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Abstract: An approximate method is developed to analyze the deflection in beams and beam-column by 

solving the differential equation for the elastic deformation of beam and beam-column. The analysis is 

performed using the central difference of finite difference method for the Euler-Bernoulli beam and 

beam-column supported on an elastic, nonlinear foundation with rigid or elastic discrete supports. To 

make a verification of the results, Laplace Transformation method was used to solve the elastic 

differential equation of beam and beam-column based on linear elastic supports and the results were 

compared with the finite difference method. Two types of beams were selected, simply supported and 

fixed-fixed with five elastic supports of an idealized soil. In the nonlinear idealization, the division of 

force into many levels were assumed and based on these forces, the equivalent displacements were 

obtained from an assumed power law equation by using the finite difference method. Central finite 

difference scheme, which has a second order, was used throughout the numerical analysis with five 

nonlinear behavior of springs separated by an equal distance between them.   
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1. Introduction 

 

Beams on an elastic foundation have been solved by many researchers and analytical solutions of the 

differential equation have been proposed (Cook, 2007; Miyahara & Ergatoudis, 1976). The 

geometric stiffness matrix was formulated and derived for beams on elastic foundation by Eisenber 

et al.  (1986). Many authors used a finite element technique to find an approximate solution. Two-

parameter elastic foundations were formulated to analyze beams based on exact displacement 

function (Zhaohua & Cook, 1983). Analysis of finite element beam column on elastic Winkler 

foundation was carried out using exact stiffness matrix terms (Yankelevsky & Eisenberger, 1986).  

Lower order of finite strip method developed for the analysis of soil-iteration models. At the early 

stage, the model was used for soil layered under vertical load with uniform soil properties. The 

change of soil properties in the longitudinal direction was included in the research by Cheung et al. 

(1985) and Oskoorouchi et al. (1991). Mixing between finite strip method and soil spring system has 

been developed and applied to study the plate vibration responses on elastic foundation with 

different boundary conditions (Huang et al., 2001; Chow et al., 1989). Vallabhan and Das (1988) 

estimated a non-dimensional third parameter using iterative procedure to represent the distribution 

displacement of beams rested on elastic foundation. Omurtag et al. (1997) used a mixed-type 

formulation based on Gateaux differential for the derivation of Kirchhoff plate-elastic foundation 

interaction. Binesh (2012) used a mesh-free method for the analysis of a beam on two parameter 
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elastic foundation. Sato et al. (2008) obtained an exact solution for beam on elastic foundation in 

static and free vibration problems based on equidistant elastic supports. Jumel et al. (2011) proposed 

a first order correction to take into account of interface elasticity and transverse anticlastic curvature 

of flexible substrate. Borak and Marcian (2014) used modified Bettis theorem to develop an 

alternative analytical solution of beams on an elastic foundation. The calculation was based on the 

determination of beam’s deflection on an elastic foundation from the deflection of a reference beam 

which is topologically equivalent. In this paper, the nonlinear assumption of soil behavior is used to 

analyze Euler-Bernoulli elastic beam and beam-column under compression load rested on it.  

Numerical method based on the finite difference method is used for the analysis of fourth-order 

linear ordinary differential equation of beam and beam-column. The constants in this equation are 

determined by using the boundary conditions of simply supported and fixed-fixed ends. In addition, 

closed form solution based on the Laplace transformation method is used to get the results under the 

same conditions.  Numerical examples are illustrated for both elastic beam and beam-column on the 

nonlinear soil behavior and the results are showed in figures and tables. 

 
2. Modelling of Soil Mechanical Properties and Algorithm  

 

Throughout analysis of any foundation, soil is not a linear material and for modeling it as a linear 

material could cause a considerable error. Soil actually behaves as a hyperbolic curve in relationship 

of stress-strain (Eisenberger et al., 1986). Load deflection relationship curve might be assumed to 

exist, as shown in Figures 1-5 when modeling the reaction of a soil foundation. In every iteration of 

the force level, the tangent of the curve is obtained which means the slope of the force-displacement 

curve of soil. In this study, this curve is obeyed according to the nonlinear behavior of soil that 

defined in Eq.  (1)  

 0.5 n

uP P    (1) 

where uP  is the ultimate soil bearing capacity of the soil in 
2/kN m  and   is the strain of soil 

underneath the footing. n  is the power law variation that changes with the applied force and 

displacement. Here, the strain equals to the actual displacement because the length is assumed for 

one meter. Five nodes are idealized for the nonlinear soil reaction using the finite difference method 

to find the displacements. The load per unit area of foundation is plotted with displacement for each 

spring as shown in Figures 1-5. For each figure, the corresponding deflection is selected based on 

five loads chosen as 0.1, 0.25, 0.5, 0.75, and 1.0. These curves behavior which represented the soil 

mechanical activities are working based on Eq. (1). The value of power n  in Eq. (1) goes to decline 

with increasing of load step from 0.1 to 1.0. The differential equation that describes the elastic 

deflection curve of Euler-Bernoulli beam-column on a nonlinear elastic foundation under the action 

of a distributed load is governed by Eq. (2) 

