EAJSE

On the Banach Algebra $\mathscr{B}(c(N^t))$

Orhan Tuğ ¹

¹Department of Mathematics Education, Tishk International University, Erbil, Iraq Correspondence:Department of Mathematics Education, Tishk International University, Erbil, Iraq. E-mail: orhan.tug@ishik.edu.iq

Received: March 7, 2019 Accepted: May 12, 2019 Online Published: June 1, 2019

doi: 10.23918/eajse.v4i4p84

Abstract: In this paper, we give some properties of the Banach Algebras of the bounded operators on the BK space $c(N^t)$ which is the Nörlund domain in the convergent sequence space introduced by Tuğ and Başar (2016). We prove that the class $(c(N^t), c(N^t))$ is a Banach algebra with respect to the norm $||A|| = ||L_A||$ for all $A \in (c(N^t), c(N^t))$.

Keywords: Norlund Matrix, Sequence Spaces, Banach Algebras, Matrix Norm

1. Preliminaries, Background and Notation

We denote the space of all complex valued sequences by ω . Each vector subspace of ω is called as a *sequence space*, as well. The spaces of all bounded, convergent and null sequences are denoted by ℓ_{∞} , c and c_0 , respectively. By ϕ , we mean the space of all finitely non-zero sequences. A sequence space μ is called an *FK*-space if it is a complete linear metric space with continuous coordinates $p_n : \mu \to \mathbb{C}$ with $p_n(x) = x_n$ for all $x = (x_n) \in \mu$ and every $n \in \mathbb{N}$, where \mathbb{C} denotes the complex field and $\mathbb{N} = \{0, 1, 2, ...\}$. A normed *FK*-spaces is called a *BK*-space, that is, a *BK*-space is a Banach space with continuous coordinates, (Choudhary & Nanda, 1989, pp. 272-273). The sequence spaces ℓ_{∞} , cand c_0 are *BK*-spaces with the usual sup-norm defined by $||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|$. By ℓ_1 , ℓ_p , c_s , c_{s_0} and b_s , we denote the spaces of all absolutely convergent, *p*-absolutely convergent, convergent to zero and bounded series, respectively; where 1 .

The alpha-dual λ^{α} , beta-dual λ^{β} and gamma-dual λ^{γ} of a sequence space λ are defined by

$$\begin{aligned} \lambda^{\alpha} &:= \{x = (x_k) \in \boldsymbol{\omega} : xy = (x_k y_k) \in \ell_1 \text{ for all } y = (y_k) \in \lambda\}, \\ \lambda^{\beta} &:= \{x = (x_k) \in \boldsymbol{\omega} : xy = (x_k y_k) \in cs \text{ for all } y = (y_k) \in \lambda\}, \\ \lambda^{\gamma} &:= \{x = (x_k) \in \boldsymbol{\omega} : xy = (x_k y_k) \in bs \text{ for all } y = (y_k) \in \lambda\}. \end{aligned}$$

Let λ , μ be any two sequence spaces and $A = (a_{nk})$ be an infinite matrix of complex numbers a_{nk} , where $k, n \in \mathbb{N}$. Then, we say that A defines a *matrix transformation* from λ into μ and we denote it by writing $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ ; where

$$(Ax)_n = \sum_k a_{nk} x_k \tag{1}$$

Volume 4, Issue 4; June, 2019

provided the series on the right side of (1) converges for each $n \in \mathbb{N}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By $(\lambda : \mu)$, we denote the class of all matrices A such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if Ax exists, i.e. $A_n \in \lambda^\beta$ for all $n \in \mathbb{N}$ and belongs to μ for all $x \in \lambda$, where A_n denotes the sequence in the *n*-th row of A.

