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Abstract: In this paper, we develop a general method to analyze several different kinds of certain crossed
repeated measures models (CRMM) which represent many situations occurring in repeated

measurements on the same experimental units (individuals). Let Y; = (Y;;5---, Yi4rc) P€ the vector of

observations of the ™ individuals. It is assumed that the Y; are jointly normally distributed with mean

;. We want to test hypotheses about £ . In order to get powerful tests we make the simplifying
assumptions that all measurements have the same variance o? and every pair of measurements that
comes from (i) different bulls and different cows (ii) different bulls but with the same cow (iii) the same
bull with different cows; have covariance's O, Uzpl, 02,02 respectively. And every pair of

measurements that comes from the same bull and the same cow with treatments of (a) different columns
and different rows (b) the same column but different rows (c) different columns but the same row have

covariance's 0'2p3, 0'2,04 and 02p5 , respectively. The results of this model can be used to analyze

certain 4-way balanced mixed and/or random effects models. This procedure is also useful to analyze any
of the mentioned 4-way models by adding any number of fixed effects to the model as long as those added
effects do not interact with any random effects already in these models.

Keywords: Coordinate-Free, Mixed Models, Random Models, Repeated Measures Models

1. Introduction

The crossed repeated measures models (CRMM) is one of the most widely used models in
experimental design, especially in biological, agriculture, education and psychological research (see
Lehman, 1959; Cox, 1992; Hoshmand, 2006). Arnold (1979) has developed a general method to
analyze repeated measures model (RMM), when each of m independent individuals receives several

treatments and assuming that all measurements have the same o £ and every pair of measurements

that comes from the same individual have covariance o’p and each individual is normally

distributed. Gabbara (1985) has extended the RMM of Arnold (1979) to (i) nested repeated measures
models (NRMM), (ii) generalized nested repeated measures models (GNRMM), (iii) crossed repeated
measures models (CRMM), (iv) crossed-nested repeated measures models (CNRMM). Rhonda, and
et al (2016) considered covariance models to account for NRM and simultaneously address mean
profile estimation with penalized splines via semi parametric regression with application to a
prospective study of 24-hour ambulatory blood pressure and the impact of surgical intervention on
obstructive sleep apnea.
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In this paper, we have generalized the work of Arnold (1979) to a more complicated situation occurring
in the analysis of variance (ANOVA) when a particular individual receives every pair of treatment
levels, in which observations cannot be assumed independent as they are assumed in the usual

independent RMM. Let Y,,, be the observations of the (k" treatment on the calf from the j" cow

and the i" bull,where 1<i<m, 1< j<d,1<k<r,1</<c.Lety, =(Y,,,...,Y,,) bethevector

idrc

of observations of the i™ individuals. It is assumed that the Y, are jointly normally distributed with

mean z, . We want to test hypotheses about z; . One possible model for this problem would be that =

is taken as an arbitrary positive definite matrix, but the procedures for such model would have low
power. Therefore, in order to get powerful tests, we assume that all measurements have the same
variance o* and every pair of measurements that comes from (i) different bulls and different cows (i)
different bulls but with the same cow (iii) the same bull with different cows have covariance's
0, o?p,, o p, respectively. And every pair of measurements that comes from the same bull and the same

cow with treatments of (a) different columns and different rows (b) the same column but different
rows (c) different columns but the same row have covariance's ?p,, o%p, and 2, , respectively. In

symbols
o’ it i=i, j=j,k=k, (=1
olp, it Q=i j=j k=K, (=0
olp, it =i, j=j, kzk, (=1 [1]
COVY o Yipw ) =400 if i=i j=j k=k!, L
olp, it =i, j#]j
o’p, if izl j=]
0 if iz, j= ]

Assuming that the design is given, we use a coordinate-free approach to find optimal (i.e, UMP
invariant, UMP unbiased, most stringent, etc.) procedures for testing a large class of hypotheses about
4; . For this model, we write

M1
H= :ﬂolmdrc+1crd®ﬂl+1cr®ﬂ2 ®:I'm +1cr®ﬁ3 +1c®ﬂ4+ﬂ;+ﬂ6 [2]