 

2 2 2

2 2 2
( ) ( )

d d y d y
EI P k x y w x

dx dx dx


 
   

 
  (2) 

where ( )y x  is the deflection of the beam, E  is the modulus of elasticity of the material made for the 

beam, I  is the moment of inertia of the cross-section, P  is the axial load applied at the ends to the 

beam, ( )w x  is the applied distributed load and ( )k x  is the foundation modulus. In the linear 

analysis of foundation, ( )k x  is taken as a constant number while in the nonlinear foundation 

analysis varies in its values with respect to its position.  
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Figure 1: Load-displacement curve of soil 

at 20.10 /P kN m   

Figure 2: Load-displacement curve of soil 

at 20.25 /P kN m   
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Figure 3: Load-displacement curve of soil 

at 20.50 /P kN m   

Figure 4:  Load-displacement curve of soil 

at 20.75 /P kN m   
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Figure 5: Load-displacement curve of soil 

at 21.0 /P kN m   

 

With applying finite difference scheme, Eq. (2) can be written for the elastic beam-column on 

nonlinear foundation as 

 

4 4
2

2 1 1 2 1 14 6 4 ( 2 ) i i i
i i i i i i i i

P w h k y h
y y y y y y y y h

EI EI EI


                (3) 
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In the case of elastic beam on nonlinear foundation can be calculated in the same Eq. (3) with 

0P  . The second and fourth order derivatives in Eq. (2) are substituted by second order central 

difference approximation in the finite difference equation (Eq. (3)). The finite difference grid is used 

for the analysis of beam and beam-column rested on elastic nonlinear foundation with taking a limit 

number of idealized springs. The distances between the springs are taken an equal and the axial load 

as a compression load at the ends. In the conventional finite difference analysis, the geometric and 

boundary conditions of the equilibrium differential equation are considered. The condition that y  

and y are zero at station i  is approximated using Eq. (4) and Eq. (5) respectively, as 

 1 1 0i iy y     (4) 

 1 12 0i i iy y y     (5) 

Figure 6 shows the simply supported beam-column on five nonlinear idealized springs with equal 

distances between them. 

 

Figure 6: Simply supported beam-column rested on five springs 

The algorithm processes in this study are followed as the following steps: In the first load step 

( 0.1P  ) with the constant last strain ( 0.01  ), the power n  is determined to equal 0.849485 

according to the Eq. (1) with taking 10.0uP  . After then, the stiffness ( k ) is equal to the slope of 

the load-deflection curve by assuming the deflection equals to the strain for idealized springs. Then 

the k  values for the five springs are approximately linear for this step and equal to 10.0 because the 

exact values in this step can't be determined without presenting the springs deflection. By applying 

the finite difference technique (Eq. (3)), values of the springs deflection can be determined based on 

the constant value of stiffness ( 10.0k  ) for all assumed nodes. For the second step ( 0.25P  ), the 

value of power n  can be determined with constant final strain ( 0.01  ). In this step, with 

determining the values of deflections from the first step, the new stiffness ( k ) for all five nodes can 

be calculated by substituting the deflection values in the derivative of Eq. (1) (
0.1505154.24743/  ) 

which considers the slope of the load-deflection curve then the corrected deflections can be evaluated 

by applying the same equation of finite difference method. For the third step ( 0.5P  ), the same 

procedures are applied from calculating the power n  and evaluating the stiffness based on the 

second step deflections to reach the new corrected deflections. The processes are repeated for the 

fourth step ( 0.75P  ) and fifth step ( 1.0P  ). The observation of this algorithm is the load-

deflection curve goes from linear at the first step to nonlinear behavior ending with the power 

0.349485n  . The soil beneath the beam or beam-column behaves actually according to the 
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mentioned five steps. The reason to stop of these processes at the last step is the small difference 

between the values of numerical method (finite difference method) and the exact solution (Laplace 

Transformation). 