Let *X* be a Banach space with the norm $\|.\|_X$. We denote the set of all bounded linear operators, which maps *X* into itself by $\mathscr{B}(X)$. That is, $A \in \mathscr{B}(X)$ if and only if *A* is linear and

$$||A||_{\mathscr{B}(X)}^{*} = \sup_{x \neq 0} \frac{||Ax||_{X}}{||x||_{X}} < \infty$$

It is known that $\mathscr{B}(X)$ is a Banach algebra with its norm $||A||^*_{\mathscr{B}(X)}$, see Jarrah and Malkowsky (1990). If a normed sequence space λ contains a sequence (b_n) with the following property that for every $x \in \lambda$ there is a unique sequence of scalars (α_n) such that

$$\lim_{n \to \infty} \|x - (\alpha_0 b_0 + \alpha_1 b_1 + \dots + \alpha_n b_n)\| = 0$$

then (b_n) is called a Schauder basis for λ . The series $\sum_k \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) and written as $x = \sum_k \alpha_k b_k$.

If λ is an *FK*-space, $\phi \subset \lambda$ and (e^k) is a basis for λ then λ is said to have *AK* property, where e^k is a sequence whose only term in k^{th} place is 1 the others are zero for each $k \in \mathbb{N}$ and $\phi = span\{e^k\}$. If ϕ is dense in λ , then λ is called *AD*-space, thus *AK* implies *AD*. It is also well known that if *X* has *AK* then $\mathscr{B}(X) = (X, X)$, see Malkowsky and Al (2003)

2. The Sequence Spaces $c_0(N^t)$ and $c(N^t)$ of Non-absolute Type

Let (t_k) be a nonnegative real sequence with $t_0 > 0$ and $T_n = \sum_{k=0}^n t_k$ for all $n \in \mathbb{N}$. Then, the Nörlund mean with respect to the sequence $t = (t_k)$ is defined by the matrix $N^t = (a_{nk}^t)$ as follows

$$a_{nk}^t = \left\{ egin{array}{cc} rac{t_{n-k}}{T_n} &, & 0 \leq k \leq n, \ 0 &, & k > n \end{array}
ight.$$

for every $k, n \in \mathbb{N}$. It is known that the Nörlund matrix N^t is regular if and only if $t_n/T_n \to 0$, as $n \to \infty$ (Hardy, 2000, Theorem 16, p. 64), and is reduced in the case t = e = (1, 1, 1, ...) to the matrix C_1 of arithmetic mean. Additionally, for $t_n = A_n^{r-1}$ for all $n \in \mathbb{N}$, the method N^t is reduced to the Cesàro method C_r of order r > -1, where

$$A_n^r = \begin{cases} \frac{(r+1)(r+2)\cdots(r+n)}{n!} &, n = 1, 2, 3, \dots, \\ 1 &, n = 0. \end{cases}$$

Let $t_0 = D_0 = 1$ and define D_n for $n \in \{1, 2, 3, ...\}$ by

$$D_n = \begin{vmatrix} t_1 & 1 & 0 & 0 & \cdots & 0 \\ t_2 & t_1 & 1 & 0 & \cdots & 0 \\ t_3 & t_2 & t_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ t_{n-1} & t_{n-2} & t_{n-3} & t_{n-4} & \cdots & 1 \\ t_n & t_{n-1} & t_{n-2} & t_{n-3} & \cdots & t_1 \end{vmatrix}$$

Then, the inverse matrix $U^t = (u_{nk}^t)$ of Nörlund matrix N^t was defined by Mears (1943) for all $n \in \mathbb{N}$, as follows;

$$u_{nk}^{t} = \begin{cases} (-1)^{n-k} D_{n-k} T_{k} & , & 0 \le k \le n, \\ 0 & , & k > n. \end{cases}$$

Additionally, the inverse of Nörlund matrix and some multiplication theorems for Nörlund mean were studied by Mears (1943); Wang (1978).

The domain λ_A of an infinite matrix A in a sequence space λ is defined by

$$\lambda_A = \{x = (x_k) \in \boldsymbol{\omega} : Ax \in \boldsymbol{\lambda}\}$$

which is a sequence space. The domain of Nörlund matrix N^t in the classical sequence spaces ℓ_{∞} and ℓ_p were introduced by Wang (1978), where $1 \le p < \infty$.

