The Relation between the Spaces $L^1(F)$ and $L^1(\mathbb{T})$ with Some Applications

Rashad Rashid Haji^{1,2}

¹ Mathematics Department, College of Education, Salahaddin University, Erbil, Iraq ² Mathematics Education Department, Faculty of Education, Ishik University, Erbil, Iraq Correspondence: Rashad Rashid Haji, Ishik University, Erbil, Iraq. Email: rashad.haji@su.edu.krd

Received: October 2, 2018 Accepted: November 20, 2018 Online Published: December 1, 2018

doi: 10.23918/eajse.v4i2p54

Abstract: In this research we find the relation between the nonstandard space of Lebesgue integrable functions $L^1(F)$, where $F = \{\left|-\frac{N}{2}\right| + 1, \left|-\frac{N}{2}\right| + 2, ..., 0, ..., \left|\frac{N}{2}\right|\}$ is a *finite set for $N > \mathbb{N}$ and the space of Lebesgue integrable functions $L^1(\mathbb{T})$, where $\mathbb{T} = [-\pi, \pi]$, with some applications by using methods and techniques of nonstandard analysis.

1. Introduction

Let $F = \{\left[-\frac{N}{2}\right] + 1, \left[-\frac{N}{2}\right] + 2, ..., 0, ..., \left[\frac{N}{2}\right]\}$. Then *F* is a nonstandard *finite set for unlimited nonstandard natural number $N > \mathbb{N}$, where \mathbb{N} is the set of standard natural numbers. If *N* is even, then $F = \{-\frac{N}{2} + 1, -\frac{N}{2} + 2, ..., 0, ..., \frac{N}{2}\}$ and if *N* is odd, then $F = \{-\frac{N-1}{2}, -\frac{N-1}{2} + 1, ..., 0, ..., \frac{N-1}{2}\}$. Without loss of generality, we assume that *N* is even through this work.

The set *F* with the addition operation modulo *N* is a cyclic group as an algebraic structure. The set $\mathbb{T} = [-\pi, \pi]$ is the additive circle group modulo 2π . The *finite set *F* is an internal nonstandard model of the closed interval \mathbb{T} in the standard real numbers \mathbb{R} . So, $L^1(F)$ is the nonstandard space of Lebesgue integrable functions on *F*. Also, an internal function *f* on *F* is Lebesgue integrable if *f* is both S-integrable and almost S-continuous on *F* as defined by Cartier and Perrin (1995). The elements of the space $L^1(\mathbb{T})$ are equivalence classes of Lebesgue integrable functions on \mathbb{T} such that *f* and *g* are in the same class if f = g almost everywhere on \mathbb{T} , (see Katznelson, 2004).

The interest object of study in this paper is modeling every function in the nonstandard universe $L^1(F)$ by a function in $L^1(\mathbb{T})$ by using nonstandard means (Robinson, 1996). This paper is, initially, about the converse of the theorem proved by Lak (2015), which says that "For each $g \in L^1(\mathbb{T})$ there is $G \in L^1(F)$ such that $g(\operatorname{st}\left(\frac{2\pi w}{N}\right)) = {}^\circ G(w)$ for almost all $w \in F$ " as stated and proved in Theorem 2.1. In addition through this work we present theorems related to discrete and continuous Fourier analysis (Walker, 1988) in $L^1(F)$ using nonstandard methods. The discrete Fourier transform (DFT) of complex numbers f(n), $n \in F$ denoted by $\hat{f}(n)$, $n \in F$ is given by $\hat{f}(n) = \frac{1}{N} \sum_{k \in F} f(k) e^{-2\pi i k n/N}$ and the inverse of discrete Fourier transform (IDFT) of complex numbers $\hat{f}(n)$, $n \in F$ are f(n), $n \in F$ defined by $f(n) = \sum_{k \in F} \hat{f}(k) e^{2\pi i k n/N}$ (Cizek, 1986). Towards the end of this paper we

present a result concerning the convolution of functions f and g denoted by f * g and defined by $(f * g)(r) = \frac{1}{N} \sum_{s \in F} g(r - s) f(s)$ (Lak, 2015).

