cow with treatments of (a) different columns 

and different rows (b) the same column but different rows (c) different columns but the same row have 

covariance's 4

2

3

2 ,   and 5

2 , respectively. The results of this model can be used to analyze 

certain 4-way balanced mixed and/or random effects models. This procedure is also useful to analyze any 

of the mentioned 4-way models by adding any number of fixed effects to the model as long as those added 

effects do not interact with any random effects already in these models. 

Keywords: Coordinate-Free, Mixed Models, Random Models, Repeated Measures Models 

 
1. Introduction 

The crossed repeated measures models (CRMM) is one of the most widely used models in 

experimental design, especially in biological, agriculture, education and psychological research (see 

Lehman, 1959; Cox, 1992; Hoshmand, 2006). Arnold (1979) has developed a general method to 

analyze repeated measures model (RMM), when each of m independent individuals receives several 

treatments and assuming that all measurements have the same  2
 and every pair of measurements 

that comes from the same individual have covariance  2
 and each individual is normally 

distributed. Gabbara (1985) has extended the RMM of Arnold (1979) to (i) nested repeated measures 

models (NRMM), (ii) generalized nested repeated measures models (GNRMM), (iii) crossed repeated 

measures models (CRMM), (iv) crossed-nested repeated measures models (CNRMM). Rhonda, and 

et al (2016) considered covariance models to account for NRM and  simultaneously  address  mean  

profile  estimation with  penalized splines via  semi parametric regression with application to a  

prospective study of 24-hour ambulatory blood pressure and the impact of surgical intervention on 

obstructive sleep apnea. 

 



Eurasian Journal of Science & Engineering                                                                            

ISSN 2414-5629 (Print), ISSN 2414-5602 (Online) 
EAJSE 

 

Volume 5, Issue 1; December, 2019 

 

2 

In this paper, we have generalized the work of Arnold (1979) to a more complicated situation occurring 

in the analysis of variance (ANOVA) when a particular individual receives every pair of treatment 

levels, in which observations cannot be assumed independent as they are assumed in the usual 

independent RMM. Let 
ijkY  be the observations of the thk ),(   treatment on the calf from the thj  cow 

and the 
thi  bull, where crkdjmi  1,1,1,1 . Let ),,( 1111

 idrci YYY   be the vector 

of observations of the 
thi  individuals. It is assumed that the 

iY  are jointly normally distributed with 

mean
i . We want to test hypotheses about

i . One possible model for this problem would be that   

is taken as an arbitrary positive definite matrix, but the procedures for such model would have low 

power. Therefore, in order to get powerful tests, we assume that all measurements have the same 

variance 2  and every pair of measurements that comes from (i) different bulls and different cows (ii) 

different bulls but with the same cow (iii) the same bull with different cows have covariance's 

2

2

1

2 ,,0   respectively. And every pair of measurements that comes from the same bull and the same 

cow with treatments of (a) different columns and different rows (b) the same column but different 

rows (c) different columns but the same row have covariance's 
4

2

3

2 ,   and 
5

2 , respectively. In 

symbols  
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Assuming that the design is given, we use a coordinate-free approach to find optimal (i.e, UMP 

invariant, UMP unbiased, most stringent, etc.) procedures for testing a large class of hypotheses about

i . For this model, we write 

        

6543210

1111

111111 


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 
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
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
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ccrmcrcrdmdrc

mdrc

               [2] 

where s

s R )1,,1(1  , 2s ,   is the Kronecker product operation of two matrices, R0  is the 

overall mean (grand mean), mm R ),( 1

1

11    is an 1m  vector orthogonal to m1 (i.e. whose 

average is zero for each bull), dd R ),,( 2

1

22    is and 1d  vector orthogonal to d1  (i.e. whose 

average is zero for each cow), mdmd R ),( 3

11

33    is an 1md  vector orthogonal to every 

column of the matrix mdI 1  and every column of the matrix mdI 1  (i.e. whose average is zero for 

each bull and each cow), mdrmdr R ),,( 4

111

44    is an  1mdr  vector orthogonal to every column 

of the matrix mdr I1  (i.e. whose average is zero for each row treatment in a certain mating), and 

mdcmd R


 ),,( )(

5

)11(

55    where 5  is an 1mdc  vector orthogonal to every column of the matrix 

mdc I1  (i.e. whose average is zero for each column treatment in a certain mating) where 