Tug and Basar (2016) introduced the sequence spaces $c_0(N^t)$ and $c(N^t)$ as the set of all sequences whose N^t -transforms are in the spaces of null and convergent sequences, respectively, that is

$$c_0(N^t) := \left\{ x = (x_k) \in \boldsymbol{\omega} : \lim_{n \to \infty} \frac{1}{T_n} \sum_{k=0}^n t_{n-k} x_k = 0 \right\},$$

$$c(N^t) := \left\{ x = (x_k) \in \boldsymbol{\omega} : \exists l \in \mathbb{C} \text{ such that } \lim_{n \to \infty} \frac{1}{T_n} \sum_{k=0}^n t_{n-k} x_k = l \right\}.$$

They defined the sequence $y = (y_k)$ by the N^t-transform of a sequence $x = (x_k)$, that is,

$$y_k = (N^t x)_k = \frac{1}{T_k} \sum_{j=0}^k t_{k-j} x_j$$
(2)

for all $k \in \mathbb{N}$. Therefore, by applying U^t to the sequence y defined by (2) we obtain that

$$x_k = (U^t y)_k = \sum_{j=0}^k (-1)^{k-j} D_{k-j} T_j y_j$$
(3)

for all $k \in \mathbb{N}$. Throughout the text, we suppose that the terms of the sequences $x = (x_k)$ and $y = (y_k)$ are connected with the relation (2 and 3).

Theorem 2.1. (*Tug and Basar (2016)*) *The sequence spaces* $c_0(N^t)$ *and* $c(N^t)$ *are the linear spaces with the co-ordinatewise addition and scalar multiplication which are the BK-spaces with the norm*

$$\|x\|_{c_0(N^t)} = \|x\|_{c(N^t)} = \|N^t x\|_{\infty} = \sup_n \left(\frac{1}{T_n} \sum_{k=0}^n t_{n-k} |x_k|\right)$$
(4)

Theorem 2.2. (*Tug and Basar (2016)*) Let $\alpha_k = (N^t x)_k$ for all $k \in \mathbb{N}$. Define the sequence $\{u^{(n)}\} = \{u_k^{(n)}\}_{k \in \mathbb{N}}$ in the space $c_0(N^t)$ by

$$u_k^{(n)} = \begin{cases} (-1)^{n-k} D_{n-k} T_k & , & 0 \le k \le n, \\ 0 & , & k > n \end{cases}$$

for every fixed $n \in \mathbb{N}$ *.*

- (a) The sequence $\{u^{(n)}\}_{n\in\mathbb{N}}$ is a basis for the space $c_0(N^t)$ and any $x \in c_0(N^t)$ has a unique representation of the form $x = \sum_{k=0}^{\infty} \alpha_k u_k^n$.
- (b) The set $\{e, u^{(n)}\}$ is a basis for the sequence space $c(N^t)$ and any $x \in c(N^t)$ has a unique representation of the form $x = le + \sum_{k=0}^{\infty} (\alpha_k l)u_{k}^n$, where $l = \lim_{k \to \infty} \alpha_k$.

Theorem 2.3. (*Tug and Basar* (2016)) *Define the set* d_2^t , *as follows;*

$$d_2^t := \left\{ a = (a_k) \in \omega : \sup_{n \in \mathbb{N}} \sum_k \left| \sum_{j=k}^n (-1)^{j-k} D_{j-k} T_k a_j \right| < \infty \right\}.$$

Then, $\{c_0(N^t)\}^{\beta} = \{c(N^t)\}^{\beta} = d_2^t \cap cs.$

Theorem 2.4. (*Tug and Basar* (2016)) $A = (a_{nk}) \in (c(N^t) : c)$ if and only if

$$A_n \in \{c(N^t)\}^{\beta}$$
 for each $n \in \mathbb{N}$,
 $F \in (c:c)$.

where we define the matrix $F = (f_{nk})$ via multiplication of the matrices A and N^t by the products AN^t, that is

$$f_{nk} := \sum_{j=k}^{\infty} (-1)^{j-k} D_{j-k} T_k a_{nj}$$

for all $k, n \in \mathbb{N}$.

