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Abstract: In this paper, we give some properties of the Banach Algebras of the bounded operators on
the BK space c(Nt) which is the Nörlund domain in the convergent sequence space introduced by Tuǧ
and Başar (2016). We prove that the class (c(Nt),c(Nt)) is a Banach algebra with respect to the norm
‖A‖= ‖LA‖ for all A ∈ (c(Nt),c(Nt)).
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1. Preliminaries, Background and Notation

We denote the space of all complex valued sequences by ω . Each vector subspace of ω is called as
a sequence space, as well. The spaces of all bounded, convergent and null sequences are denoted by
`∞, c and c0, respectively. By φ , we mean the space of all finitely non-zero sequences. A sequence
space µ is called an FK-space if it is a complete linear metric space with continuous coordinates
pn : µ → C with pn(x) = xn for all x = (xn) ∈ µ and every n ∈ N, where C denotes the complex field
and N= {0,1,2, . . .}. A normed FK-spaces is called a BK-space, that is, a BK-space is a Banach space
with continuous coordinates, (Choudhary & Nanda, 1989, pp. 272-273). The sequence spaces `∞, c
and c0 are BK-spaces with the usual sup-norm defined by ‖x‖∞ = supk∈N |xk|. By `1, `p, cs, cs0 and bs,
we denote the spaces of all absolutely convergent, p-absolutely convergent, convergent, convergent to
zero and bounded series, respectively; where 1 < p < ∞.
The alpha-dual λ α , beta-dual λ β and gamma-dual λ γ of a sequence space λ are defined by

λ
α := {x = (xk) ∈ ω : xy = (xkyk) ∈ `1 for all y = (yk) ∈ λ} ,

λ
β := {x = (xk) ∈ ω : xy = (xkyk) ∈ cs for all y = (yk) ∈ λ} ,

λ
γ := {x = (xk) ∈ ω : xy = (xkyk) ∈ bs for all y = (yk) ∈ λ} .

Let λ , µ be any two sequence spaces and A = (ank) be an infinite matrix of complex numbers ank,
where k,n ∈N. Then, we say that A defines a matrix transformation from λ into µ and we denote it by
writing A : λ → µ, if for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform of
x, is in µ; where

(Ax)n = ∑
k

ankxk (1)
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provided the series on the right side of (1) converges for each n ∈ N. For simplicity in notation, here
and in what follows, the summation without limits runs from 0 to ∞. By (λ : µ), we denote the class of
all matrices A such that A : λ → µ . Thus, A ∈ (λ : µ) if and only if Ax exists, i.e. An ∈ λ β for all n ∈N
and belongs to µ for all x ∈ λ , where An denotes the sequence in the n-th row of A.
Let X be a Banach space with the norm ‖.‖X . We denote the set of all bounded linear operators, which
maps X into itself by B(X). That is, A ∈B(X) if and only if A is linear and

‖A‖∗B(X) = sup
x 6=0

‖Ax‖X

‖x‖X
< ∞

It is known that B(X) is a Banach algebra with its norm ‖A‖∗B(X), see Jarrah and Malkowsky (1990).
If a normed sequence space λ contains a sequence (bn) with the following property that for every x∈ λ

there is a unique sequence of scalars (αn) such that

lim
n→∞
‖x− (α0b0 +α1b1 + · · ·+αnbn)‖= 0

then (bn) is called a Schauder basis for λ . The series ∑k αkbk which has the sum x is then called the
expansion of x with respect to (bn) and written as x = ∑k αkbk.

If λ is an FK-space, φ ⊂ λ and (ek) is a basis for λ then λ is said to have AK property, where ek is a
sequence whose only term in kth place is 1 the others are zero for each k ∈ N and φ = span{ek}. If φ

is dense in λ , then λ is called AD-space, thus AK implies AD. It is also well known that if X has AK
then B(X) = (X ,X), see Malkowsky and Al (2003)

2. The Sequence Spaces c0(Nt) and c(Nt) of Non-absolute Type

Let (tk) be a nonnegative real sequence with t0 > 0 and Tn = ∑
n
k=0 tk for all n ∈ N. Then, the Nörlund

mean with respect to the sequence t = (tk) is defined by the matrix Nt = (at
nk) as follows

at
nk =

{ tn−k
Tn

, 0≤ k ≤ n,
0 , k > n

for every k,n ∈ N. It is known that the Nörlund matrix Nt is regular if and only if tn/Tn→ 0, as n→ ∞