2. The Relation Between $L^1(F)$ and $L^1(\mathbb{T})$

2.1 Theorem

If
$$h \in L^1(F)$$
, then there is $f \in L^1(\mathbb{T})$ such that $f(t) = \operatorname{st}\left(h\left(\left\lfloor\frac{Nt}{2\pi}\right\rfloor\right)\right)$

almost everywhere on \mathbb{T} .

Proof. Assume that $h \in L^1(F)$, where *F* is the *finite set of order $N > \mathbb{N}$. Then *h* is S-integrable and almost S-continuous internal function on *F*. So, there is a rare subset *E* of *F* such that *h* is S-continuous on F - E.

Let $B = \{t \in \mathbb{T}: h\left(\left|\frac{Nt}{2\pi}\right|\right) \notin {}^*\mathbb{C}_{fin}\}$. Since $\int_F |h| d\mu$ is limited and h is almost S-continuous on F, then B is a measurable subset of \mathbb{T} and it has a Lebesgue measure zero via Loeb Theorem as given in Lindstrom (Cutland, 1988). Then for given $\varepsilon > 0$ in \mathbb{R} , there are *finite sets A and C such that $A \subseteq \operatorname{st}^{-1}B \subseteq C$ and $\frac{\operatorname{card}(C-A)}{N} < \varepsilon$. In this case

$$\operatorname{st}\left(\frac{\operatorname{card} A}{N}\right) = \operatorname{st}\left(\frac{\operatorname{card} C}{N}\right) = \lambda(B),$$

which is the Lebesgue measure of B.

Now we define $f : \mathbb{T} \to \mathbb{C}$ as follows

$$f(t) = \begin{cases} \operatorname{st}\left(h\left(\left\lfloor\frac{Nt}{2\pi}\right\rfloor\right)\right) & \text{if } t \in \mathbb{T} - B, \\ 0 & \text{if } t \in B. \end{cases}$$

From the definition of f, we deduce that |f(t)| is limited for all $t \in \mathbb{T}$. So, $\int_{\mathbb{T}} |f(t)| dt$ is limited. That is, $||f||_1 = \int_{\mathbb{T}} |f(t)| dt$ is finite.

Moreover, since *h* is almost S-continuous on *F*, then there exists a rare subset *E* of *F* such that *h* is S-continuous on F - E. Let $a \in F - E$ (a nonstandard model of $\mathbb{T} - B$).

Then for all $t \in F - E$, if $t \approx a$, then $h(t) \approx h(a)$ is true in F - E.

So for $\varepsilon > 0$ arbitrary and standard, without loss of generality, let $\varepsilon = \frac{1}{n}$ for some $n \in \mathbb{N}$. We have to find $\delta > 0$ of the form 1/k where $k \in \mathbb{N}$ such that

$$\forall t (|t-a| < \delta \Rightarrow |h(t) - h(a)| < \frac{1}{n})$$

is true in F - E. So, for all unlimited $k \in {}^*\mathbb{N}$ we have

$$\forall t (|t-a| < \frac{1}{k} \Rightarrow |h(t) - h(a)| < \frac{1}{n})$$

is true in F - E. Then,

$$\forall t (|t-a| < \frac{1}{k} \Rightarrow |\operatorname{st}(h(t)) - \operatorname{st}(h(a))| < \frac{1}{n})$$

is true in $\mathbb{T} - B$. So,

$$\forall t (|t-a| < \frac{1}{k} \Rightarrow |f(t) - f(a)| < \frac{1}{n})$$

is true in $\mathbb{T} - B$. Now, let

$$\theta(k) = (k \in {}^*\mathbb{N}) \land \left(k = 0 \lor \neg \forall t \left(|t - a| < \frac{1}{k} \Rightarrow |f(t) - f(a)| < \frac{1}{n}\right)\right).$$

if we couldn't find $\delta = 1/k$, for $k \in \mathbb{N}$, then θ would define \mathbb{N} in * \mathbb{R} . Which is contradiction with the fact that \mathbb{N} is not internal in * \mathbb{R} (Hurd & Loeb, 1985).

Therefore, f is a continuous function on $\mathbb{T} - B$. Hence, f is continuous almost everywhere on \mathbb{T} .