/umdrc
where 1. =(,...,)) eR®, $> 2, ® is the Kronecker product operation of two matrices, S, € R isthe

overall mean (grand mean), £, = (B.,...3") €R™ is an mx1 vector orthogonal to 1_ (i.e. whose
average is zero for each bull), B, = (f;,..., ) e R® isand d x1 vector orthogonal to 1, (i.e. whose
average is zero for each cow), g, =(p,...M) eR™ is an mdx1 vector orthogonal to every
column of the matrix |, ®1  and every column of the matrix I, x1, (i.e. whose average is zero for
each bull and each cow), g, = (8:*,..., ™) eR™" isan mdrx1 vector orthogonal to every column
of the matrix 1, ® I, (i.e. whose average is zero for each row treatment in a certain mating), and
Bs = (ﬂélb’,...,ﬂém‘”,)’ e R™° where S isan mdcx1 vector orthogonal to every column of the matrix
1. ®I1,, (i.e. whose average is zero for each column treatment in a certain mating) where

W = (B LBy, By = (B BI) e R™™ is an mdrcx1 vector orthogonal to every
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column of the matrix 1, ® |, and every column of the matrix 1, ®1, &1, (i.e. whose average is
zero for each column treatment and for each row treatment).

We consider testing hypotheses about S, (typeh), forh =1,...,6 . We show that optimal test is an F-
test. The sum of squares (SS) and the degrees of freedom (df) for effect being tested is the same as
they would be if the measures were independent. However, the SS and df for denominator are different
for the six types of problems. We will also discuss various hypotheses about the correlation coefficients
which are 14. The problem studied in this paper transform to a product of more than two problems.
Following Arnold 1973, we define recursively such a product by
Pox...xP, =(P x...x P )xP,

and the result valid for two products holds good for s products also. Saarinen F. (2004) gave an
example for the mixed model and their use in repeated measurement. Baayen et al. (2008) worked
simultaneous example for mixed effects modeling.

2. Setting Up the Model

2.1 Defining The Model

Let Y be an mdrc-dimensional random vector, such that Y ~ N . (z,2), where u is defined in

mdrc
(2) and using (1), 2 can be written as follows:
2= 0-2[(1_p5 ~Pq +p3)|mdrc+(p5 _ps)‘]c ®l mdr+(p4 _pS)Ic ®Jr ® Imd
(ps ~ P _pl)‘]cr ® Imd +p2‘Jdrc® Im +p1‘Jcr ® Id ®‘Jm] [3]
where J, =11 be the S x S matrix of one's. We assume that 2. >0 which is equivalent to

) 1 1
o >0, -———<p <l ———<p <l
1 Ps r-1 Pa

fo+(r=0)p,]< py <~ fo+(er-c-np,],

-1)
L+ (r-Dpl<py < B+ r-Dp],

1

r(c-1)
1

r(d-1)

_L[H(r -Dp, <p, < 1[1+ (r-Dp,]-
r(m-1) r

(see Lemma 1)
Let U, be the 1-dimensional subspace of R®generated byl . Then

6
H= Z PLh:u
h=0
where
LO =Umdrc’ L1 :U<;nrc |Umdrc’ I—2 :Urlrj\rc |Umdrc'
L4 :(U(: |Urc)md 1 LS :(U: |Urc)md 1 L6 :[(Url)c |(LJ(:r |Urc)]md
and P is the projection matrix of the subspace L, , where h=0, ...,6. So that
ﬂolmdrc = PLOIU' 1crd ®ﬂl = PLllul 1cr ®ﬂ2 ®1m = L2/u
1, ®p; = LA 1. ®p6, = L, M 135* =LA Bs = PLG,U

L3 =(Ucdr |Udrc)m |(Ud |Umdrc)

mrc
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Hence, this representation for x always exists and is unique. Therefore, the transformation from
to f,, h=1...,6 isjust a re-parameterization of the problem. Let

Yijll Yll
Yo=| ¢ |, Y= i | Cov(Y)=2X

Y Y

ire md
In order to define the parameter space, let T, be a t, -dimensional subspaces of R™, such that
T,cU:; t, <m—1,let T, be a t, -dimensional subspaces of R®, suchthat T, cU;;t, <d -1
, let T, be a t, -dimensional subspaces of R™ , such that T,c (UX)* U |U,,) ;
t, <(m-1)(d-1), let T, be a t, -dimensional subspaces of R™", such that T, = (U.")™,
t,<md(r-1) , let T, be a t, -dimensional subspaces of R™°, such that T, < (US)™ ;
t,<md(c-1) , let T, be a t, -dimensional subspaces of R™™ , such that
T, c[UD° U U, )™, t, <md(r —1)(c—1). For this paper, it is assumed that the parameter
space is given by

BoeR, peT, B,eT,, p,eT,, B,eT,, BseT, LTy, 2>0 [4]

The model defined by (1)-(4) is called the CRMM.
We consider twenty different hypotheses testing problems for this model. For all twenty problems the
alternative set is the parameter space given in (4).