3. The Banach Algebra $\mathscr{B}(c(N^t))$

In this section, we show that $\mathscr{B}(c(N^t))$ is Banach algebra with respect to the norm $\|.\|$ defined by (4) for all $A \in (c(N^t), c(N^t))$. Since $c(N^t)$ has AK, we have $\mathscr{B}(c(N^t)) = (c(N^t), c(N^t))$. So $A \in \mathscr{B}(c(N^t))$ if and only if $A \in (c(N^t), c(N^t))$ and we have

$$\|A\|_{\mathscr{B}(c(N^{t}))} = \sup_{x \neq 0} \left(\frac{\|Ax\|_{c(N^{t})}}{\|x\|_{c(N^{t})}} \right) < \infty$$

Definition 3.1. (*Conway* (2013)) An algebra over \mathbb{F} is a vector space \mathscr{A} over \mathbb{F} such that $x, y \in \mathscr{A}$ with a unique product $x, y \in \mathscr{A}$ is defined with the properties

(*i*)
$$(xy)z = x(yz)$$
,

$$(ii) \quad x(y+z) = xy + xz,$$

$$(iii) (x+y)z = xz + yz,$$

(*iv*) $\alpha(xy) = (\alpha x)y = x(\alpha y)$

for all $x, y, z \in \mathscr{A}$ and $\alpha \in \mathbb{F}$.

Then the following immediate notations can be stated. \mathscr{A} is called commutative(or abelian) if $\forall x, y \in \mathscr{A}$, xy = yx. \mathscr{A} is called an algebra with identity if \mathscr{A} contains an element *e* such that $\forall x \in \mathscr{A}$, ex = xe = x, this *e* is called identity.

Definition 3.2. (*Conway (2013)*) A Banach algebra \mathscr{A} is a normed space which is an algebra such that for all $x, y \in \mathscr{A}$

$$||xy|| \le ||x|| ||y||$$

and if \mathscr{A} has an identity e, then ||e|| = 1.

Now, we state the following significant lemma to define and prove the sufficient conditions of Banach algebra $\mathscr{B}(c(N^t))$.

Lemma 3.1. (a) The matrix product B.A is defined for all $A, B \in (c(N^t), c(N^t))$; essentially

$$\sum_{m=0}^{\infty} |b_{nm}a_{mk}| \le ||B_n||_{c(N')} ||A^k|| \text{ for all } n \text{ and } k.$$

(b) Matrix multiplication is associative in $(c(N^t), c(N^t))$.

(c) The space $(c(N^t), c(N^t))$ is a Banach space with respect to the norm

$$||A|| = \sup_{n} \left(\frac{1}{T_n} \sum_{k=0}^n t_{n-k} \left| \sum_{j=0}^k a_{nj} \right| \right)$$

Proof. (a) Let $A, B \in (c(N^t), c(N^t))$. Since for all $x \in c(N^t)$ it satisfies that $Ax \in c(N^t)$. So specifically $e^{(k)} \in c(N^t)$ implies that

$$Ae^{(k)} = (A_i e^{(k)})_{i=0}^{\infty} = (a_{ik})_{i=0}^{\infty} = A^k \in c(N^t), \text{ for all } k \in \mathbb{N}.$$

Thus we have

$$\|A^k\| = \sup_n \left(\frac{1}{T_n} \sum_{k=0}^n t_{n-k} \left| \sum_{i=0}^\infty a_{ik} \right| \right) < \infty, \text{ for all } k \in \mathbb{N}$$

Furthermore $B \in (c(N^t), c(N^t))$ implies $B_n \in \{c(N^t)\}^{\beta}$ for all $n \in \mathbb{N}$. Therefore

$$\|B_n\|_{c(N^t)} = \sup_{n \in \mathbb{N}} \sum_k \left| \sum_{j=k}^n (-1)^{j-k} D_{j-k} T_k \left(\sum_{i=0}^j b_{ni} \right) \right| < \infty, \text{ for all } n \in \mathbb{N}.$$