Since \mathbb{T} is a Lebesgue measurable set (Fremlin, 2000), so f is a measurable function on \mathbb{T} .

Hence, $f \in L^1(\mathbb{T})$ and $f(t) = \operatorname{st}(h(\lfloor \frac{Nt}{2\pi} \rfloor))$ almost everywhere on \mathbb{T} .

3. Some Applications

3.1 Theorem

(Riemann Lebesgue Lemma) If $f \in L^1(F)$ and F is the *finites set of order unlimited $N > \mathbb{N}$, then for every standard real b,

$$^{\circ}\lim_{a\in\mathbb{N}}\left(\frac{2\pi}{N}\sum_{k\in F}f(k)\sin(ak+b)\right)=0.$$

Proof. If *f* is a constant function and f(k) = C, on *F*, then

$$\frac{2\pi}{N} \sum_{k \in F} f(k) \sin(ak+b) = \frac{2\pi C}{N} (\sin b + \sin b [\cos a + \cos 2a + \dots + \cos \frac{N}{2}a]).$$

Multiply both sides of the above equation by $2\sin\frac{a}{2}$

$$\frac{4\pi C}{N}\sin\frac{a}{2}\sum_{k\in F}\sin(ak+b) = \frac{2\pi C}{N}\sin b[2\sin\frac{a}{2} + 2\sin\frac{a}{2}\cos a + 2\sin\frac{a}{2}\cos (\frac{N}{2}a)]$$

So,

$$\frac{4\pi C}{N}\sin\frac{a}{2}\sum_{k\in F}\sin(ak+b) = \frac{2\pi C}{N}\sin b\left[2\sin\frac{a}{2} + \sin\left(a+\frac{a}{2}\right) - \sin\frac{a}{2} + \sin\left(2a+\frac{a}{2}\right) - \sin\left(a+\frac{a}{2}\right) + \dots + \sin\left(\frac{N}{2}a+\frac{a}{2}\right) - \sin\left(\left(\frac{N}{2}-1\right)a+\frac{a}{2}\right)\right].$$

Then,
$$\frac{4\pi C}{N}\sin\frac{a}{2}\sum_{k\in F}\sin(ak+b) = \frac{2\pi C}{N}\sin b\left[2\sin\frac{a}{2} + \sin\left(\frac{N}{2}a + \frac{a}{2}\right)\right]$$

So,
$$\frac{2\pi C}{N} \sum_{k \in F} \sin(ak+b) = \frac{2\pi C}{N} \sin b \left[1 + \frac{\sin\left(\frac{N}{2}a + \frac{a}{2}\right)}{2\sin\frac{a}{2}}\right].$$

Therefore,
$$\frac{2\pi}{N} |C \sum_{k \in F} \sin(ak+b)| \le \frac{4\pi}{N} |C| \approx 0.$$

Hence,
$${}^{\circ}\lim_{a\in\mathbb{N}}\left(\frac{2a}{N}\sum_{k\in F}C\sin(ak+b)\right)=0.$$

Notice that this result is true for every constant function f(x) = C on $\mathbb{T} = [-\pi, \pi]$, so it is also true for every average function $E^{P_n}[f]$ of f on any dissection P_n of F [1]. Now, since $f \in L^1(F)$, then for all appreciable number $\varepsilon > 0$ there exists a partition P_n of F which is a nice dissection (Cartier & Perrin, 1995) such that the function $E^{P_n}[f]: F \to {}^*\mathbb{C}$, is the average of f relative to P_n , which is a constant function on each atom A of P_n and $|| f - E^{P_n}[f] ||_1 < \varepsilon/2$, for all n > N.

Therefore,

$$\left|\frac{2\pi}{N}\sum_{k\in F}\sin(ak+b)\right| = \left|\frac{2\pi}{N}\sum_{k\in F}[f(k) - E^{P_n}[f](k) + E^{P_n}[f](k)\right]\sin(ak+b)\right|$$
$$\leq \left|\frac{2\pi}{N}\sum_{k\in F}[f(k) - E^{P_n}[f](k)]\sin(ak+b)\right| + \left|\frac{2\pi}{N}\sum_{k\in F}E^{P_n}[f](k)\sin(ak+b)\right|$$
$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

3.2 Lemma

The convergence of the Fourier series of a function f at any point $t \in F$ is determined by the behavior of the *n*th partial sum

$$S_n(t) = \operatorname{st}\left(\frac{2}{N}\sum_{k\in F}\left[*f\left(\frac{2\pi}{N}(u+t)\right) + *f\left(\frac{2\pi}{N}(u-t)\right)\right]*D_n\left(\frac{2\pi}{N}\right)\right)$$

in the limit as $n \in \mathbb{N}$. Moreover, $\circ \lim_{a \in \mathbb{N}} S_n(t)$ allows us to study convergence of the series.