(Hardy, 2000, Theorem 16, p. 64), and is reduced in the case t = e = (1,1,1, . . .) to the matrix C1 of
arithmetic mean. Additionally, for tn = Ar−1

n for all n ∈ N, the method Nt is reduced to the Cesàro
method Cr of order r >−1, where

Ar
n =

{
(r+1)(r+2)···(r+n)

n! , n = 1,2,3, . . . ,
1 , n = 0.

Let t0 = D0 = 1 and define Dn for n ∈ {1,2,3, . . .} by

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 0 · · · 0
t2 t1 1 0 · · · 0
t3 t2 t1 1 · · · 0
...

...
...

...
. . .

...
tn−1 tn−2 tn−3 tn−4 · · · 1
tn tn−1 tn−2 tn−3 · · · t1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then, the inverse matrix U t = (ut
nk) of Nörlund matrix Nt was defined by Mears (1943) for all n ∈ N,

as follows;

ut
nk =

{
(−1)n−kDn−kTk , 0≤ k ≤ n,

0 , k > n.
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Additionally, the inverse of Nörlund matrix and some multiplication theorems for Nörlund mean were
studied by Mears (1943); Wang (1978).
The domain λA of an infinite matrix A in a sequence space λ is defined by

λA = {x = (xk) ∈ ω : Ax ∈ λ}

which is a sequence space. The domain of Nörlund matrix Nt in the classical sequence spaces `∞ and
`p were introduced by Wang (1978), where 1≤ p < ∞.
Tug and Basar (2016) introduced the sequence spaces c0(Nt) and c(Nt) as the set of all sequences
whose Nt-transforms are in the spaces of null and convergent sequences, respectively, that is

c0(Nt) :=

{
x = (xk) ∈ ω : lim

n→∞

1
Tn

n

∑
k=0

tn−kxk = 0

}
,

c(Nt) :=

{
x = (xk) ∈ ω : ∃l ∈ C such that lim

n→∞

1
Tn

n

∑
k=0

tn−kxk = l

}
.

They defined the sequence y = (yk) by the Nt-transform of a sequence x = (xk), that is,

yk = (Ntx)k =
1
Tk

k

∑
j=0

tk− jx j (2)

for all k ∈ N. Therefore, by applying U t to the sequence y defined by (2) we obtain that

xk = (U ty)k =
k

∑
j=0

(−1)k− jDk− jTjy j (3)

for all k ∈ N. Throughout the text, we suppose that the terms of the sequences x = (xk) and y = (yk)
are connected with the relation (2 and 3).

Theorem 2.1. (Tug and Basar (2016)) The sequence spaces c0(Nt) and c(Nt) are the linear spaces
with the co-ordinatewise addition and scalar multiplication which are the BK-spaces with the norm

‖x‖c0(Nt) = ‖x‖c(Nt) = ‖Ntx‖∞ = sup
n

(
1
Tn

n

∑
k=0

tn−k|xk|

)
(4)

Theorem 2.2. (Tug and Basar (2016)) Let αk = (Ntx)k for all k ∈ N. Define the sequence
{

u(n)
}
={

u(n)k

}
k∈N

in the space c0(Nt) by

u(n)k =

{
(−1)n−kDn−kTk , 0≤ k ≤ n,

0 , k > n

for every fixed n ∈ N.

(a) The sequence
{

u(n)
}

n∈N is a basis for the space c0(Nt) and any x ∈ c0(Nt) has a unique repre-
sentation of the form x = ∑

∞
k=0 αkun

k .

(b) The set
{

e,u(n)
}

is a basis for the sequence space c(Nt) and any x ∈ c(Nt) has a unique repre-
sentation of the form x = le+∑

∞
k=0(αk− l)un

k , where l = limk→∞ αk.

Theorem 2.3. (Tug and Basar (2016)) Define the set dt
2, as follows;

dt
2 :=

{
a = (ak) ∈ ω : sup

n∈N
∑
k

∣∣∣∣∣ n

∑
j=k

(−1) j−kD j−kTka j

∣∣∣∣∣< ∞

}
.