Now we have the following by (3) and (3) that

$$\begin{aligned} |B_{n}A^{k}| &\leq \sum_{i=0}^{\infty} |b_{ni}a_{ik}| &= \sum_{i=0}^{\infty} \left| \sum_{i=k}^{n} (-1)^{i-k} D_{i-k} T_{k} b_{ni} \cdot \frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} a_{ik} \right| \\ &\leq \sum_{k} \left| \left| \left(\sum_{j=k}^{n} (-1)^{j-k} D_{j-k} T_{k} \left(\sum_{i=0}^{j} b_{ni} \right) \right) \cdot \left(\frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left(\sum_{i=0}^{\infty} a_{ik} \right) \right) \right| \\ &\leq \sum_{k} \left| \sum_{j=k}^{n} (-1)^{j-k} D_{j-k} T_{k} \left(\sum_{i=0}^{j} b_{ni} \right) \right| \cdot \sup_{n} \frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left| \sum_{i=0}^{\infty} a_{ik} \right| \\ &= \|B_{n}\|_{c(N^{t})} \|A^{k}\| < \infty, \text{ for all } n, k. \end{aligned}$$

(b) Let $A, B, C \in (c(N^t), c(N^t))$. We will show that the series $\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} a_{nm} b_{mk} c_{kj}$ is N^t -convergent for all n and j. It can be easily shown since Nörlund matrix is a triangular matrix. We omit the details. (c) Now we will show that the space $(c(N^t), c(N^t))$ is a Banach space. We assume that $(A^{(i)})_{i=0}^{\infty}$ is a Cauchy sequence in $(c(N^t), c(N^t))$ and the space $c(N^t)$ has AK property, then it is a Cauchy sequence in $\mathscr{B}(c(N^t), c(N^t))$. There is $L_A \in \mathscr{B}(c(N^t), c(N^t))$ with $L_{A^{(i)}} \to L_A$. Since $c(N^t)$ has AK property then there is a matrix $A \in (c(N^t), c(N^t))$ such that $Ax = L_A(x)$ for all $x \in c(N^t)$. It shows that there exists $M \in \mathbb{N}$ such that

$$\|A^{(i)} - A^{(l)}\|_{c(N^{l})} = \sup_{n} \left(\frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left| \sum_{j=0}^{k} (a_{nj}^{(i)} - a_{nj}^{(l)}) \right| \right) < \frac{\varepsilon}{2}, \text{ for all } i, l \ge M.$$
(5)

So, $A^{(i)}$ is a Cauchy sequence in the space $c(N^t)$ which is complete normed space. Then there is a matrix $A \in (c(N^t), c(N^t))$ such that $Ax = L_A(x)$ for all $x \in c(N^t)$

$$\|A^{(i)} - A\|_{c(N^{t})} = \sup_{n} \left(\frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left| \sum_{j=0}^{k} (a_{nj}^{(i)} - a_{nj}) \right| \right) < \frac{\varepsilon}{2}$$
(6)

we we run the equalities (5) and (6) we will see that $A^{(j)} \rightarrow A \in (c(N^t), c(N^t))$. Moreover,

$$\begin{split} \|A\|_{c(N^{t})} &= \sup_{n} \left(\frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left| \sum_{j=0}^{k} a_{nj} \right| \right) \\ &= \sup_{n} \left(\frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left| \sum_{j=0}^{k} \left(a_{nj} + a_{nj}^{(i)} - a_{nj}^{(i)} \right) \right| \right) \\ &\leq \sup_{n} \left(\frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left| \sum_{j=0}^{k} \left(a_{nj}^{(i)} - a_{nj} \right) \right| \right) + \sup_{n} \left(\frac{1}{T_{n}} \sum_{k=0}^{n} t_{n-k} \left| \sum_{j=0}^{k} a_{nj}^{(i)} \right| \right) < \infty. \end{split}$$

So, $A \in \mathscr{B}(c(N^t), c(N^t))$. This completes the proof.