Proof. The *n*th partial sum of the Fourier series of a function f on $\mathbb{T} = [-\pi, -\pi]$ is

$$S_n(t) = \frac{1}{2\pi} \int_{\mathbb{T}} f(x) dx + \sum_{k=1}^n \frac{2}{2\pi} \int_{\mathbb{T}} f(x) \cos(kx) \cos(kt) dx + \sum_{k=1}^n \frac{2}{2\pi} \int_{\mathbb{T}} f(x) \sin(kx) \sin(kt) dx$$

Then,

$$S_n(t) = \frac{1}{2\pi} \int_{\mathbb{T}} f(x) \left[1 + \sum_{k=1}^n 2\cos(kx)\cos(kt) + \sum_{k=1}^n 2\sin(kx)\sin(kt) \right] dx.$$

Now, by using some trigonometric identity the above equation becomes

$$S_n(t) = \frac{1}{\pi} \int_{\mathbb{T}} f(x) \left[\frac{1}{2} + \sum_{k=1}^n 2 \cos \frac{2\pi k(x-t)}{2\pi} \right] dx \,.$$

So, by using the Dirichlet kernel function (Weaver, 1989) in the above equation we obtain

$$S_n(t) = \frac{1}{\pi} \int_{\mathbb{T}} f(x) D_n(\frac{2\pi k(x-t)}{2\pi}) dx.$$

Now for $\mathbb{T} = [-\pi, -\pi]$ and a given standard real $\varepsilon > 0$, there is a standard real $\delta > 0$ such that for all *N* in the standard world

$$\max_{k\in F} \Delta x_k < \delta \Rightarrow \left| S_n(t) - \frac{1}{\pi} \sum_{k\in F} f(x_k) D_n\left(\frac{2\pi(x_k-t)}{2\pi}\right) \Delta x_k \right| < \varepsilon,$$

By taking the partition $P = \left\{ x_{-\frac{N}{2}}, x_{-\frac{N}{2}+1}, \dots, x_0, \dots, x_{\frac{N}{2}} \right\}$ of $\mathbb{T} = [-\pi, \pi]$ as a *finite set, such that $-\pi = x_{-\frac{N}{2}} < x_{-\frac{N}{2}+1} < \dots < x_{\frac{N}{2}} = \pi$ then $\Delta x_k = x_k - x_{k-1} = \frac{2\pi}{N}$, and $x_k = \frac{2\pi k}{N}$ for all $k \in F$. $\forall N > \frac{2\pi}{\delta}$ in $\mathbb{N} \left(|S_n(t) - \frac{1}{\pi} \sum_{k \in F} {}^*f\left(\frac{2\pi k}{N}\right) {}^*D_n\left(\frac{2\pi k}{N} - \frac{2\pi t}{N}\right)\left(\frac{2\pi}{N}\right) | < \varepsilon \right).$

Now by Transfer Principle (Ponstein, 2002), we have a similar statement in the nonstandard world. Also, $N \in {}^*\mathbb{N} - \mathbb{N}$ is greater than the standard real $2\pi/\delta$. Thus we get

$$\left|S_n(t) - \frac{2}{N}\sum_{k\in F} {}^*f\left(\frac{2\pi k}{N}\right) {}^*D_n\left(\frac{2\pi(k-t)}{N}\right)\right| < \varepsilon.$$

Since $N > \mathbb{N}$ it works for all standard real $\varepsilon > 0$, then

$$S_n(t) \approx \frac{2}{N} \sum_{k \in F} {}^*f\left(\frac{2\pi k}{N}\right) {}^*D_n\left(\frac{2\pi (k-t)}{N}\right).$$