2.1 Laplace Transformation Method 

 
In this section, the Laplace transformation method is used to find the deflections of beam rested on 

linear elastic foundation. To apply this method, the basic principle is defined as ( )F s  be a given 

function. The Laplace transform ( )F s  of function ( )f t  is defined by 

 
0

( ) ( ) , 0sxf x e f x dx s


 L      (6) 

By rearranging the fourth order differential equation in Eq. (2), the equation can be written as 

(4) 4 2 ( )
( ) 4 ( ) ( )

w x
y x y x y x

EI
       (7) 

where, 
44 /k EI   ( k  is the foundation modulus) and 

2 /P EI   ( P  is the axial applied load 

at the beam ends). By taking the Laplace transformation for the fourth order differential equation in 

Eq. (7) under constant value of the distributed load ( )w x , the equation becomes 

   
 

2 2

4 4 2 2

(0) (0) (0) (0)
( )

( ) 4

EIs s sy y s y y w
f s

EIs s s

       


  
   (8) 

For simply supported beam rested on elastic foundation under axial load at the ends of the beam, the 

boundary conditions at the ends which satisfying the Eq. (8) are deflection and moment equal to zero 

( (0) ( ) (0) ( ) 0y y l y y l      ) and Eq. (8) can be written as 

  
 

2 2

2 1

4 2 2 4
( )

4

w EIs c c s
f s

EIs s s

  


   
     (9) 

where 1 (0)c y   and 2 (0)c y  . In addition, by applying the boundary conditions for the fixed-

fixed beam with axial load at the ends with taking the deflection and slope at the ends equal to zero 

( (0) ( ) (0) ( ) 0y y l y y l     ), Eq. (8) can be written as 

 

 
2 1

4 2 2 4
( )

4

w EIs c c s
f s

EIs s s

 


   
     (10) 

where 1 (0)c y  and 2 (0)c y . 

3. Numerical Examples 

 
The aim of this section is to validate the solution procedure for the determination of the beam 

deflection rested on elastic foundation. To do so, several examples of the analysis of beam columns 

are illustrated based on the analytical and numerical solutions. The first example explains beam 

( 0.0  ) and beam-column ( 1.0  ) with simply supported on elastic foundations while the 

second one is treating with beam and beam-column with fixed ends. For both examples, the 

parameters are selected as a following data: 1.0k   , 2.0k   , 1.0EI   , 10.0uP   and 1.0L  . 
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The constants for simply supported and fixed-fixed respectively are 1 0.0412493c  , 

2 0.0412493c   and 
1 0.0831848c  , 2 0.499307c   . These constants are used for Laplace 

transformation method in Eqs. (9) and (10). The results in the Figures 7-14 show deflection by using 

analytical method for both beam and beam-column in the case of simply supported and fixed-fixed 

conditions. Tables 1 and 2 show the numerical deflection of beam and beam-column on elastic 

foundation for both simply supported and fixed-fixed, respectively based on central difference of 

finite difference method. Tables 3 and 4 represent stiffness values and corresponding deflection 

which should be used in the tangent equation at each level for simply supported beam. In addition, 

Tables 5 and 6 show the stiffness values and corresponding deflection for fixed-fixed beam rested on 

nonlinear foundation, respectively. 

Table 1: Numerical deflection of simply supported beam and beam-column on elastic foundation 

( m ). 

 

Divided 

length, m 

Deflection 

1, 0k     

Deflection 

2, 0k     

Deflection 

1, 1k     

Deflection 

2, 1k     

0.0 0.000000 0.000000 0.000000 0.000000 

1/6 0.006680 0.006611 0.007437 0.007351 

2/6 0.011451 0.011330 0.012760 0.012611 

3/6 0.013168 0.013029 0.014679 0.014506 

4/6 0.011451 0.011330 0.012760 0.012611 

5/6 0.006680 0.006611 0.007437 0.007351 

6/6 0.000000 0.000000 0.000000 0.000000 

 

Table 2: Numerical deflection of fixed-fixed beam and beam-column on elastic foundation ( m ). 

Divided 

length, m 

Deflection 

1, 0k     

Deflection 

2, 0k     

Deflection 

1, 1k     

Deflection 

2, 1k     

0.0 0.000000 0.000000 0.000000 0.000000 

1/6 0.001123 0.001120 0.001148 0.001145 

2/6 0.002566 0.002559 0.002634 0.002627 

3/6 0.003175 0.003167 0.003263 0.003255 

4/6 0.002566 0.002559 0.002634 0.002627 

5/6 0.001123 0.001120 0.001148 0.001145 

6/6 0.000000 0.000000 0.000000 0.000000 
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Figure 7: Analytical deflection of simply 

supported beam on linear elastic foundation 

with 1k   and 0  . 

Figure 8: Analytical deflection of simply 

supported beam on linear elastic foundation 

with 2k   and 0  . 
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Figure 9: Analytical deflection of simply 

supported beam-column on linear elastic 

foundation with 1k   and 1  . 