Theorem 3.2. The set $\mathscr{B}(c(N^t)) = (c(N^t), c(N^t))$ is a Banach algebra with the identity and we have

$$||Ax||_{c(N^t)} \le ||A||_{\mathscr{B}(c(N^t))} ||x||_{c(N^t)}, \quad \forall x \in c(N^t).$$

Proof. We should show here that $(c(N^t), c(N^t))$ is complete and if $A, B \in (c(N^t), c(N^t))$, then $A.B \in (c(N^t), c(N^t))$. So these facts obtained as an immediate consequence of Lemma 3.1 by considering (*a*) and (*c*).

Theorem 3.3. The class $(c_0(N^t), c_0(N^t))$ is a Banach algebra with $||A|| = ||L_A||$.

Proof. To prove this theorem we should show that (i) the class $(c_0(N^t), c_0(N^t))$ is complete and (ii) $B.A \in (c_0(N^t), c_0(N^t))$ where $A, B \in (c_0(N^t), c_0(N^t))$. The proof of (i) can be easily shown by Lemma 3.1(c) with the inclusion $(c_0(N^t), c_0(N^t)) \subset (c(N^t), c(N^t))$. Moreover, the proof of (ii) can be obtained from the Lemma 3.1 by considering (a).

4. Conclusion

De Malafosse (2004) studied some topological properties of the Banach algebras of bounded operators $\mathscr{B}(l_p(\alpha))$ for $1 \le p < \infty$, where $l_p(\alpha) = (1/\alpha)^{-1} * l_p$. He also studied the Banach algebras of the bounded operators $\mathscr{B}(X)$, where X is a *BK*-space in de Malafosse (2005). Moreover Malkowsky (Malkowsky (2011); Malkowsky and Djolović (2013)) studied the Banach algebra of matrix transformation between some sequence spaces.

In this work, we study the Banach algebra $\mathscr{B}(c(N^t)) = (c(N^t), c(N^t))$ where $c(N^t)$ is the set of all convergent sequences derived by Nörlund mean which was defined by Tuğ and Başar (Tug and Basar (2016)).

References

Choudhary, B., & Nanda, S. (1989). Functional analysis with applications. Wiley.

Conway, J. B. (2013). A course in functional analysis (Vol. 96). Springer Science & Business Media.

- De Malafosse, B. (2004). On the banach algebra (lp (α)). *International Journal of Mathematics and Mathematical Sciences*, 2004(60), 3187–3203.
- de Malafosse, B. (2005). The banach algebra b (x), where x is a bk space and applications. *Mat. Vesnik*, *57*(1-2), 41–60.

Hardy, G. H. (2000). Divergent series (Vol. 334). American Mathematical Soc.

- Jarrah, A., & Malkowsky, E. (1990). Bk spaces, bases and linear operators. *Ren. Circ. Mat. Palermo II*, *52*, 177–191.
- Malkowsky, E. (2011). Banach algebras of matrix transformations between spaces of strongly bounded and summable sequences. *Advances in Dynamical Systems and Applications*, 6(1), 91–109.

 \square

- Malkowsky, E., & Al, J. (2003). Ordinary, absolute and strong summability and matrix transformations. *MFA-03, to appear*.
- Malkowsky, E., & Djolović, I. (2013). Banach algebras of matrix transformations between some sequence spaces related to λ -strong convergence and boundedness. *Applied Mathematics and Computation*, 219(16), 8779–8789.

Mears, F. M. (1943). The inverse norlund mean. Annals of Mathematics, 401-410.

- Tug, O., & Basar, F. (2016). On the domain of nörlund mean in the spaces of null and convergent sequences, twms j. *Pure Appl. Math*, 7(1), 76–87.
- Wang, C.-S. (1978). On nörlund sequence spaces. Tamkang J. Math, 9(1), 269-274.