a. Let Q, < T, bean g, -dimensional subspace, g, <t, for h=1...,6.Inthe h™ problem for
h=1,...,6 we test that
BoeR, B,€Q,, B, eT,s=1...6, s=/.
b. The remaining fourteen problems are to test that
D) p3=ps @) p3=p,=0, Q) p3=ps. 4) p3=ps=0, (5) p.=p,
6) p3=0, py=ps, () p=p,=0, 8) p=p,=p3=0, (9 p=p,=p, =0, (10)
pr=p=ps=0, (1) pr=p,=p,=ps =0, (12) py=p, = ps
(13) py=p,=ps =0, (14) py=p, =p;=p, =ps =0.

2.2 Transforming The Model

In this section, we show how to transform the model defined in Section (2.1) to a model that is easier

to handle. Let C. be an (s—1)x s orthonormal basis matrix for the sub-space U such that
C.C,=1,, Cl1, =0, 1.C, =0, CC.=N,=1,—-M_, M, =(/s)J,

Then
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[(mdre)™? 1 ®1' ®1, ®1., | D,
(dre)™? 1. ®1 ®1, ®C/, D,
(mre)™? 1. ®1 ®C, ®1, D,
F=|(c)"* 1 ®1 ®C,®C/ |=|D,
(©** 1 ®C ®I,®T, D,
(N C!®L rI,®T, D;
C!®C'®I,®rI, | LDPs]

isan mdrcx mdrc orthogonal matrix. Let

DY [Ye]
D,Y ’
D,Y
=TY = D3Y =
D,Y
D,Y
| DgY | _Ye*J
where Y, is an 1x1 vector, Y, is an (m—1)x1 vector, Y, is an (d —1)x1 vector, Y, is an

*

(m—-1)(d —1) x1 vector, Y, isan md(r —1) x1 vector, Y. is an md(c —1) x1 vector and Y, is an
md(r —1)(c —1) x1 vector.
Since, I' is an invertible matrix and does not depend on any unknown parameter, then observing Y
is equivalent to observing Y., Y, , Y, , Y5, Y, , Yo, Yo . Let

=04, h=0,...6
where

Ay =L+ (=D ps +(r=Dp, +(c-1)(r 1) p, +cr(d -1)p, +cr(m-1)p,

A =L+ (c-Dps +(r-p, +(c=1)(r-1)p; +cr(d -1 p, —crp,]

A, =R+ (-Yps +(r-1p, +(c-1(r-1)p, —crp, +cr(m-1)p,]

2y =L+ (€ ~D)p; ~ (r ~Dp, + (€ ~D(r ~1)p, ~crp, —crp,] [5]
Ay =R+ (- ps - p, —(c-1)p;]

As =[1-ps +(r-1)p, —(r-1)ps]

s =[1-ps—ps — psl

(2, 72, 72, 72 72, 72), is just an invertible function of (¢, p,, p,, 25, L., p5), Which is a re-
parameterization. We now find the joint distribution of Y .
Lemma 1. The random vectors v, , Y, Y,, Y, ,Y,, Y., Y, are independent and

Yy ~ Nl((mdrc)j/zﬂo'rg)’ Yl* - N(m—l) ((drc)l/zcr,nﬂl’rlzl)
Y, ~ N ((mrc)**C, By, 731), Y ~ Ninayes ((rc)*(Cy ®Cr) B, 731)

* *

Y~ Ny ©(C, ®T, ®T,) 0 e21), Yo = Ny y (P2(C, ®T, ®T, ) By, 721
Ye ~ de(r—l)(c—l) ((C, ®C; T, ®rm)ﬂ6’z-62|)
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and > >0 ifandonlyif o® >0 and 77 >0 forall h=01,...,6.
Proof. It can be shown easily that
Y'=TY ~ Ny (e’ 2)
where
(mdrc)¥? B,
(dre)**C;, B,
(mrc)** C; 43,
w=Tu=| (10 (C; 8C)5, o]
¢’ (C; @I, ®T,)A,
r'*(C; ®r, ®T,,)fs
|(C.®C B ®T,)fs |

and

r=rxr’ dlag(ro, z'l 1 rzld I rsl(m Ly 1),1'4|md(r ) r5 Imd(c 1),r6 md(r_l)(c_l))
Hence, Yy, Y, Y,, Y5, Y, , Y., Y, areindependent. Therefore, the result follows.
Lemma2.  fy=p ., BV=@m -np., BP=p;-n., B=k -0 -H +0.
(”k) = Ui — M. » W) = L., — M., (W) = Ui — Mij.o — Hige + M.
Proof. The result follows directly from (2) and (6).

