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Abstract: In this research we find the relation between the nonstandard space  of Lebesgue integrable 

functions   ( ), where    *⌊ 
 

 
⌋    ⌊ 

 

 
⌋          ⌊

 

 
⌋+  is a *finite set for     and the space of 

Lebesgue integrable functions   ( ), where   ,    -, with some applications by using methods and 

techniques of nonstandard analysis. 

1. Introduction 

Let   *⌊ 
 

 
⌋    ⌊ 

 

 
⌋          ⌊

 

 
⌋+.  Then   is a nonstandard *finite set for unlimited 

nonstandard natural number    , where   is the set of standard natural numbers. If   is even, 

then    * 
 

 
    

 

 
         

 

 
+ and if   is odd, then   * 

   

 
   

   

 
           

   

 
+.  

Without loss of generality, we assume that    is even through this work.  

The set   with the addition operation modulo   is a cyclic group as an algebraic structure. The set 

  ,    - is the additive circle group modulo   . The *finite set   is an internal nonstandard 

model of the closed interval    in the standard real numbers  . So,   ( ) is the nonstandard space of 

Lebesgue integrable functions on  . Also, an internal function    on   is Lebesgue integrable if   is 

both S-integrable and almost S-continuous on   as defined by Cartier and Perrin (1995). The 

elements of the space   ( ) are equivalence classes of Lebesgue integrable functions on   such that 

  and   are in the same class if     almost everywhere on  , (see Katznelson, 2004). 

The interest object of study in this paper is modeling every function in the nonstandard universe 

  ( ) by a function in   ( ) by using nonstandard means (Robinson, 1996). This paper is, initially, 

about the converse of the theorem proved by Lak (2015), which says that "For each     ( )  there 

is     ( ) such that  (st.
   

 
/)    ( ) for almost all     " as stated and proved in Theorem 

2.1. In addition through this work we present theorems related to discrete and continuous Fourier 

analysis (Walker, 1988) in   ( ) using nonstandard methods. The discrete Fourier transform (DFT) 

of complex numbers  ( ),     denoted by  ̂( ),     is given by  ̂( )  
 

 
∑  ( )             

and the inverse of discrete Fourier transform (IDFT) of complex numbers  ̂( ),     are  ( ), 

    defined by  ( )  ∑  ̂( )            (Cizek, 1986). Towards the end of this paper we 
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present a result concerning the convolution of functions   and   denoted by     and defined by 

(   )( )  
 

 
∑  (   ) ( )    (Lak, 2015). 

2. The Relation Between   ( )  and   ( )  

2.1 Theorem  

 If     ( ), then there is     ( )  such that  ( )  st( .⌊
  

  
⌋/) 

almost everywhere on  . 

Proof.  Assume that     ( ), where   is the *finite set of order    . Then    is S-integrable and 

almost S-continuous internal function on  . So, there is a rare subset    of   such that   is S-

continuous on     . 

Let   *       .⌊
  

  
⌋/       

 +.  Since ∫       
 is limited and    is almost S-continuous on   , 

then    is a measurable subset of   and it has a Lebesgue measure zero via Loeb Theorem as given 

in Lindstrom (Cutland, 1988). Then for given      in  , there are *finite sets   and   such that 

           and  
     (   )

 
  . In this case  

                                        .
      

 
/    .

      

 
/   ( )   

which is the Lebesgue measure of  . 

Now we define         as follows 

                             ( )  {
  ( .⌊

  

  
⌋/)              

                             
  

From the definition of  , we deduce that   ( )  is limited for all     . So, ∫   ( )  
    is limited. 

That is,      ∫   ( )    
 is finite. 

Moreover, since   is almost S-continuous on  , then there exists a rare subset   of   such that   is 

S-continuous on     .  Let        (a nonstandard model of    ).  

Then for all         if      then  ( )   ( ) is true in    .    

So for      arbitrary and standard, without loss of generality, let   
 

 
 for some    . We have 

to find     of the form     where     such that 

                                         (          ( )   ( )  
 

 
 )  

is true in    . So, for all unlimited     
  we have 

                                         (      
 

 
   ( )   ( )  

 

 
 )  
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is true in    . Then, 

                                          (      
 

 
    ( ( ))    ( ( ))  

 

 
 )  

is true in    . So, 

                                              (      
 

 
   ( )   ( )  

 

 
 )  

is true in    . Now, let  

       ( )  (    
 )  (         .      

