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This paper presents the rigorous study of mobile robot navigation techniques used so far. The step by step
investigations of classical and reactive approaches are made here to understand the development of path
planning strategies in various environmental conditions and to identify research gap. The classical ap-
proaches such as cell decomposition (CD), roadmap approach (RA), artificial potential field (APF);
reactive approaches such as genetic algorithm (GA), fuzzy logic (FL), neural network (NN), firefly algo-
rithm (FA), particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging opti-
mization (BFO), artificial bee colony (ABC), cuckoo search (CS), shuffled frog leaping algorithm (SFLA) and
other miscellaneous algorithms (OMA) are considered for study. The navigation over static and dynamic
condition is analyzed (for single and multiple robot systems) and it has been observed that the reactive
approaches are more robust and perform well in all terrain when compared to classical approaches. It is
also observed that the reactive approaches are used to improve the performance of the classical ap-
proaches as a hybrid algorithm. Hence, reactive approaches are more popular and widely used for path
planning of mobile robot. The paper concludes with tabular data and charts comparing the frequency of
individual navigational strategies which can be used for specific application in robotics.
© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of China Ordnance Society. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Initially, the application of a mobile robot was limited to
manufacturing industries only. But nowadays, it is commonly used
in the fields of entertainment, medicine, mining, rescuing, educa-
tion, military, space, agriculture and many more. While performing
the task of navigation, the robot is equipped with many intelligent
equipments which are required to model the environment and
localize its position, control the motion, detect obstacles, and avoid
obstacles by using navigational techniques. Safe path planning (by
detecting and avoiding the obstacles) from the initial position to
the target position is the most important function of any naviga-
tional technique. Therefore, the proper selection of the navigational
technique is the most important step in the path planning of a robot
when working in a simple and complex environment. At present,
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many techniques have been developed by various researchers in
the field of mobile robot navigation and it is the most researched
topic of today. Mobile robot navigation is classified into three cat-
egories: global navigation, local navigation and personal naviga-
tion. The capability to define the position of elements in the
environment with respect to the reference axis, and to stir towards
the pre-decided goal, is global navigation. Local navigation deals
with the identification of the dynamic conditions of the environ-
ment and the establishment of positional relationships among
various elements. To handle the various elements of the environ-
ment relative to each other, by considering their position, is per-
sonal navigation. The basic steps involved in the functioning of the
robot [1] are presented in Fig. 1.

In this paper, the navigation strategy has been classified based
on the prior information of the environment required for path
planning. It is broadly classified as global navigation and local
navigation. In global navigation, the mobile robot must require the
prior information of the environment, obstacle position and goal
position whereas in local navigation the mobile robot does not
require the prior information of the environment. Global
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Fig. 1. Flow diagram for mobile robot navigation.

navigation strategy deals with a completely known environment.
Local navigation strategy deals with the unknown and partially
known environment. The path planning algorithm for a known
environment is based on a classical approach such as CD, RA, and
APF. These algorithms are traditional and have limited intelligence.
Local navigational approaches are known as reactive approaches as
they are more intelligent and able to control and execute a plan
autonomously.

Many researchers have presented a survey paper on mobile
robot navigation [2-3] but these surveys are insufficient to provide
an in-depth analysis of individual navigational techniques. This
proposed survey paper on mobile robot navigation aims to find out
the research gaps and scope of innovation in a particular area. It
gives an in-depth analysis of an individual algorithm for a static
environment, dynamic environment in presence of a moving
obstacle and goal, simulation analysis, experimental analysis,
multiple mobile robot navigation, hybridization with other intelli-
gent techniques, application to a three-dimensional (3D) environ-
ment and application in military or defence equipment. The survey
also highlights the differences between the classical and reactive
approaches based on their effectiveness and application for the
specific environment, such as the aerial, land, underwater, indus-
trial and hazardous environment. In Ref. [2], the focus has been
given mainly on the reactive approaches based on local sensor in-
formation, sliding mode control and decentralized MPC based ap-
proaches whereas in Ref. [3] it is limited to 3D path planning only.

Here, the navigation strategies have been classified as conven-
tional and reactive approaches in Section 2. Section 3 provides the
discussion on the literature survey followed by conclusion in Sec-
tion 4.