),,( 5

1

5

)(

5
 ijcijij   , 

mdrcmdrc R ),( 6

1111

66    is an 1mdrc  vector orthogonal to every 
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column of the matrix mdrc I1  and every column of the matrix mdrc II 1   (i.e. whose average is 

zero for each column treatment and for each row treatment). 

  

We consider testing hypotheses about h  (type h ), for 6,,1h . We show that optimal test is an F-

test. The sum of squares (SS) and the degrees of freedom (df) for effect being tested is the same as 

they would be if the measures were independent. However, the SS and df for denominator are different 

for the six types of problems. We will also discuss various hypotheses about the correlation coefficients 

which are 14. The problem studied in this paper transform to a product of more than two problems. 

Following Arnold 1973, we define recursively such a product by 

sss PPPPP   )( 111   

and the result valid for two products holds good for s  products also. Saarinen F. (2004) gave an 

example for the mixed model and their use in repeated measurement. Baayen et al. (2008) worked 

simultaneous example for mixed effects modeling. 

 
2. Setting Up the Model 

2.1 Defining The Model  

Let Y  be an mdrc -dimensional random vector, such that ),(~ mdrcNY , where   is defined in 

(2) and using (1),   can be written as follows: 

               
mdrcmdrcmdrc IJIIJI  )()()1[( 3435345

2   

               
        

])( 12123 mdcrmdrcmdcr JIJIJIJ  
  
                         [3] 

where 11  ssJ  be the ss   matrix of one's. We assume that 0  which is equivalent to 

1
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(see Lemma 1)  

Let sU  be the 1-dimensional subspace of 
sR generated by s1 . Then 





6

0h

Lh
P   

where 

mdrcUL 0 , mdrc

m

drc UUL |1  , mdrc

d

mrc UUL |2  , )|(|)|(3 mdrc

d
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m
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d
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r

c UUL )|(4  ,
md
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c

r UUL )|(5  ,  
md
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r

c

c

r UUUL )]|(|)[(6

  

and 
hLP  is the projection matrix of the subspace hL , where h=0, …,6. So that 


210

11,1,1 210 LmcrLcrdLmdrc PPP   


6543 6543 ,,1,1 LLLcLcr PPPP 


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Hence, this representation for   always exists and is unique. Therefore, the transformation from   

to 6,,1, hh  is just a re-parameterization of the problem. Let  


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In order to define the parameter space, let 1T  be a 1t -dimensional subspaces of 
mR , such that 

 mUT1 ; 11  mt , let 2T  be a 2t -dimensional subspaces of 
dR , such that 

 dUT2 ; 12  dt

, let 3T  be a 3t -dimensional subspaces of 
mdR , such that )|(|)(3 md

m

d

d

m UUUT  ; 

)1)(1(3  dmt , let 4T  be a 4t -dimensional subspaces of 
mdrR , such that 

md

rUT )(4

 , 

)1(4  rmdt , let 5T  be a 5t -dimensional subspaces of 
mdcR , such that 

md

cUT )(5

 ; 

)1(5  cmdt , let 6T  be a 6t -dimensional subspaces of 
mdrcR , such that 

md

rc

r

c

c

r UUUT )]|(|)[(6

 , )1)(1(6  crmdt . For this paper, it is assumed that the parameter 

space is given by             

        0,,,,,,, 6655443322110  TTTTTTR         [4] 

 

The model defined by (1)-(4) is called the CRMM. 