 

 
   ( )   ( )  

 

 
 /)     

if we couldn't find        for      then   would define   in   
 . Which is contradiction with the 

fact that   is not internal in   
  (Hurd & Loeb, 1985).  

Therefore,   is a continuous function on    . Hence,   is continuous almost everywhere on  . 

Since   is a Lebesgue measurable set (Fremlin, 2000), so   is a measurable function on  . 

Hence,     ( ) and   ( )    ( ( 
  

  
 )) almost everywhere on  . 

3. Some Applications  

3.1 Theorem   

(Riemann Lebesgue Lemma)  If      ( ) and    is the *finites set of order unlimited    , then 

for every standard real   ,  

                                       ( 
  

 
∑  ( )    (    ))         

Proof. If   is a constant function and  ( )     on  , then  

  

 
∑  ( )    (    )     

   

 
(         ,                 

 

 
  -) . 

Multiply both sides of the above equation by     
 

 
  

   

 
   

 

 
 ∑    (    )  

   

 
    ,    

 

 
     

 

 
           

                                                         
 

 
            

 

 
   (

 

 
 )-  

So,  

           
   

 
   

 

 
 ∑    (    )  

   

 
    ,    

 

 
    .  

 

 
/     

 

 
      

           .   
 

 
/     .  

 

 
/       .

 

 
  

 

 
/     (.

 

 
  /  

 

 
)-. 
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Then, 
   

 
   

 

 
 ∑    (    )  

   

 
    ,    

 

 
    .

 

 
  

 

 
/-     

So,                           
   

 
∑    (    )  

   

 
     ,   

   .
 

 
  

 

 
/

    
 

 
     -   

Therefore,                  
  

 
  ∑    (    )     

  

 
        

Hence,                                 (
  

 
∑     (    ))         

Notice that this result is true for every constant function  ( )    on   ,    -, so it is also true 

for every average function    , - of   on any dissection    of   [1]. Now, since      ( )  then for 

all appreciable number      there exists a partition    of   which is a nice dissection (Cartier & 

Perrin, 1995) such that the function    , -     
   , is the average of   relative to   , which is a 

constant function  on each atom   of    and       , -       , for all    . 

Therefore, 

 
  

 
∑    (    ) |  

  

 
∑ , ( )        , -( )     , -( )1    (    )       

  
  

 
∑ , ( )     , -( )-    (    )   

  

 
∑       , -( )   (    )      

  
 

 
 
 

 
     

3.2 Lemma 

The convergence of the Fourier series of a function   at any point     is determined by the 

behavior of the  th partial sum  

                 ( )    .
 

 
∑ 0   

 (
  

 
(   ))    

 (
  

 
(   ))1    

 .
  

 
/   /  

 in the limit as    . Moreover,           ( )   allows us to study convergence of the series.  

Proof. The  th partial sum of the Fourier series of a function   on   ,     - is  

                   ( )  
 

  
∫  ( )    

∑
 

  
 ∫  ( )    (  )    (  )    

 
     

                                ∑
 

  
∫  ( )    (  )    (  )   

 
     

Then, 

  ( )  
 

  
∫  ( ) 

,  ∑     (  )    (  )  ∑      (  )    (  )-     
   

 
     

Now, by using some trigonometric identity the above equation becomes   

                                   ( )  
 

 
∫  ( ) 

0
 

 
 ∑     

   (   )

  
 
   1    . 
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 So, by using the Dirichlet kernel function (Weaver, 1989) in the above equation we obtain  

                                         ( )  
 

 
∫  ( ) 

  (
   (   )

  
)      

Now for   ,     - and a given standard real    , there is a standard real     such that for 

all   in the standard world 

                      |  ( )  
 

 
∑  (  )      .

  (    )

  
 /    |      

By taking the partition   { 
 
 

 

  
 
 

 
  
          

 

} of   ,    - as a *finite set, such that 

    
 
 

 

  
 
 

 
  
      

 

   then             
  

 
   and    

   

 
  for all    . 

             
  

 
      (    ( )  

  

 
∑   

 .
   

 
/     
 
 .

   

 
 
   

 
/ .

  

 
/    )  

 Now by Transfer Principle (Ponstein, 2002), we have a similar statement in the nonstandard world. 