2. Navigational techniques used for mobile robot navigation

For several decades, various researchers and scientists have
provided numerous methodologies on navigational approaches.
Various methods employed for navigation of a mobile robot are
broadly classified into two categories i.e. classical and reactive ap-
proaches (Fig. 2).

2.1. Classical approaches

Initially, classical approaches were very popular for solving
robot navigational problems because in those days artificially
intelligent techniques had not been developed. By using classical
approaches for performing a task, it is observed that either a result
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Fig. 2. Classification of mobile robot navigational approaches.

would be obtained, or it would be confirmed that a result does not
exist. The major drawback of this approach is high computational
cost and failure to respond to the uncertainty present in the envi-
ronment; therefore, it is less preferred for real-time implementa-
tion. CD, RA, and APF are some of the classical approaches which are
reviewed here.

2.1.1. Cell decomposition (CD) approach

This approach divides the region into non-overlapping grids
(cells) and uses connectivity graphs for traversing from one cell to
another to achieve the goal. During traversing, pure cells (cells
without obstacles) are considered to achieve path planning from
the initial position to the target position. Corrupted cells (cells
containing obstacles) present in the path are further divided into
two new cells to get a pure cell and this pure cell gets added to the
sequence while determining the optimal path from the initial po-
sition to the target position. In the CD approach, the initial position
and target position are represented by the start and end cells. The
sequence of pure cells that joins these positions shows the required
path [4-5]. The CD approach is classified as adaptive, approximate
and exact.

In the exact cell decomposition [6-7] shown in Fig. 3, cells do

position —g,

Fig. 3. Exact cell decomposition.
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not have a specific shape and size, but can be determined by the
map of environment, shape, and location of the obstacle within it.
This method uses the regular grid in various ways. Initially, the free
space available in the environment is decomposed into small ele-
ments (trapezoidal and triangular) followed by a number to each
element. Each element in the environment acts as a node for a
connectivity graph. The adjacent nodes are then allowed to join in
the configuration space and a path in this chart compares to a
diversion in free space, which is outlined by the succession of
striped cells. A path in this diagram links to a network in free space,
which is outlined by the succession of striped cells. This channel is
then converted into a free path by interfacing the underlying
arrangement to the objective design through the midpoints of the
crossing points of the adjoining cells in the channel.

In approximate cell decomposition [8-9], planning space has
been used to define a regular grid which has a specific shape and
size, hence it is easy to implement. In space, the boundaries of the
object should not be matched to previously decided cell bound-
aries, hence it is termed as approximate. In this navigation method,
if the object occupies the grid space then it is treated as an obstacle
or else it is considered as blank space. In the process of pathfinding
in the search area, the center of each cell is assumed as a node. Fig. 4
shows the 4 and 8 connected nodes system and the robot must
travel diagonally between them. Adaptive cell decomposition un-
derstands the information present in free space and follows the
basic concept of avoidance of the free space in regular cell
decomposition. Samet [10] and Noborio [11] have proposed a
quadtree-adaptive decomposition. It divides the environment into
large sized cells but when the grid cell is partially occupied then it
divides the cell into four equal subparts until it becomes empty.
Fig. 5 shows the resulting map of the workspace in the presence of
grid cells of different sizes touching the boundaries of the obstacles.
This system suffers from a drawback that it cannot update the
program when getting new data (new position of an obstacle) and
hence it fails in dynamic environments. The path planning problem
in high dimensional static configuration spaces has been demon-
strated by Lingelbach [12]. He solved the problem of path planning
for chain-like robotic platforms and a maze-like environment. The
application of a harmonic function to cell decomposition in a C
shape obstacle environment is developed by Rosell et al. [13]
whereas Sleumer et al. [14] have presented the path planning
strategy for mobile robots using CAD-based information. Cai et al.
[15] have presented a sensor based approximate cell decomposition
strategy for classifying the multiple fixed targets in a complex
environment. The approach developed outperforms in a static
environment with the shortest path and gives complete coverage of
the environment. The same sensor-based cell decomposition model

Robot
position

Goal

Fig. 5. Adaptive cell decomposition.