We consider twenty different hypotheses testing problems for this model. For all twenty problems the 

alternative set is the parameter space given in (4). 

a. Let  hQ hT  be an hq -dimensional subspace, hq < ht  for 6,,1h . In the 
thh  problem for 

6,,1h  we test  that 

        
  ssTQR sshh ,6,,1,,,0  . 

b. The remaining fourteen problems are to test that 

(1) 43   ,  (2) 043   ,  (3) 53   ,  (4) 053   ,  (5) 21    

(6) 543 ,0   ,  (7) 021   ,  (8) 0321   ,  (9) 0421   , (10) 

0521   ,  (11) 05421   ,  (12) 543    

(13) 0543   ,  (14) 054321   . 

 
2.2 Transforming The Model 

In this section, we show how to transform the model defined in Section (2.1) to a model that is easier 

to handle. Let sC   be an ss  )1(  orthonormal basis matrix for the sub-space 


sU  such that 

ssssssssssssss JsMMINCCCCICC )1(,,01,01,1 
  

 Then  
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is an  mdrcmdrc  orthogonal matrix. Let 
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where 
*

0Y  is an 11  vector, 
*

1Y  is an 1)1( m  vector, 2Y  is an 1)1( d  vector, 3Y  is an 

1)1)(1(  dm  vector, 4Y  is an 1)1( rmd  vector, 5Y  is an 1)1( cmd  vector  and 6Y  is an 

1)1)(1(  crmd  vector. 

Since,   is an invertible matrix and does not depend on any unknown parameter, then observing  Y  

is equivalent to observing
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parameterization. We now find the joint distribution of 
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Lemma 1. The random vectors 
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and 0   if and only if  02   and 02 h  for all 6,...,1,0h . 

Proof.    It can be shown easily that  
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and 
 =  =diag
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3  dmI , )1(

2

4 rmdI , )1(

2

5 cmdI , ))1)(1(

2

6  crmdI  

Hence, 


6543210 ,,,,,, YYYYYYY  are independent. Therefore, the result follows.  

Lemma 2.
............

)(

3.......

)(

2.......

)(

1....0 ,,,   ijij

ij

j

j

i

i

  

                     ....

)(

6...

)(

5...

)(

4 ,, ijijkijijk

ijk

ijij

ij

ijijk

ijk   





    
 

Proof. The result follows directly from (2) and (6). 

Finally, we reparametrize the model. Let 
2

h  be as defined in (5) and define   

00  mdrc
                      44 )(  mdrCc 

 

11  mCdrc 
                         55 )(  mdcCr 

 

22  dCmrc                         
66 )(  mdrc CC   

33 )(  md CCrc   

                                                                                                                                               [7] 

Then R0  if and only if R0 ,  hh T  if and only if 6,...,1,  hThh  

 V  if and only if  V , 0  if and only if   6,...,002  hh    

Corollary 3.  The transformation from ),,,,,,,,,,,,( 54321

2

6543210   to 

),,,,,,,,,,,,( 2

6

2

5

2

4

2

3

2

2

2

16543210   is an invertible function. Hence 

),,,,,,,,,,,,( 2

6

2

5

2

4

2

3

2

2

2

16543210   is just a re-parameterization of the problem. 

Therefore, we have transformed the CRMM to a model in which we observe 


6543210 ,,,,,, YYYYYYY  independent such that        

),(~ 2

0010 INY 

                        
),(~ 2

55)1(

*

5 INY cmd   

),(~ 2

11)1(

*

1 INY m                      ),(~ 2

44)1(

*

4 INY rmd   

),(~ 2

22)1(

*

2 INY d                      ),(~ 2

66)1)(1(6 INY crmd 


 