Hence,

$$S_n(t) = \operatorname{st}\left(\frac{2}{N}\sum_{k\in F} {}^*f\left(\frac{2\pi k}{N}\right) {}^*D_n\left(\frac{2\pi(k-t)}{N}\right)\right).$$

Notice that both functions f and the Dirichlet kernel D_n are periods on the *finite set F. So we shift the above summation and rewrite the latter equation as follows

$$S_n(t) = \operatorname{st}\left(\frac{2}{N}\sum_{k=-\frac{N}{2}+1}^{0} {}^*f\left(\frac{2\pi k}{N}\right) {}^*D_n\left(\frac{2\pi (k-t)}{N}\right)\right) + \operatorname{st}\left(\frac{2}{N}\sum_{k=1}^{N/2} {}^*f\left(\frac{2\pi k}{N}\right) {}^*D_n\left(\frac{2\pi (k-t)}{N}\right)\right)$$

Now make the substitution of the variables k - t = u, then t = k + u which implies that

$$S_{n}(t) = \operatorname{st}\left(\frac{2}{N}\sum_{u=-\frac{N}{2}+1}^{0} {}^{*}f\left(\frac{2\pi}{N}(u+t)\right) {}^{*}D_{n}\left(\frac{2\pi}{N}u\right)\right) + \operatorname{st}\left(\frac{2}{N}\sum_{u=1}^{N/2} {}^{*}f\left(\frac{2\pi}{N}(u-t)\right) {}^{*}D_{n}\left(\frac{2\pi}{N}u\right)\right).$$

Notice that, in the first sum let u = -u, change and invert the limits of the summation. Also, we have the Dirichlet kernel is an even function, that is,

$$D_n(u) = D_n(-u)$$
, for every $u \in F$. Therefore,

$$S_n(t) = \operatorname{st}\left(\frac{2}{N}\sum_{u=0}^{N/2} \left[{}^*f\left(\frac{2\pi}{N}(u+t)\right) + {}^*f\left(\frac{2\pi}{N}(u-t)\right) \right] {}^*D_n\left(\frac{2\pi}{N}u\right) \right).$$

3.3 Theorem

(Riemann Localization Theorem) The behavior of the Fourier series of the function $h \in L^1(F)$ at any point $t \in F$ depends only on the values of h on $N_r(t) = \{t - r, t - r + 1, t - r + 2, ..., t, ..., t + r - 1, t + r\}$, for limited r > 0.

Proof: Let $h \in L^1(F)$ and define the function $H: F \to {}^*\mathbb{C}$ as follows

$$H(t) = \frac{h\left(\frac{2\pi}{N}(t+k)\right) + h\left(\frac{2\pi}{N}(t-k)\right)}{\sin\frac{\pi k}{N}}.$$

Notice that, $h \in L^1(F)$ and $\frac{1}{2\sin\frac{\pi k}{N}}$ is an S-continuous function and limited for k > 0. Thus we have $H \in L^1(\{r, r + 1, ..., \frac{N}{2}\}).$

By writing the *n*th partial sum of the Fourier series of h with the Dirichlet kernel (Katznelson, 2004) of the form

$$D_n\left(\frac{2\pi k}{N}\right) = \frac{\sin\frac{2\pi\left(n+\frac{1}{2}\right)k}{N}}{\sin\frac{\pi k}{N}},$$

we have

$$S_n(t) = \operatorname{st}\left(\frac{2}{N}\sum_{k=0}^{N/2} \frac{{}^{*}h\left(\frac{2\pi}{N}(t+k)\right) + {}^{*}h\left(\frac{2\pi}{N}(t-k)\right)}{2\sin\frac{\pi k}{N}}\sin\frac{2\pi\left(n+\frac{1}{2}\right)k}{N}\right).$$

or

$$S_n(t) = \operatorname{st}\left(\frac{2}{N}\sum_{k=0}^{N/2} \mathrm{H}(t) \sin \frac{2\pi \left(n + \frac{1}{2}\right)k}{N}\right).$$