is proposed by Dugarjav et al. [16] to deal with an unknown
rectilinear workspace for the task of a mobile robot. They used the
CD approach together with a laser scanning mechanism to avoid
objects in unknown environments. Glavaski et al. [17] have pre-
sented a hybrid approach to fill the gap between the theoretical
achievements and practical considerations in path planning prob-
lems. They developed an APF-based exact cell decomposition path
planner to reduce the computational cost. To perform in an un-
certain environment, the FL along with CD is presented by Tunggal
et al. [18] for real-time operation. To handle multiple activities at a
time in the 3D environment, a greedy depth-first search algorithm
and GA-based cell decomposition approach for path planning of a
manipulator is presented by Mark et al. [19]. Quantitative studies
on the trajectories by varying the involved cell decomposition, the
graph weights, and the procedure to calculate the waypoint were
presented by Gonzalez et al. [20]. Application to an aerial naviga-
tion problem using cell decomposition approach for exploring the
3D environment was presented by Wahyunggoro et al. [21]. In this
approach fuzzy logic is hybridized with the cell decomposition
approach for guiding and controlling the aerial vehicle.

2.1.2. Roadmap approach (RA)

The RA is also known as the highway approach. It is the way to
get from one place to another and the connection among the free
spaces is represented by a set of one-dimensional curves [22].
When the roadmap is built, then it is utilized as an arrangement of
homogeneous ways where the planner will seek to discover the
ideal arrangement. Here, nodes play an important role in getting
the desired path for the robot. The RA is used to find the shortest

Fig. 4. Approximate cell decomposition (8-connected and 4-connected grids).
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path from the robot's initial position to its target position; Voronoi
and visibility graphs are used to develop the roadmap. The visibility
graph method connects the initial and the goal position with nodes
from the map. Fig. 6 represents the visibility graph in which the
dark area shows obstacles and the dashed line shows the respective
path from the initial position to the final position [23]. This method
is also used for an environment with polygonal obstacles in which
the vertices of the polygon are represented by the nodes and edges
as a connector between the nodes [24]. The Voronoi diagram [25-
27]is another roadmap algorithm used for the path planning of the
robot. This method divides the region into sub-regions where all
edges of the figure are constructed using equidistant points from
the adjacent two points on the obstacle's boundaries. Fig. 7 rep-
resents the working of the Voronoi diagram. The application of the
Voronoi diagram in the field of mobile robot navigation around
obstacles is presented in Refs. [28-30]. To improve the performance
and to eliminate drawbacks such as sharp turns and long loops in
the Voronoi diagram, some improvement is provided for effective
path planning [31]. The hybrid approach is developed by combining
the visibility graph, Voronoi diagram and potential field method
[32] to get path optimality. It has been observed that the approach
fails to get the optimal path and the execution process is compli-
cated. To develop successful path planning using Voronoi diagrams,
various strategies were implemented such as skeleton maps by
Yang et al. [33]. A combined approach of using a visibility graph and
a Voronoi diagram is presented by Wein et al. [34] to get the
optimal route. Kavraki et al. [35] presented the application of
probability for RA to understand and generate the solution to path
planning. However, the approach is inefficient in getting the opti-
mum path length. To improve the process of finding the shortest
path, Sanchez et al. [36] made a minor variation in the probabilistic
roadmap approach (PRM). In their approach, the lazy-collision-
checking strategy has been presented with PRM to solve path
planning problem of real environment. Navigation in a 3D envi-
ronment for an unmanned aerial vehicle has been successfully
tested by Yan et al. [37]. In this approach the road map approach is
presented with a probabilistic formulation to control the flight
route.

2.1.3. Artificial potential field (APF) approach

Khatib [38] in 1986 presented the APF approach for mobile robot
navigation. According to him, the goal and obstacles act like
charged surfaces and the total potential creates the imaginary force
on the robot. This imaginary force attracts the robot towards the
goal and keeps it away from an obstacle as shown in Fig. 8. Here, the
robot follows the negative gradient to avoid the obstacle and reach
the target point. Application of this method for mobile robot nav-
igation is presented by Garibotto et al. [39]. A new obstacle
avoidance strategy in an unknown environment is discussed by
Kim et al. [40] by using APF. They used a harmonic function to avoid

Goal

Start

Fig. 6. Visibility graph.
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Start

Fig. 7. Voronoi diagram.