Finally, we reparametrize the model. Let rﬁ be as defined in (5) and define

70=derc o 7/4:‘/E(C|:®rd ®rm)ﬂ4
7, =dreC B, 75 = (C, ®T, ®T,)f;
7, =~ImrcC; 4, 75 =(C,®C/ ®T, ®T,)p,}

¥2 =rc(C, ®CL)p,

[7]
Then y, e R ifandonly if g eR, 4, 7 ifandonlyif g, €T,,h=1..6

u eV ifandonlyif zeV, X >0 ifandonlyif z2>0 h=0,..6
Corollary 3. The transformation from (ﬂo,ﬂl,ﬂz,ﬁ3,ﬂ4,ﬂ5,ﬂ6,o-z, Pis Pay P3s Par Ps) 10
(Fo» V1s Vor Var Var Vor VerTrn Tay Ty T2y To, 7¢) is  an  invertible  function.  Hence

(Fo» Vs Vor Var Var Vor YerTrs Ty Toy T2, T2, T2) IS just a re-parameterization of the problem.
Therefore, we have transformed the CRMM to a model in which we observe
Yo, Y, Y, Ys, Y, Y, Y, independent such that

Yo ~ Nl(Vo’Tgl) Y5* - de(c-l)(7/51752|)

Y1* N(m—l) (7/1’712|) Y4* - de(r—l) (7/4vTj|)

Yz* N(d—l) (7/2'1'2?') Yo ~ de(r—l)(c—l) (76’T£32|)

Ys* - N(m—l)(c—l) (r 3175 ) [8]
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We note that C,,, C,, C, ®C,, C, ®I;®I, , C. ®I;®I, , C.®C, Iy ®I, are
orthonormal basis matrices for U} , U; , UH*|UMU,) ., UH™ , UuH™ ,
[UH U U, )I™, respectively. Therefore dim V™ =dim V , dim T,” =dim T, for
h=0,...6. Now, if Q, isasub-space of T,” for h=1,....6 , Let

Q ={C,u;ueQ} Q, ={(C/ ®I, ®I,)u; ueQ,}
Q, ={Cqu; ueQ,} Qs ={(C; ®I, ®T)u; ueQ:}
Q ={C;®Cy)u; ueQ}  Q; —{(C.®C; ®T, ®T,)u; ueQ}

The following lemma follows directly from the definitions.
Lemma 3:
a) If Q, is asubspace of Ty, then 5, € Q iff y, € Qp forallh =1, ...,6

) 1 1
oc°>0, ——<p. <1, ——<p, <1
b) c_1 Ps r_1 Ps |

[c+(r—c)p,]<ps < [c+(cr-c-n)p,l

1 1
r(c-1 r(c-1)

DAl < L -Dp)
L D<o <l+(-Dp,]
r(m-1) r

iff t7 +72—-12>0, 7/ >0 for h=01,....6 and
L ps=p iff =14
2. py=p,=0 iff =1
3. Ps=ps iff 7, =174
4. py=ps =0 iff i =1¢
5 p=p, when d =m iff tt =17
6. p;=0 p,=p; When r=c iff tl =12
7. p=p,=0 iff ot =15 =1’
8. p=p,=p;=0 iff =1 =15
9. p=p,=p,=0 iff n=T =1
10. p=p,=ps=0 iff n=1,=1,
11 pr=p,=py=ps =0 iff =1, =15
12. py=p,s=ps iff T, =T =1
13. py=p,=ps=0 iff T, =1 =1
14 p=p,=p;=p;=ps=0 iff ==
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3. Optimal Procedures

3.1 Calculating The Statistics

In this section, we find statistics F, for h=1,...,6 , that we need to do the required tests. Let

df, =(m-1) -t,=dimU . |T,), df, =(d-1)—t, =dim(U_} |T,)

dfy =(m-1)(d -1) —t, =dim([(U,)* [U{ [U,)]IT5)

df, =md(r 1) —t, =dim[(U )™ |T,], df, =md(c—1) -t =dim[(U )™ |T,]
dfg =md(r —-1)(c -1) —t, =dim{[(U,")° | U [U, )™ |Ts}

and define
s, =df;M, =dre} (Y, Y - 4")°
SS, =df,M, = mrclz(\?j,_ ~Y - piy?
SS, = df,M, = cmZo(” ~Y, =Y, +Y_ -y
ss, = df,M —CZZZ(Y.,k Y, — Bi)y?
SS; = df,M, = rzzz(vw ~Y,. - B0
SS, = df;M, ZZZZ(YW i Vi +Y, = BI0Y?