Figure 10: Analytical deflection of simply 

supported beam-column on linear elastic 

foundation with 2k   and 1  . 
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Figure 11: Analytical deflection of fixed-fixed 

beam on linear elastic foundation with 1k   

and 0  . 

Figure 12: Analytical deflection of fixed-fixed 

beam on linear elastic foundation with 2k   and 

0  . 
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Figure 13: Analytical deflection of fixed-fixed 

beam on linear elastic foundation with 1k   

and 1  . 

Figure 14: Analytical deflection of fixed-fixed 

beam on linear elastic foundation with 2k   and 

1  . 

 

Table 3: Stiffness of load per unit area and deflection curve for simply supported beam ( 2/kN m ). 

Beam length, m  1 k  2 k  3 k  4 k  5 k  

0.10 10.0000 43.2154 71.7068 60.8176 70.5617 

0.25 10.0000 35.8092 54.8407 44.3825 49.7651 

0.5 10.0000 34.1072 51.1660 40.9110 45.4655 

0.75 10.0000 35.8092 54.8407 44.3825 49.7651 

1.00 10.0000 43.2154 71.7068 60.8176 70.5617 

 

 

Table 4: Deflection of simply-supported beam rested on nonlinear foundation for five iterations ( m ). 

Beam length, 
m  

1u  2 u  3 u  4 u  5 u  

0.10 0.000610 0.001216 0.003161 0.003396 0.004345 

0.25 0.001045 0.002078 0.005401 0.005808 0.007432 

0.5 0.001201 0.002387 0.006204 0.006674 0.008540 

0.75 0.001045 0.002078 0.005401 0.005808 0.007432 

1.00 0.000610 0.001216 0.003161 0.003396 0.004345 
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Table 5: Stiffness of load per unit area and deflection curve for fixed-fixed beam ( 2/kN m ). 

Beam length, m  1 k  2 k  3 k  4 k  5 k  

0.10 10.0000 16.7481 57.3219 110.6000 145.3530 

0.25 10.0000 14.7920 42.9680 73.3240 89.7250 

0.5 10.0000 14.3261 39.8927 65.9587 79.2439 

0.75 10.0000 14.7920 42.9680 73.3240 89.7250 

1.00 10.0000 16.7481 57.3219 110.6000 145.3530 

 

Table 6: Deflection of fixed-fixed beam rested on nonlinear foundation for five iterations ( m ). 

Beam length, 
m  

1u  2 u  3 u  4 u  5 u  

0.10 0.000110 0.000272 0.000511 0.000718 0.000925 

0.25 0.000251 0.000620 0.001162 0.001632 0.002102 

0.5 0.000310 0.000767 0.001437 0.002016 0.002596 

0.75 0.000251 0.000620 0.001162 0.001632 0.002102 

1.00 0.000110 0.000272 0.000511 0.000718 0.000925 

 

4.  Conclusion  

 

In this study, a finite difference method for the analysis of beam and beam-column resting on 

nonlinear elastic foundation is formulated based on the iterative procedure. In addition, to control the 

accuracy of the numerical method, exact solution for beam and beam-column of Euler-Bernoulli on a 

nonlinear elastic foundation is investigated based on the proposed formula in Eq. (1). The nonlinear 

load-displacement curve of the soil is plotted at each of the load step with determining the power n  

at each of load level. With applying the finite difference procedures at each load level, the 

displacements corresponding to it are determined then used in Eq. (3) to find the next level 

displacements under the equal of point load at each of the five interior nodes. The iterative procedure 

converges rapidly to the solution after the fifth trail because the value of the power n  decreases with 

the advance steps and the curve approaches to the ideal curve path of soil. The final strain of the soil 

behavior at all levels is selected as a constant value ( 0.01   ) and the value of the power ( n ) is 

determined at each load level. Accuracy is controlled by using the Laplace Transformation method 

with the inverse Eq. (10) which refers to the closed form solution. Two examples are solved for both 

beam and beam-column based on Euler-Bernoulli theory which show the characteristic features for 

applying the both methods. The analytical method using Laplace transformation is idealized in the 

figures with evaluating maximum displacement for all cases. It is shown that, for a twice stiffness 

value of beam and beam-column, the foundation deflections are reduced for simply supported and 

fixed-fixed ends. On the other hand, the deflections increase in the case of beam-column which 

refers to presence of axial load ( 1  ) than in the case of beam only ( 0  ). Moreover, the 

deflection of foundation rested on nonlinear soil behavior and the effect of compression axial with 
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simply supported ends is greater than that for the fixed-fixed ends.  
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