Now split the above summation into two summations we obtain

$$S_n(t) = \operatorname{st}\left(\frac{2}{N}\sum_{k=0}^r H(t)\sin\frac{2\pi(n+\frac{1}{2})k}{N}\right) + \operatorname{st}\left(\frac{2}{N}\sum_{k=r+1}^{N/2} H(t)\sin\frac{2\pi(n+\frac{1}{2})k}{N}\right).$$

So, by using Theorem 3.1, we get

$${}^{\circ} \lim_{n \in \mathbb{N}} \left(\frac{2}{N} \sum_{k=r+1}^{N/2} H(t) \sin \frac{2\pi \left(n + \frac{1}{2} \right) k}{N} \right) = 0.$$

Therefore, from the Lemma 3.2, the result is obtained as

$${}^{\circ}\lim_{n\in\mathbb{N}}S_n(t) = {}^{\circ}\lim_{n\in\mathbb{N}}\left(\frac{2}{N}\sum_{k=0}^r \left[h\left(\frac{2\pi}{N}(t+k)\right) + h\left(\frac{2\pi}{N}(t-k)\right)\right]D_n(\frac{2\pi k}{N})\right)$$

The discrete Fourier Transform (DFT) (Cizek, 1986) of the product of functions f and g is given by

the convolution of the discrete of f and g as shown in the following theorem.

3.4 Theorem

If $f, g \in {}^*\mathbb{C}^F$, then for every $n \in F$, $N\hat{f}(n) * \hat{g}(n) = \widehat{fg}(n)$, where N = |F|.

Proof: Notice that (fg)(n) = f(n)g(n)

$$= \sum_{k \in F} \hat{f}(k) e^{2\pi i k n/N} \sum_{r \in F} \hat{g}(r) e^{2\pi i r n/N}$$
$$= \sum_{k \in F} \sum_{r \in F} \hat{f}(k) \hat{g}(r) e^{2\pi i (k+r)n/N} .$$

Let s = k + r, then r = s - k, so we get

$$(fg)(n) = \sum_{k \in F} \sum_{s-k \in F} \hat{f}(k)\hat{g}(s-k) e^{2\pi i s n/N}$$

Now, interchange the order of the summation

$$(fg)(n) = N \sum_{s \in F} \left(\frac{1}{N} \sum_{k \in F} \hat{f}(k) \hat{g}(s)\right) e^{2\pi i s n/N}$$
$$= N \sum_{s \in F} (\hat{f}(k) * \hat{g}(s)) e^{2\pi i s n/N}$$
$$= N \left(\left(\hat{f} * \hat{g}\right)(n) \right)^{-l}.$$

Where -I is the inverse discrete Fourier transform (IDFT). By taking the discrete transform (DFT) (Weaver, 1989) of both sides of the above equation we get the result. That is,

$$N(\widehat{f}(n) * \widehat{g}(n)) = \widehat{fg}(n).$$

References

C'1zek, V. (1986). Discrete fourier transforms and their applications. Brostol: Adam Hilger Ltd.

- Cartier, P., & Perrin, Y. (1995). Integration over finite sets. In Francine Diener and Marc Diener, editors, *Nonstandard analysis in practice*, Universitext (pp. 185–204). Springer-Verlag, Berlin.
- Cutland, N. (1988). *Nonstandard analysis and its applications*. London Mathematical Society Student Texts. Cambridge: Cambridge University Press.
- Fremlin, D. (2004). Measure theory. Vol. 1. Torres Fremlin, Colchester, The irreducible minimum.
- Hurd, A., & Loeb, P. (1985). An introduction to nonstandard real analysis. Orlando: Academic Press Inc.
- Katznelson, Y. (2004). *An introduction to harmonic analysis*. Cambridge Mathematical Library. Cambridge University Press.
- Lak, R. (2015). *Harmonic analysis using methods in Nonstandard analysis*. PhD thesis, University of Birmingham, UK.
- Ponstein, J. (2002). *Nonstandard analysis. University of Groningen*, SOM Research School, Groningen. Retrieved from http://som.rug.nl/bestanden/ponstein.pdf.
- Robinson, A. (1996). *Non-standard analysis*. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1996.
- Walker, J. (1988). Fourier analysis. New York: Oxford University Press.
- Weaver, J. (1989). *Theory of discrete and continuous Fourier analysis*. A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.