3.2 Optimal Tests

In this section, we consider the testing problems mentioned in Section 2.1 and give the proof for the
first and fifth problems as the proof for other can be done similarly.

3.2.1 Tests Concerning

P, . We first look at the problem of type 1, in which we are testing 5, € Q, against #, €T, so in the

transformed model, we are testing that 7, € Q," against y, € T," for the OLM involving only Y;" are
independent having the distribution given in [8] and we are testing.

H,:7,€Q, 712>0, 7, €T, h=2,...6, , Z'SZ >0, s=2,....6
H iy €T, 712 >0, 7, €T, h=2,...6, , Tsz >0, s=2,...6

Call this problem P . P is then the product of the testing problem P,,...,P;. Where P, is the

independent measures model in which we observe Y,  ~ N (715 /1) and we are testing,

Hy:7,€Q, 72>0 vs. H,:y, €T, 72 >0

Volume 5, Issue 1; December, 2019 8



Eurasian Journal of Science & Engineering EAJSE
ISSN 2414-5629 (Print), ISSN 2414-5602 (Online)

And P, is the trivial problem [3], in which we observe Y, ~ N(y,,z’1) and we are testing
Hy:7n €T, 2>0 vs. H, iy, €T, ¢/ >0 for i=2,...6

Since P,,..., P, are trivial problems (and hence the product of P,,...,P; is trivial [3], a good
procedure for P, will be good for P . Therefore, let F, (see (10)) be the usual F,; statisticand ¢, the
usual F critical function for testing P, such that

1 if F>F"

=0y, af
F)= o
#(FR) {0 if F <F

1= 7 t—0y gq

where th'_ql . is the upper a point of a central F distribution with t, —q, and df, degrees of

freedom. We note that ¢ would be the UMP invariant size o test for testing that y, € Q; against

7, €T, for the OLM consisting only Y," . It is also a UMP invariant size ¢ test for the CRMM.

2

PT1' 1o 7

-0, dfy 2
T
1

Theorem5. - [

The test ¢, is size @ , UMP invariant, UMP unbiased, most stringent, admissible, Bayes, and LRT test
forP .

PROOF: the test has all these properties for P, [4], so it has these proportions for P by theorem B of
[31.

3.2.2 Tests about

B, h=2,...,6. Follow in a similar way to section 3.2.1.
3.2.3 Testing that p, = p,

Now, consider the problem of testing that 0, = p, After transformingtoY,',Y, ,..., Y, , this problem

becomes the problem in which we observeYO*,Yl*,..., Y, , independent and normally distributed as
given in (8). We are testing

Hy:7,€eR, y, €T, h=1...,6, T5z=r§, T52>0, s=1234
H, :7,€R, 7, €T, 72>0, h=1...6

This problem is not a product of problems. However, it is already a problem about what is known. It
is the problem in which we have seven independent OLM's and are testing for the equality of two
variances. Let
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R Foo > Fanow  OF Foo <Fily
b \F56 0 if Fdlf;adfs SF5’5SFd25,df5

Wherea+b =c . Then, ¢, is a size a test. There is no UMP invariant test for this problem, but

there exists @ and b such that ¢, , is a UMP unbiased, and other & and b such that ¢, is a LRT.
The choice a=Db = % is the choice used more often. In a similar way, we test p, = p, =0 (because

this case in the CRMM)), so, we test r52 = z-62 in the transformed model, i.e. we are testing for equality
of two variances.

3.2.4 Testing that p, = p.
Follow in a similar way to section 3.2.3

3.25 Testing that p, = p, =0

Firstly, we consider testing the problem that p, = p, = 0. In the transformed model that becomes the
problem of testing that rf = 722 = r§. Therefore, this problem transforms to a problem of testing

equality of variances in the three different OLM's involving Yl*,YZ* and Y, . Hence, we are testing
Ho 7o €R, 7, €T,, h=1...6, /=12 =7, 72>0, >0, 77 >0
H,:7peR, 7, €T, Tﬁ >0, h=1....6

There is no UMP invariant size « test for this problem, but an approximate size « test can be found
by using Bartlett's test

4. Applications

In this section, we study six applications to illustrate the different types of hypotheses used (Al-Sakkal
1999).