),(~ 2

33)1)(1(

*

3 INY cm                                                                                                                      [8] 
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We note that mC , dC , md CC  , mdrC  , mdcC  , mdrc CC   are 

orthonormal basis matrices for 


mU , 


dU , )|(|)( md

m

d

d

m UUU 
, 

md

rU )( 
, 

md

cU )( 
, 

md

rc

r

c

c

r UUU )]|(|)[( 
, respectively. Therefore VV dimdim  , hh TT dimdim 

 for  

6,...,0h . Now, if 


hQ  is a sub-space of 


hT  for  6,...,1h , Let   

        };{ 11 QuuCQ m 

                           
};){( 44 QuuCQ mdr 

     
 

        
};{ 22 QuuCQ d 

                          
};){( 55 QuuCQ mdc 

 

        
};){( 33 QuuCCQ md 

             
};){( 66 QuuCCQ mdrc 

 

 

The following lemma follows directly from the definitions. 

Lemma 3:  

a) If 𝑄ℎ is a subspace of 𝑇ℎ, then 𝛽ℎ ∈ 𝑄ℎ iff 𝛾ℎ ∈ 𝑄ℎ
∗  for all ℎ = 1, … , 6 

b)    
1

1

1
,1

1

1
,0 45

2 





 
rc ,  

                  

   

])([
)1(

1
])([

)1(

1
434  rccrc

cr
crc

cr






 , 

                 

   

])1(1[
1

])1(1[
)1(

1
424  


 r

r
r

dr
 

                          
])1(1[

1
])1(1[

)1(

1
414  


 r

r
r

mr
 

                          iff  𝜏1
2 + 𝜏2

2 − 𝜏3
2 > 0,  02 h  for 6,...,1,0h  and  

                   
1.    

2

6

2

543   iff  

                   2.    
2

6

2

543 0   iff  

                   3.   
2

6

2

453   iff  

                   4.   
2

6

2

453 0   iff  

                   5.   
2

2

2

121   iffmdwhen  

                   6.   
2

5

2

4543 ,0   iffcrwhen  

                   7.   
2

3

2

2

2

121 0   iff  

                   8.   
2

3

2

2

2

1321 0   iff  

                   9.   
2

3

2

2

2

1421 0   iff  

                   10.   
2

3

2

2

2

1521 0   iff  

                   11.   
2

3

2

2

2

15421 0   iff  

                   12.   
2

6

2

5

2

4543   iff  

                   13.    
2

6

2

5

2

4543 0   iff  

                   14.   
2

6

2

154321 0   iff  
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3. Optimal Procedures 

3.1 Calculating The Statistics  

In this section, we find statistics hF  for  6,...,1h , that we need to do the required tests. Let   

                     

}|)]|(|)dim{[()1)(1(

]|)dim[()1(],|)dim[()1(

)|)]|(|)dim([()1)(1(

)|dim()1(),|dim()1(

666

555444

333

222111

TUUUtcrmddf

TUtcmddfTUtrmddf

TUUUtdmdf

TUtddfTUtmdf

md

rc

r

c

c

r

md

c

md

r

md

m

d

d

m

dm

















 

and define  

                 

2)(

6....666

2)(

5...555

2)(

4...444

2)(

3............333

2)(

2.......222

2)(

1.......111

)ˆ(

)ˆ(

)ˆ(

)ˆ(

)ˆ(

)ˆ(











ijk

i j k

ijijkijijk

i j

ij

ijij

i j k

ijk

ijijk

i j

ij

ijij

j

j

j

i

i

i

YYYYMdfSS

YYrMdfSS

YYcMdfSS

YYYYrcMdfSS

YYmrcMdfSS

YYdrcMdfSS





































 

3.2 Optimal Tests  

In this section, we consider the testing problems mentioned in Section 2.1 and give the proof for the 

first and fifth problems as the proof for other can be done similarly. 

3.2.1 Tests Concerning 

1 . We first look at the problem of type 1, in which we are testing 11 Q  against 11 T , so in the 

transformed model, we are testing that 
 11 Q  against 

 11 T  for the OLM involving only 


1Y  are 

independent having the distribution given in [8] and we are testing. 