a local minimum problem. Borenstein et al. [41] have also pre-
sented a solution to the problem of the local minima conditions. In
this research, they have considered the dynamic properties of robot
navigation. The analysis of APF in the dynamic environment for
obstacle avoidance is performed in Refs. [42—43]. Some improvi-
sation in the APF method is made by using laws of electrostatics
[44]. Implementation of electrostatics helps to produce the po-
tential function and to determine the collision-free path in real
time. Moving obstacle avoidance in a real-time environment is not
an easy task and hence Huang [45] developed a velocity controlling
mechanism to understand the location and velocity of the obstacle
while achieving the goal. To avoid local minima and to achieve
global optima, the superior potential function and superior repul-
sive potential function were introduced by Shi et al. [46]. Sfeir et al.
[47] solve the observed problem in mobile robot navigation by APF
approaches such as oscillation and conflicts. They have presented
an improved version of the APF to minimize the oscillation and
conflicts when the goal is close to the obstacle. To test the appli-
cability of the APF, Pradhan et al. [48] used the ROBOPATH simu-
lation tool. Multiple mobile robots are considered for various
environmental conditions and they observed better results in co-
ordination strategy without collisions. To increase the performance
of the APF path planner it is used with many techniques such as BFO
[49], which is explained in Fig. 9, GA [50], PSO [51], and FL [52].
Navigation in three-dimensional aerial and underwater conditions
is a challenging task but is made successful by using an APF
approach by Cetin et al. [53] and Li et al. [54] respectively.

2.2. Reactive approaches

Recently, reactive approaches such as genetic algorithm, fuzzy
logic, neural network, firefly algorithm, particle swarm optimiza-
tion, ant colony optimization, bacterial foraging optimization,
artificial bee colony, cuckoo search, shuffled frog leaping algorithm
and other miscellaneous algorithms consisting invasive weed
optimization, harmony search algorithm, bat algorithm, differential
evolution algorithm and many more have been accepted as the
most popular tool for mobile robot navigation over conventional
approaches. They have a great ability to handle the uncertainty
present in the environment. The various reactive approaches are
discussed below.

2.2.1. Genetic algorithm (GA)

This is a popular search-based optimization tool which follows
the principle of genetics and natural selection discovered first by
Bremermann [55] in 1958. Its application to the field of computer
science was presented first by Holland [56] in 1975. Nowadays, it
has wide application in all areas of science and technology
including robot navigation. Specifically, it deals with the optimi-
zation of difficult problems wherein we must maximize or
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minimize the objective function value under given constraints. In
this approach, the population (different individuals characterized
by genes) must be allotted for the given problem and every member
of the population is assigned with a fitness value depending upon
the objective function. These individuals are selected as per their
fitness value and allowed to pass their genes to a new generation by
crossover. The mutation maintains the diversity in population and
prevents premature convergence. Finally, the algorithm is termi-
nated if the population has converged. Although the GA is ran-
domized in nature to some extent, its performance is better as they
can exploit historical information as well when compared to a
random local search. The application of GA for the mobile robot
navigation problem has been provided by Ref. [57] for a static
environment. The analysis is presented by simulation results only
in the presence of a polygonal obstacle. Classical approaches for