Application 1. Assume a cattle breeding experiment in which we have m bullsand d cows with only
one calf for each mating of bull and cow. We will consider a 2-way ANOVA model (with no
interaction), with r row treatments and ¢ column treatments such that each calf receives every pair of
treatment levels. That is, each calf receives rc different treatment combinations. Let

Y = (Yi110--+» Ymare) De the vector of observations on all calves. Then s, =0+, +7,, S, =0
k
>y, =0 (45, does not depend on i and J ). We want to test thatr, =0, and we want to test that
4

y, =0, According to the lemma 2, §, =0, A =0, AP =0, 9 =0, W =q,, A =y,
i) _ g
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Therefore, the first hypothesis is of type 4, the second hypothesis is of type5.

Application 2. In this application. we will consider the 2-way model of application 1 but with
interaction between the « effect and the y effect, Then uy, =0+a, +y, +(ay), .

o =0, >y, =0, Y (), = (ar), =0 (4, doesnotdependon i and J)- We want to test
k 14 k ’
thatary,, = 0. According to the lemma 2, B = ay,,. We note that this hypothesis is like type 6.

Application 3. Consider a 3-way fixed effects in which model we have m bulls and d cows where
each cow receives treatment, (h™, h=1,..., p) during the pregnancy period and then we give each

calf a combination of k™ row and /" column treatment levels k =1,...,r; /=1,...,c .Then
Mg =0+, +y+1, +(@)n + (@) + ()i + (@) i

Zah =0, Z?’k =0, Z’h =0, Z(W’)hk :Z(CW)hk =0, Z(aﬂ)h/ :Z(aﬂ)h/ =0

h

S0 =30 =0, Yy, =3 (e =X @)y, =0

L, does not depend on i and j.From Lemma (2-2), we see that

By=0, pP=0 pI"=qa,, =0, B =y + ()
I =0 @), B =m) a + () e

We want to test that «z, = 0. We note that this hypothesis is of type 2, we want to test that , =0. We
note that this hypothesis is of type 4, we want to test thatz7, = 0. We note that this hypothesis is of
type 5, we want to test that (), = 0. We note that this hypothesis is of type 4, we want to test that
(an),, =0. We note that this hypothesis is of type 5, we want to test that (y77),, = 0. We note that

this hypothesis is of type 6, we want to test that (czy77),,, = 0. We note that this hypothesis is of type
6.

Application 4. We now consider the balanced 4-way random effects model in which we have the first
two effects interact and the third and fourth effect nested in the interaction of the first two we observe

Yiw =0+a; +b; +(ab); +cy +d;, +€y,

a, ~N(0,07), b; ~ N(0,0‘S), (ab); ~ N(O'O-;b)
Cij ~ N(0,0;), dyj, ~ N(0,05), Cije ~ N(0,5;)
The parameter space for this model is given by

-0<f<w, c.20, o220, 02,20, 6220, 6;>0, 62>0
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We are interested in testing that the o’ =0, 0 =0 =0, o’ =0;=0.,=0, 62 =0,
oj =0 and o =o;. We note that the Y;,, and Y, are not independent for the random effect

model the cov(Y;,,Y;,,) is the same as that given in (1) with.

2 2 2 2
o, +t0, +0,,+0,

2 2 2 2 2 2 2 _
o"=o0,to, to,,+to, +to4to,, ps=

O
ol +ol +oi +o} ol +of +0o2, o’ o}
Py = 2 v P3= 5 v PaT 0 PLT 5
(o2 O (o2 (o2
NOW’ Iet Y = (Yllll""'Ymdrc) : Then Y~ derc(elmdrclz)
This model is quite similar to the CRMM. We note that
cl=0? whend=m iff p =p, iff /=1
ol=02=0 iff p,=p,=0 iff  l=1l=12
0, =0, =0,,=0 iff  p=p,=p;=0 iff =1, =15
ol =0 iff  p,=p, iff  72=1?
o; =04 iff ;= p, = ps iff 75 =1=15
c2=0 iff  p;=ps iff  l=1¢2

Therefore, to test o-a2 = alf, we test p, = p, for the CRMM and in the transformed model it is
equivalent for testing that 7z =7, to test o; =0, we test p, = p, for the CRMM and in the
transformed model it is equivalent for testing that 7> =z, similarly totest 7 =0, we test p, = p,
for the CRMM and in the transformed model it is equivalent for testing that rf :rg, to test
ol =0l =0,wetest p, = p, =0 for the CRMM and in the transformed model it is equivalent for
testing that 7 = 77 = 7, then we use Bartlett's test, similarly, to test o> = 6; = o2, =0, we test
P, =p, =p; =0 for the CRMM and in the transformed model it is equivalent for testing that
tl =12 =12, then we use Bartlett's test. To testo” = o, we test p, = p, = p5 for the CRMM
and in the transformed model it is equivalent for testing that 7 = 72 = 7, then we use Bartlett's test.
Application 5 In this application, we consider a balanced 4-way mixed effects model in which the third

random effect nested in the interaction of the first two random effects and the fourth effect is fixed and
interacts with the interaction of the first and second random effects. This model given by