Then, {c0(Nt)}β = {c(Nt)}β = dt
2∩ cs.
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Theorem 2.4. (Tug and Basar (2016)) A = (ank) ∈ (c(Nt) : c) if and only if

An ∈ {c(Nt)}β for each n ∈ N,
F ∈ (c : c).

where we define the matrix F = ( fnk) via multiplication of the matrices A and Nt by the products ANt ,
that is

fnk :=
∞

∑
j=k

(−1) j−kD j−kTkan j

for all k,n ∈ N.

3. The Banach Algebra B(c(Nt))

In this section, we show that B(c(Nt)) is Banach algebra with respect to the norm ‖.‖ defined by (4)
for all A ∈ (c(Nt),c(Nt)). Since c(Nt) has AK, we have B(c(Nt)) = (c(Nt),c(Nt)). So A ∈B(c(Nt))
if and only if A ∈ (c(Nt),c(Nt)) and we have

‖A‖B(c(Nt)) = sup
x 6=0

(‖Ax‖c(Nt)

‖x‖c(Nt)

)
< ∞

Definition 3.1. (Conway (2013)) An algebra over F is a vector space A over F such that x,y∈A with
a unique product x.y ∈A is defined with the properties

(i) (xy)z = x(yz),

(ii) x(y+ z) = xy+ xz,

(iii) (x+ y)z = xz+ yz,

(iv) α(xy) = (αx)y = x(αy)

for all x,y,z ∈A and α ∈ F.

Then the following immediate notations can be stated. A is called commutative(or abelian) if ∀x,y ∈
A , xy = yx. A is called an algebra with identity if A contains an element e such that ∀x ∈A , ex =
xe = x, this e is called identity.

Definition 3.2. (Conway (2013)) A Banach algebra A is a normed space which is an algebra such
that for all x,y ∈A

‖xy‖ ≤ ‖x‖‖y‖

and if A has an identity e, then ‖e‖= 1.

Now, we state the following significant lemma to define and prove the sufficient conditions of Banach
algebra B(c(Nt)).

Lemma 3.1. (a) The matrix product B.A is defined for all A,B ∈ (c(Nt),c(Nt)); essentially

∞

∑
m=0
|bnmamk| ≤ ‖Bn‖c(Nt)‖Ak‖ f or all n and k.

(b) Matrix multiplication is associative in (c(Nt),c(Nt)).
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(c) The space (c(Nt),c(Nt)) is a Banach space with respect to the norm

‖A‖= sup
n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ k

∑
j=0

an j

∣∣∣∣∣
)

Proof. (a) Let A,B ∈ (c(Nt),c(Nt)). Since for all x ∈ c(Nt) it satisfies that Ax ∈ c(Nt). So specifically
e(k) ∈ c(Nt) implies that

Ae(k) = (Aie(k))∞
i=0 = (aik)

∞
i=0 = Ak ∈ c(Nt), f or all k ∈ N.

Thus we have

‖Ak‖= sup
n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ ∞

∑
i=0

aik

∣∣∣∣∣
)

< ∞, f or all k ∈ N.

Furthermore B ∈ (c(Nt),c(Nt)) implies Bn ∈ {c(Nt)}β for all n ∈ N. Therefore

‖Bn‖c(Nt) = sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=k

(−1) j−kD j−kTk

(
j

∑
i=0

bni

)∣∣∣∣∣< ∞, f or all n ∈ N.

Now we have the following by (3) and (3) that

|BnAk| ≤
∞

∑
i=0
|bniaik| =

∞

∑
i=0

∣∣∣∣∣ n

∑
i=k

(−1)i−kDi−kTkbni.
1
Tn

n

∑
k=0

tn−kaik

∣∣∣∣∣
≤ ∑

k

∣∣∣∣∣
(

n

∑
j=k

(−1) j−kD j−kTk

(
j

∑
i=0

bni

))
.

(
1
Tn

n

∑
k=0

tn−k

(
∞

∑
i=0

aik

))∣∣∣∣∣
≤ ∑

k

∣∣∣∣∣ n

∑
j=k

(−1) j−kD j−kTk

(
j

∑
i=0

bni

)∣∣∣∣∣ .sup
n

1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ ∞

∑
i=0

aik

∣∣∣∣∣
= ‖Bn‖c(Nt)‖Ak‖< ∞, for all n,k.