searching and optimization are very slow in real-time and hence
Shing et al. [58] presented a real-time path planner. For an un-
known environment, GA is a robust search method which requires
very little information on the environment about searching effi-
ciently. This method is adopted by Xiao et al. [59] to achieve the
goal of navigation such as path length, path smoothness, and
obstacle avoidance. The non-linear environmental problem of
navigation for a dead end is addressed by Ref. [60] in tricky areas.
For this, they have proposed an online training model for getting
the fittest chromosome to avoid any stuck situations and to find a
way out from such conditions. Most of the researchers have pro-
vided navigation in a static environment only by using GA but the
navigation in the presence of a moving obstacle in an uncertain
environment is proposed by Shi et al. [61]. To get better results in
robot path planning, many researchers have combined the
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application of GA together with another intelligent algorithm to get
a hybrid approach, such as GA-FL [62], GA-NN [63] and GA-PSO
[64]. Multi-robot path planning is one of the challenges in ro-
botics. Kala [65] addressed the path planning strategy for multiple
mobile robots by using GA. In his work, he developed the time
efficient coordination strategy for collision avoidance of multiple
robots in a static environment. Similar to multiple robot path
planning, the strategy for multiple goals is demonstrated in
Ref. [66] for a static environment. Navigation in a dynamic envi-
ronment for a multi-mobile robot system is solved by Yang et al.
[67]. They have demonstrated the results in the presence of both
static and dynamic obstacles. In many investigations, it is observed
that the GA has some limitations such as slow convergence rate,
absence of guaranty to get the optimal solution, time-consuming
process in deciding the parameters for mutation rate and popula-
tion size, etc. Hence, the modified GA path planner by imple-
menting a co-evaluation mechanism among the population for
robot navigation is presented by Hong et al. [68]. By modifying the
GA, they have presented the optimized simulation results in terms
of obstacle avoidance and path optimality for multiple robot sys-
tems in an unknown environment. For path optimization, another
modified form of GA is presented by Jianjun et al. [69]. In their
approach, the length of the chromosome is modified to get the best
output. The GA approach responds to the environment (known and
unknown) efficiently; hence it is adopted in the 3D path planning
problem of underwater robot [70] and aerial robot [71-72], and 2D
path planning of a humanoid robot [73]. To deal with the problem
of a moving target, Patle et al. [74] have provided the matrix binary
code based genetic algorithm (MGA) in the complex environment
for the single and multi-robot system. In this approach, the robot
can easily track the moving obstacle and moving goal, and reaches
the destination in a short period of time (Fig. 10). The GA approach
is a commonly used intelligent technique for defence equipment. A
demonstration of missile control, based on a combination of the GA
approach and fuzzy logic, has been presented by Creaser et al. [75].
The GA plays an important role in generating the guidance law for
the missile. A novel methodology based on GA for the military and
ocean monitoring domain is provided by lyer et al. [76]. They used
GA to protect a high value military asset and to identify the optimal
positioning strategy for underwater sensor network positioning
and deployment.

2.2.2. Fuzzy logic (FL)

The concept of FL was given first by Zadeh [77] in 1965 and was
later on used in all the fields of research and development. It is used
in situations where there is a high degree of uncertainty,
complexity, and nonlinearity. Pattern recognition, automatic con-
trol, decision making, data classification are a few of them. The
hypothesis of the FL framework is encouraged by the noteworthy
human ability to process perception-based information. It uses the
human-supplied rules (If-Then) and converts these rules to their
mathematical equivalents. This streamlines the job of the system
designer and computer for getting more correct information about
the way systems perform in the real world and hence it is used for
path planning of a mobile robot. Fig. 11 explains a simple FL system
with If-Then rules. A fuzzy (Sugeno) based navigation is presented
by Zavlangas et al. [78] for the omnidirectional mobile robot. An
automatic fuzzy rule generation system for obstacle avoidance is
developed by Castellano et al. [79] for effective navigation. The
navigation system in an unstructured static and dynamic envi-
ronment is presented using FL which avoids the problems of nav-
igation such as the continuous making of loops, backtracking [80],
dead-end traps (U-shaped, maze, snails) [81-82], steering from
narrow passages [83], curved trajectory [84]. Nowadays, FL has
been used in combination with the sensor based navigation

technique [85] to improve the incremental learning of the new
environment; reinforced based navigation [86] to minimize the
angular uncertainty and radial uncertainty present in the envi-
ronment; and algorithm based navigation technique such as NN
[87], GA [88], APF [89], ACO [90] and many more to achieve an
optimal perception of the environment which enables the robot to
manage a dead-end situation.