Yiw =0+, +b; +(ab); +cy +77, +(abn)y, +ey,

where 6, 77, are unknown parameters such that %, =0 and a;, by, (ab);, ¢, (abz)y, and
1

€, are unobserved independent random variables such that
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a ~ N(O'O';)’ bj - N(01512), (ab)ij - N(O'szb)’ Cij ~ N(O,GCZ)

(abr)y;, ~ N(O, U§bq) . ey ~ N(O, Gez)

The parameter space for this model is given by

2 2 2 2 2 2
-0 <f<o, Mp =0, 0,20, 0,20, 0,20, 020, 0,,20, o.>0
-

We are interested in testing that 3", =0, ocl=0cl, 0:=0; =0,
0

a

2 _
L=

ol=0.=0%=0,02=0,0%, =0and of =03, . We note that the Y,;, and Y,,,. are

not independent for this model the cov(Yijk[,Yi,j,k,[,) is the same as that given in (1).

2 2 2 2
o, +o, +o,,+0,

2 2 2 2 2 2 2
o =0, +0y, +0,,+0, +O_ab7]+o-e' Ps = 2
(o2
2 2 2 2

O, +0, +0,,+0,, o'2+o'2+(72 (72 0'2
_ a a abn _ a b ab _ a _ b
p4_ 2 ’ p3_ 2 ' p2_ 2! pl_ 2
(o2 o (o2 (2

Now, letY = (Y, -+ Yare) - Then Y ~ N (0L, 4rc + 7 ®1, 4, 2)

This model is quite similar to the CRMM. We note that

ocl=0? whend=m iff p =p, iff  r2=1)
cl=0=0 iff  p,=p,=0 iff i=tl=1l
ol=oi=oh=0 WM pmp=p=0 it =ri=c]
ofb,]:O iff  p,=p, iff 2=t
o; =0y, it py=p,=ps iff 7 =10=1
ol =0 iff o, =ps iff  7l=1f

If we want to test that the » », =0, we just follow the same procedure given in the first three examples,
!

Therefore, to test o = o7, we test p, = p, for the CRMM and in the transformed model it is
equivalent for testing that 7z} =77, totest o> = o> =0, we test p, = p, =0 for the CRMM and in
the transformed model it is equivalent for testing that z; =7 =7, totest o’ =0} =o’, =0, we

test p, = p, = p; =0 for the CRMM and in the transformed model it is equivalent for testing that

2

ay =0, we test

tf =12 =72, then we use Bartlett's test, then we use Bartlett's test, to test o
p5 = p, forthe CRMM and in the transformed model it is equivalent for testing that 152 = Tg , to test

ol = o;fbﬂ , We test p, = p, = p; for the CRMM and in the transformed model it is equivalent for
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testing that z; = z2 = ¢, then we use Bartlett's test, to test " =0, we test p, = p, for the CRMM

and in the transformed model it is equivalent for testing that rf = fg.

Application 6. In this application, we consider a balanced 4 -way mixed effects model which is given
by

Vi =0+a; +b; +(ab); +y, +1, +(@by)y +(@bn);, +e;,

where 6, n, , y, are unknown parameters such that Z7k:0 Sy, =0 and
k 0

a;, b;, (@b);, (aby);, (abn);, and ey, are unobserved independent random variables such that
a, ~N(0,0;), b; ~ N(O:O'jz)v (ab); ~ NQ©,o3,), (aby) i ~ N(O’O-gb;/)
(abﬂ)ije ~ N(O, Gjbq)v Cije ~ N (O, Gez)

The parameter space for this model is given by

2 2
-0<f@<w, >'n, =0, > 7 =0, o, 20, o/ 20
14 k

2 2 2 2
0520, o4, 20, 0,,20, 07>0

We are interested in testing that »'», =0, > 3 =0, ol=0; , cl=0r=0,
l k
2

oy =0and o7, =0k, . We note that the Y;;, and Y, are

ol =0} =0’ =0, O';byc =0, o
not independent for this model the cov(Y;j;, Yiji) is the same as that given in (1).