6,,2,,0,,6,,2,,0,: 22

1110    shTQH shh   

6,,2,,0,,6,,2,,0,: 22

1111    shTTH shh   

Call this problem P . P  is then the product of the testing problem 61 ,, PP  . Where 1P  is the 

independent measures model in which we observe ),(~ 2

11)1(

*

1 INY m   and we are testing,  

0,: 2

1110   QH   vs.  0,: 2

1111   TH  
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And iP  is the trivial problem [3], in which we observe ),(~ 2* INY iii   and we are testing  

0,: 2*

10  iiTH    vs.  6,,2,0,: 2*

11  iforTH ii   

Since 62 ,, PP   are trivial problems (and hence the product of 62 ,, PP   is trivial [3], a good 

procedure for  1P  will be good for P . Therefore, let  1F  (see (10)) be the usual  1F  statistic and 1  the 

usual F critical function for testing 1P  such that  























1,11

1,11

1

1

11
0

1
)(

df

d f

qt

qt

FFif

FFif
F  

where 


1,11 dfqtF   is the upper   point of a central F  distribution with 11 qt   and 1df  degrees of 

freedom. We note that 1  would be the UMP invariant size   test for testing that 
 11 Q  against 

 11 T  for the OLM consisting only


1Y . It is also a UMP invariant size   test for the CRMM. 

Theorem 5.       


















 2

1

2

1|

,1

11

111
~




QT

dfqt

P
FF                                                                                                    [9]                                                      

The test 1  is size , UMP invariant, UMP unbiased, most stringent, admissible, Bayes, and LRT test 

for P . 

PROOF: the test has all these properties for 1P  [4], so it has these proportions for P  by theorem B of 

[3]. 

3.2.2 Tests about 

6,,2, hh . Follow in a similar way to section 3.2.1. 

3.2.3 Testing that 43    

Now, consider the problem of testing that 43    After transforming to


6

*

10 ,,, YYY  , this problem 

becomes the problem in which we observe


6

*

10 ,,, YYY  , independent and normally distributed as 

given in (8). We are testing 

4,3,2,1,0,,6,,1,,: 22

6

2

500   shTRH shh    

6,,1,0,,: 2

01   hTRH hhh   

This problem is not a product of problems. However, it is already a problem about what is known. It 

is the problem in which we have seven independent OLM's and are testing for the equality of two 

variances. Let       
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














b

dfdf

a

dfdf

a

dfdf

b

dfdf

ba
FFFif

FForFFif
F

6565

6565

,6,5

1

,

1

,6,5,6,5

6,5,
0

1
)(  

Where  ba . Then, ba,  is a size   test. There is no UMP invariant test for this problem, but 

there exists a  and b  such that ba,  is a UMP unbiased, and other a  and b  such that ba,  is a LRT. 

The choice 
2


 ba  is the choice used more often. In a similar way, we test 043    (because 

this case in the CRMM), so, we test 
2

6

2

5    in the transformed model, i.e. we are testing for equality 

of two variances.   

3.2.4 Testing that 53    

Follow in a similar way to section 3.2.3 

3.2.5 Testing that 021     

Firstly, we consider testing the problem that 021   . In the transformed model that becomes the 

problem of testing that
2

3

2

2

2

1   . Therefore, this problem transforms to a problem of testing 

equality of variances in the three different OLM's involving


32

*

1 , YandYY . Hence, we are testing  

0,0,0,,6,,1,,: 2

6

2

5

2

4

2

3

2

2

2

100    hTRH hh
 

6,,1,0,,: 2

01   hTRH hhh   

There is no UMP invariant size   test for this problem, but an approximate size   test can be found 

by using Bartlett's test  

4. Applications 

In this section, we study six applications to illustrate the different types of hypotheses used (Al-Sakkal 

1999). 