(b) Let A,B,C ∈ (c(Nt),c(Nt)). We will show that the series ∑
∞
k=0 ∑

∞
m=0 anmbmkck j is Nt−convergent

for all n and j. It can be easily shown since Nörlund matrix is a triangular matrix. We omit the details.
(c) Now we will show that the space (c(Nt),c(Nt)) is a Banach space. We assume that (A(i))∞

i=0 is a
Cauchy sequence in (c(Nt),c(Nt)) and the space c(Nt) has AK property, then it is a Cauchy sequence
in B(c(Nt),c(Nt)). There is LA ∈B(c(Nt),c(Nt)) with LA(i) → LA. Since c(Nt) has AK property then
there is a matrix A ∈ (c(Nt),c(Nt)) such that Ax = LA(x) for all x ∈ c(Nt). It shows that there exists
M ∈ N such that

‖A(i)−A(l)‖c(Nt) = sup
n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ k

∑
j=0

(a(i)n j −a(l)n j )

∣∣∣∣∣
)

<
ε

2
, f or all i, l ≥M. (5)

So, A(i) is a Cauchy sequence in the space c(Nt) which is complete normed space. Then there is a
matrix A ∈ (c(Nt),c(Nt)) such that Ax = LA(x) for all x ∈ c(Nt)

‖A(i)−A‖c(Nt) = sup
n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ k

∑
j=0

(a(i)n j −an j)

∣∣∣∣∣
)

<
ε

2
(6)
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we we run the equalities (5) and (6) we will see that A( j)→ A ∈ (c(Nt),c(Nt)). Moreover,

‖A‖c(Nt) = sup
n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ k

∑
j=0

an j

∣∣∣∣∣
)

= sup
n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ k

∑
j=0

(
an j +a(i)n j −a(i)n j

)∣∣∣∣∣
)

≤ sup
n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ k

∑
j=0

(
a(i)n j −an j

)∣∣∣∣∣
)
+ sup

n

(
1
Tn

n

∑
k=0

tn−k

∣∣∣∣∣ k

∑
j=0

a(i)n j

∣∣∣∣∣
)

< ∞.

So, A ∈B(c(Nt),c(Nt)). This completes the proof.

Theorem 3.2. The set B(c(Nt)) = (c(Nt),c(Nt)) is a Banach algebra with the identity and we have

‖Ax‖c(Nt) ≤ ‖A‖B(c(Nt))‖x‖c(Nt), ∀x ∈ c(Nt).

Proof. We should show here that (c(Nt),c(Nt)) is complete and if A,B ∈ (c(Nt),c(Nt)), then A.B ∈
(c(Nt),c(Nt)). So these facts obtained as an immediate consequence of Lemma 3.1 by considering (a)
and (c).

Theorem 3.3. The class (c0(Nt),c0(Nt)) is a Banach algebra with ‖A‖= ‖LA‖.

Proof. To prove this theorem we should show that (i) the class (c0(Nt),c0(Nt)) is complete and (ii)
B.A ∈ (c0(Nt),c0(Nt)) where A,B ∈ (c0(Nt),c0(Nt)). The proof of (i) can be easily shown by Lemma
3.1(c) with the inclusion (c0(Nt),c0(Nt))⊂ (c(Nt),c(Nt)). Moreover, the proof of (ii) can be obtained
from the Lemma 3.1 by considering (a).

4. Conclusion

De Malafosse (2004) studied some topological properties of the Banach algebras of bounded opera-
tors B(lp(α)) for 1 ≤ p < ∞, where lp(α) = (1/α)−1 ∗ lp. He also studied the Banach algebras of
the bounded operators B(X), where X is a BK−space in de Malafosse (2005). Moreover Malkowsky
(Malkowsky (2011); Malkowsky and Djolović (2013)) studied the Banach algebra of matrix transfor-
mation between some sequence spaces.
In this work, we study the Banach algebra B(c(Nt)) = (c(Nt),c(Nt)) where c(Nt) is the set of all
convergent sequences derived by Nörlund mean which was defined by Tuǧ and Başar (Tug and Basar
(2016)).
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