2 2 2 2
O, tO, +O0,, +0

2 _ 2 2 2 2 2 2 _ aby
0" =0, +0, +0,, t0,, + 04, +0., pPs5= =
2 2 2 2 2 2 2 2 2
o, +0y + 04+ Oy, O, to, +oy, _ O, _ Oy
Ps = 2 v P3 = 2 v P = 2 PrL= 2
O (o} o o

Now, let Y = (Y;;14--+, Yiare) - Then

Y - derc(mmdrc+1c ®7/®1md +77®1mdr'z)

This model is quite similar to the CRMM. We note that
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ol=0? when d=m iff p =p, iff —f=1)
cl=02=0 iff  p,=p,=0 iff l=rl=12
oie0i=0h=0 M pmpmpu=0 W rieriec
Tany =0 iff  py=p, iff 5=z
Uazby = O-:bn iff oy =p,=ps iff Tf = 2'52 = T;
2, =0 iff  py=ps iff  7/=1g

If we want to test that the Z’h =0, that the Zh =0, we just follow the same procedure given in
4 k

the first three examples, Therefore, to test aj = akf, we test p, = p, for the CRMM and in the
transformed model it is equivalent for testing that 77 =77, to test o> =02 =0, we test
p, =p, =0 for the CRMM and in the transformed model it is equivalent for testing that
vl =1l =12 totest o’ =0; =0, =0, wetest p,=p, =p, =0 for the CRMM and in the
transformed model it is equivalent for testing that 77 = 7 = 72, then we use Bartlett's test, then we

use Bartlett's test, to test O'az,o,7 =0, we test p, = p, for the CRMM and in the transformed model it

2 _

is equivalent for testing that 77 =77, totest o2, = 0, , Wetest p, = p, = p; for the CRMM and

in the transformed model it is equivalent for testing that rf = 1-52 = rg, then we use Bartlett's test, to

2

test o,, =0, we test p, = p; for the CRMM and in the transformed model it is equivalent for

testing that 7. = 7.

5. Discussion and Conclusion

The approach in this paper permits us to find procedures for any different mixed models
simultaneously because of the wider assumption we made about the means. Our results can directly be
extended to the cases when any numbers of fixed effects are added to the mixed and random effects
models given in the example 5-6, as long as the added fixed effects do not interact with any random
effects. The reason for the existence of optimal procedures in our approach is that the model can be
transformed in to a product of models (because the correlation coefficients can be negative as long as
the covariance matrix is positive definite). However, in the mixed models (see example 5-6) the
correlation coefficients must be non-negative. In this case the transformed model is not a product of
models. One more advantage in our approach is that it is possible to get all the required formulas in

terms of the original variables Y, and we do not need to transform to variables X; for computing

statistics discussion in this paper. We write below the expression of the various formulas given in
equation (9) in term of YW
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SS, = dfM, =drc) (Y, -Y_ - A")
SS, =df,M, = mrcIZ(Yj”—xn_[;Z“))z
i

8S,=df;M,=rc>. > (Y, Y, -V, +Y_— By’

i
$S, =df,M, = CZZZ(VU«. =Y, - By
SS, = df,M _rZZZ(Y,” Y, — Ay
SSG:dfGMG:ZEj:Zk:z/:(YW— =Yy + Y, = OO

Where g, is the OLS estimators of £, , h=1,...,6 in the OLM that occurs when in the OLM that
occures when p, =p, =p;=p, =ps =0, in the CRMM. In order to get the remaining
(i My, My, My, My, Mg, Mg)in terms of Y, . We define

le{/‘:ZB:Hhﬂhi PseT,, s#], ﬂlte}

6
th{,u=ZHs,Bs, B.eT,s#h p,e€Q} h=2..6
h=0

Where
Hozlmdrc’ H _:I'drcc>§I H2:1cr®|d®|m’ H3:1cr®|md
H,=1,®I,,, Hi=1,®1 ®I_,, Hy =1,
And
”PVI‘M“‘ ‘ TR 7/1 H Yl“ ‘ e [10]
dim(V [W,) =dim (T, | Q) [11]
Finally, we not note from equation (9-11) that for all F,, 1=12,---,6, the numerator sum of square

HPVIWiYiHZ and degree of freedom t, —q, for i fori=212,---,6 are the same as for the OLM.

Therefor, to find the approparate F-statistic for the CRMM for a type i hypothesis, we merely take the
F -statistic for the OLM and replace o and dfe with M, and df, depending on whether the
hypothesis is of type i for i=1,2,---,6, similarly, to find the non-centrality parameter, we merely

take the non-centrality parameter in the OLM and replace o® with 7 depending on the hypothesis is
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of type i fori=12,---,6. We would like to point out that it has not been possible to find an exact F-

test for testing that a,f =0 as it is clear from examples 5-6 but it is worth trying.
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