Application 1. Assume a cattle breeding experiment in which we have m  bulls and d  cows with only 

one calf for each mating of bull and cow. We will consider a 2-way ANOVA model (with no 

interaction), with r  row treatments and c column treatments such that each calf receives every pair of 

treatment levels. That is, each calf receives rc  different treatment combinations. Let 

),,( 1111 mdrcYYY   be the vector of observations on all calves. Then    kijk , 0
k

k , 

0



, ( ijk  does not depend on i  and j ). We want to test that 0k , and we want to test that

0 , According to the lemma 2, 
   )(

5

)(

4

)(

3

)(

2

)(

10 ,,0,0,0, ij

k

ijkijji
, 

0)(

6 ijk  
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Therefore, the first hypothesis is of type 4, the second hypothesis is of type5.  

Application 2. In this application. we will consider the 2-way model of application 1 but with 

interaction between the   effect and the   effect, Then  kkijk )(  , 

  
k

kk

k

k 0)()(,0,0





  ( ijk  does not depend on i  and j ). We want to test 

that 0k . According to the lemma 2, 


k

ijk   )(

6  . We note that this hypothesis is like type 6. 

Application 3. Consider a 3-way fixed effects in which model we have m  bulls and d  cows where 

each cow receives treatment, (
thh , ph ,,1 ) during the pregnancy period and then we give each 

calf a combination of 
thk  row and 

th  column treatment levels crk ,,1;,,1   .Then

 hkkhhkkhijk )()()()(    

0)()()(,0)()(

0)()(,0)()(,0,0,0







 













hk

k

hk

h

hkk

k

k

h

h

h

h k

hkhk

k

k

h

h




 

ijk  does not depend on i  and j . From Lemma (2-2), we see that 







hkk

ijk

h

ijh

hkk

ijhkijh

h

jhi

)()(,)(

)(,0,,0,

)(

6

)(

5

)(

4

)(

3

)(

2

)(

10








 

We want to test that 0h . We note that this hypothesis is of type 2, we want to test that 0k . We 

note that this hypothesis is of type 4, we want to test that 0 . We note that this hypothesis is of 

type 5, we want to test that 0)( hk . We note that this hypothesis is of type 4, we want to test that

0)( h . We note that this hypothesis is of type 5, we want to test that 0)( k . We note that 

this hypothesis is of type 6, we want to test that 0)( hk . We note that this hypothesis is of type 

6. 

Application 4.  We now consider the balanced 4-way random effects model in which we have the first 

two effects interact and the third and fourth effect nested in the interaction of the first two we observe 

 ijkijijkijjiijk edcabbaY  )(  

),0(~ 2

ai Na  ,   ),0(~ 2

bj Nb  ,   ),0(~)( 2

abij Nab   

),0(~ 2

cijk Nc  ,  ),0(~ 2

dij Nd  ,   ),0(~ 2

eijk Ne   

The parameter space for this model is given by  

- ∞ < <∞ ,   02 a ,   02 b ,   02 ab ,   02 c ,   02 d ,   02 e  
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We are interested in testing that the
22

ba   , 022  ba  , 0  222  abba  , 02 c , 

02 d  and 
22

dc   . We note that the ijkY  and  kjiY are not independent for the random effect 

model the ),cov(   kjiijk YY  is the same as that given in (1) with. 
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Now, let ),,( 1111 mdrcYYY  . Then ),1(~ mdrcmdrcNY   

This model is quite similar to the CRMM. We note that  
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Therefore, to test 
22

ba   , we test 21    for the CRMM and in the transformed model it is 

equivalent for testing that 
2

2

2

1   , to test 02 d , we test 43    for the CRMM and in the 

transformed model it is equivalent for testing that 
2

6

2

5   , similarly to test 02 c , we test 53    

for the CRMM and in the transformed model it is equivalent for testing that 
2

6

2

4   , to test 

022  ba  , we test 021    for the CRMM and in the transformed model it is equivalent for 

testing that 
2

3

2

2

2

1   , then we use Bartlett's test, similarly, to test 0222  abba  , we test 

0321    for the CRMM and in the transformed model it is equivalent for testing that 

2

3

2

2

2

1   , then we use Bartlett's test. To test
22

dc   , we test 543    for the CRMM 

and in the transformed model it is equivalent for testing that 
2

6

2

5

2

4   , then we use Bartlett's test.  