Also,       
  is greater than the standard real      . Thus we get 

                                |  ( )  
  

 
∑   

 .
   

 
/     
 
 .

  (   )

 
/|       

Since     it works for all standard real      then 

                                       ( )  
  

 
∑   

 .
   

 
/     
 
 .

  (   )

 
/   

Hence,  

                                    ( )    (
  

 
∑   

 .
   

 
/     
 
 .

  (   )

 
/)   

Notice that both functions   and the Dirichlet kernel    are periods on the *finite set  . So we shift 

the above summation and rewrite the latter equation as follows  

  ( )    (
  

 
∑   

 .
   

 
/ 

   
 

 
  

  
 
 .

  (   )

 
/)    (

  

 
∑   

 .
   

 
/

   
     

 
 .

  (   )

 
/)  

Now make the substitution of the variables        then       which implies that  

  ( )    (
  

 
∑   

 .
  

 
(   )/ 

   
 

 
  

  
 
 .

  

 
 /)                      

                st(
  

 
∑   

 .
  

 
(   )/

   
     

 
 .

  

 
 /)   

Notice that, in the first sum let     , change and invert the limits of the summation.   Also, we 

have the Dirichlet kernel is an even function, that is,  

  ( )    (  ), for every    . Therefore, 
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            ( )    (
  

 
∑ 0   

 (
  

 
(   ))    

 (
  

 
(   ))1

   
     

 
 .

  

 
 /).  

3.3 Theorem  

(Riemann Localization Theorem) The behavior of the Fourier series of the function     ( ) at any 

point     depends only on the values of   on   ( )  *                          

     +, for limited    .  

Proof: Let     ( )  and define the function       
   as follows 

                                ( )  
 (
  

 
(   ))  (

  

 
(   ))

   
  

 

 . 

Notice that,     ( ) and  
 

    
  

 
   
  is an S-continuous function and limited for    . Thus we have 

    (*        
 

 
+). 

By writing the  th partial sum of the Fourier series of   with the Dirichlet kernel (Katznelson, 2004) 

of the form 

                                                   .
   

 
/  

   
  .  

 
 
/ 

 

   
  

 

 , 

we have 

                       ( )    (
 

 
∑

  
 (

  

 
(   ))   

 (
  

 
(   ))

    
  

 

   
      

  .  
 

 
/ 

 
 ). 

or  

                                   ( )    (
 

 
∑  ( )
   
       

  .  
 

 
/ 

 
 ). 

Now split the above summation into two summations we obtain 

  ( )    (
 

 
∑  ( ) 
      

  .  
 

 
/ 

 
 )    (

 

 
∑  ( )
   
        

  .  
 

 
/ 

 
 ) . 

So, by using Theorem 3.1, we get 

                                       (
 

 
∑  ( )
   
        

  .  
 

 
/ 

 
)   .  

Therefore, from the Lemma 3.2, the result is obtained as  

          ( )          (
 

 
∑ 0 (

  

 
(   ))   (

  

 
(   ))1 

     (
   

 
)) .  

The discrete Fourier Transform (DFT) (Cizek, 1986) of the product of functions   and   is given by 



Eurasian Journal of Science & Engineering                                                                            

ISSN 2414-5629 (Print), ISSN 2414-5602 (Online) 
 EAJSE

 

Volume 4, Issue 2; December, 2018 

 

60 

the convolution of the discrete of   and   as shown in the following theorem. 

3.4 Theorem 

If        
 , then for every    ,    ̂( )   ̂( )    ̂( ), where      . 

Proof: Notice that     (  )( )   ( ) ( ) 

                                                       ∑  ̂( )            ∑  ̂( )              

                                                       ∑ ∑  ̂( ) ̂( )    (   )          . 

Let      , then      , so we get 

                                  (  )( )  ∑ ∑  ̂( ) ̂(   )                . 

Now, interchange the order of the summation  

                                  (  )( )   ∑ (
 

    ∑  ̂( ) ̂( ))            

                                                     ∑ ( ̂( )   ̂( ))             

                                                     .( ̂   ̂)( )/
  

. 

Where –   is the inverse discrete Fourier transform (IDFT). By taking the discrete transform (DFT) 

(Weaver, 1989) of both sides of the above equation we get the result. That is, 

                                                ( ̂( )   ̂( ))    ̂( ). 
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