Application 5 In this application, we consider a balanced 4-way mixed effects model in which the third 

random effect nested in the interaction of the first two random effects and the fourth effect is fixed and 

interacts with the interaction of the first and second random effects. This model given by 

 ijkijijkijjiijk eabcabbaY  )()(   

where  ,  are unknown parameters such that 0


  and ijkijji cabba ,)(,,  ijab )(   and 

ijke  are unobserved independent random variables such that 
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),0(~ 2

ai Na  ,    ),0(~ 2

jj Nb  ,    ),0(~)( 2

abij Nab  ,    ),0(~ 2

cijk Nc   

),0(~)( 2

 abij Nab   ,    ),0(~ 2

eijk Ne   

The parameter space for this model is given by  

     - ∞ < <∞ ,   0


 ,  02 a ,   02 b ,   02 ab ,   02 c ,  02  ab  ,   02 e  

We are interested in testing that 0


 , 
22

ba   , 022  ba  , 

0  222  abba  , 02 c , 02  ab  and  
22

 abc  . We note that the ijkY  and  kjiY  are 

not independent for this model the ),cov(   kjiijk YY  is the same as that given in (1). 
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Now, let ),,( 1111 mdrcYYY  . Then ),11(~  mdrmdrcmdrcNY   

This model is quite similar to the CRMM. We note that  
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If we want to test that the 0


 , we just follow the same procedure given in the first three examples, 

Therefore, to test 
22

ba   , we test 21    for the CRMM and in the transformed model it is 

equivalent for testing that 
2

2

2

1   , to test 022  ba  , we test 021    for the CRMM and in 

the transformed model it is equivalent for testing that 
2

3

2

2

2

1   , to test 0  222  abba  , we 

test 0321    for the CRMM and in the transformed model it is equivalent for testing that 

2

3

2

2

2

1   , then we use Bartlett's test, then we use Bartlett's test, to test 02  ab , we test 

43    for the CRMM and in the transformed model it is equivalent for testing that 
2

6

2

5   , to test 

22

 abc  , we test 543    for the CRMM and in the transformed model it is equivalent for 
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testing that 
2

6

2

5

2

4   , then we use Bartlett's test, to test 02 c , we test 53    for the CRMM 

and in the transformed model it is equivalent for testing that 
2

6

2

4   . 

Application 6. In this application, we consider a balanced 4 -way  mixed effects model which is given 

by 

 ijkijijkkijjiijk eabababbaY  )()()(   

where  , , k  are unknown parameters such that  
k

k 0 , 0



 and 

ijkijji ababba )(,)(,,  , ijab )(   and ijke  are unobserved independent random variables such that 

         ),0(~ 2

ai Na  ,    ),0(~ 2

jj Nb  ,    ),0(~)( 2

abij Nab  ,    ),0(~)( 2

 abijk Nab  

         ),0(~)( 2

 abij Nab  ,    ),0(~ 2

eijk Ne   

The parameter space for this model is given by  

               - ∞ < <∞ ,   0


 ,    
k

k 0 ,   02 a ,   02 b  

                   02 ab ,   02  ab ,  02  ab  ,   02 e     

We are interested in testing that 0


 , 0
k

k , 
22

ba   , 022  ba  , 

0 222  abba  , 02 cab , 02  ab  and 
22

  abab  . We note that the ijkY  and  kjiY  are 

not independent for this model the cov(𝑌𝑖𝑗𝑘𝑙 ,  kjiY ) is the same as that given in (1). 

2

2

12

2

22

222

32

2222

4

2

2222

5

2222222

,,,

,
































baabbaababba

ababba

eabababba












 

Now, let ),,( 1111 mdrcYYY  . Then 

                   ),1111(~  mdrmdcmdrcmdrcNY   

This model is quite similar to the CRMM. We note that  
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If we want to test that the 0


 , that the 0
k

k , we just follow the same procedure given in 

the first three examples, Therefore, to test 
22

ba   , we test 21    for the CRMM and in the 

transformed model it is equivalent for testing that 
2

2

2

1   , to test 022  ba  , we test 

021    for the CRMM and in the transformed model it is equivalent for testing that 

2

3

2

2

2

1   , to test 0  222  abba  , we test 0321    for the CRMM and in the 

transformed model it is equivalent for testing that 
2

3

2

2

2

1   , then we use Bartlett's test, then we 

use Bartlett's test, to test 02  ab , we test 43    for the CRMM and in the transformed model it 

is equivalent for testing that 
2

6

2

5   , to test 
22

  abab  , we test 543    for the CRMM  and 

in the transformed model it is equivalent for testing that 
2

6

2

5

2

4   , then we use Bartlett's test, to 

test 02  ab , we test 53    for the CRMM and in the transformed model it is equivalent for 

testing that 
2

6

2

4   . 

5. Discussion and Conclusion 

The approach in this paper permits us to find procedures for any different mixed models 

simultaneously because of the wider assumption we made about the means. Our results can directly be 

extended to the cases when any numbers of fixed effects are added to the mixed and random effects 

models given in the example 5-6, as long as the added fixed effects do not interact with any random 

effects. The reason for the existence of optimal procedures in our approach is that the model can be 

transformed in to a product of models (because the correlation coefficients can be negative as long as 

the covariance matrix is positive definite). However, in the mixed models (see example 5-6) the 

correlation coefficients must be non-negative. In this case the transformed model is not a product of 

models. One more advantage in our approach is that it is possible to get all the required formulas in 

terms of the original variables ijkY  and we do not need to transform to variables ix  for computing 

statistics discussion in this paper. We write below the expression of the various formulas given in 

equation (9) in term of ijkY  
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Where 


h  is the OLS estimators of 6,,1, 


hh  in the OLM that occurs when in the OLM that 

occures when 054321   , in the CRMM. In order to get the remaining 

),,,,,,ˆ( 654321 MMMMMM in terms of ijkY . We define 

        },1,,:{ 11

6

0

1 QsTHW ss

h

hh  


  

       },,,{
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0





h

hhssssh QhsTHW  ,   6,,2 h        

Where  

  mdcrmdcrmdrcmdrc IHIIHIHH  1,1,1,1 3210                

          
mdrcmdrcmdrc IHIIHIH  654 ,1,1   

And  

2

1|

2

1|

2

1|

2

|
11111

, 
  YPYPPP

QTWVQTWV                                                               [10] 

)|(dim)|dim( 111

 QTWV                                                                                           [11] 

 

Finally, we not note from equation (9-11) that for all 6,,2,1, iFi , the numerator sum of square 

2

| iWV YP
i

 and degree of freedom ii qt   for 6,,2,1 ifori  are the same as for the OLM. 

Therefor, to find the approparate F-statistic for the CRMM for a type i  hypothesis, we merely take the 

F -statistic for the OLM and replace 
2  and dfe  with iM  and idf  depending on whether the 

hypothesis is of type 6,,2,1 ifori , similarly, to find the non-centrality parameter, we merely 

take the non-centrality parameter in the OLM and replace 
2  with 

2  depending on the hypothesis is 
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of type 6,,2,1 ifori . We would like to point out that it has not been possible to find an exact F-

test for testing that 02 a  as it is clear from examples 5-6 but it is worth trying. 
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