Navigation problems in the dynamic environment were solved
by Khatib et al. [91] and Lee et al. [92] by introducing FL as a data-
driven approach. Hoy et al. [93] presented the cooperative
approach for navigation of multiple mobile robots in an unknown
cluttered environment. To improve the capability of the robot in a
moving condition, Kang et al. [94] and Al-Mutib et al. [95] pre-
sented a stereovision-based mechanism with FL. To track the
moving object, Abadi et al. [96] designed the Mamdani based FL
controller for a wheeled mobile robot. They used the PSO algorithm
with FL as a hybrid approach to select the best parameters. The
effective functioning of FL was presented by Castillo et al. [97] to
maintain the diversity control in ACO and to avoid premature
convergence. Al-Jarrah et al. [98] presented the path planning
strategy for multiple mobile robot systems and active motion co-
ordination between them by using a probabilistic fuzzy controller
[99] with the NN. In this approach, a leader robot position will be
followed by a follower robot. The first order Sugeno fuzzy system
was applied to the head robot in order get a high-level controller
whereas the companion robot has a low-level controller. The
learning strategy is developed by using the NN and efficient fuzzy
rules are tuned by ANFIS. The fuzzy-based strategy was applied for
navigation of a humanoid robot in the 2D environment by Rath
et al. [100]. The navigation in a 3D environment is one of the
difficult tasks which is addressed using fuzzy logic for path plan-
ning of aerial robots, and underwater robots by Abbasi et al. [101]
and Xiang et al. [102] respectively. The FL approach has been used
in the defence field for controlling and guiding missiles, drones and
underwater robots. Rajasekhar et al. [103] used fuzzy logic with
PNG (proportional navigation) which generates acceleration com-
mands for the missile using closing velocity and LOS (line-of-sight)
rate as input variables. Lin et al. [ 104] demonstrated the fuzzy group
decision support system for the selection of an appropriate UAV
(unmanned aerial vehicle) for a military operation. In his work,
fuzzy logic plays an important role in a multi-criteria decision-
making problem by handling the linguistic as well as ordinary
quantitative information.

2.2.3. Neural network (NN)

Artificial NN is an intelligent system which consists of many
simple and highly interconnected processing elements. These ele-
ments transfer the information by their capability of dynamic state
response to external inputs. The NN is basically shown by well-
organized layers of interconnected nodes. The nodes consist of an
activation function. The input layer of the NN mechanism recog-
nizes the patterns shown below in Fig. 12. These patterns then
communicate to hidden layers for actual processing via a system of
weighted connections. The hidden layers connect with the output
layer to give the required answer. NN characteristics such as
generalization ability, massive parallelism, distributed representa-
tion, learning ability and fault tolerance make it useful in the field of
mobile robot navigation. Janglova [105] presented the application
of a NN for a wheeled mobile robot navigation in a partially un-
known environment. He used two NN-based mechanisms for the
development of a collision-free path. The first neural mechanism
finds the free space using sensory data and another NN finds a safe
trajectory by avoiding the nearest obstacle. To avoid human guid-
ance in the process of navigation, Qiao et al. [106] presented an
automation learning strategy. The feature of their work is that,
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Fig. 10. MGA (a) Flowchart (b) Crossover mechanism (c) Output in terms of heading angle [76].

function fuzzy linguistic variables

T Fuzzy - Output as a
[ Fuzzification H controiler H Defuzzitier ]{ crisp value

Fig. 11. Basic FL controller.

[ Fuzzy membership ] Fuzzy IF-Then rules ]

Inputas a
crisp value

according to the complexity of the environment, the NN adjusts error accumulation produced by an incorrect odometry model and
insertion and deletion of new hidden layers during the training inaccurate linearization of the SLAM nonlinear function. The use of
without human guidance to accomplish the navigation task. Li et al. the NN with Fast SLAM enhances the mobile robot to navigate
[107] have presented the application of NN to Fast Simultaneous without collision with the obstacle in the unknown environment.
Localization and Mapping technique (Fast SLAM) to eliminate the To achieve the optimum result during a robot navigation operation,
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Input
parameters
X, Output

Summing Activation
junction  function

Fig. 12. Architecture of NN.

various approaches are used together with the NN as a hybrid
mechanism. Yong-Kyun et al. [108] have presented the combined
effort of the NN with APF to get cooperative coordination and
competitive coordination for behavior-based control.

Pothal et al. [109] have presented the hybrid approach of the NN
and FL to take the benefits of both the intelligent mechanisms for
multiple mobile robot navigations in a disorderly conditions. The
proposed work is analyzed in the presence of a static obstacle ar-
chitecture (Fig. 13). Abu Baker [110] has presented a novel hybrid
approach for mobile robot navigation by combining FL with the NN.
The NN effectively finds the optimum number of activation rules to
reduce computation for a real-time application. Pal et al. [111] have
presented the application of the NN with sonar to mobile robot
navigation. Medina-Santiago [112] have introduced a neural control
system for the mobile robot in real time by using ultrasonic sensors.
To improve the performance of the NN, Syed et al. [113] have
modified the basic NN to form GAPCNN to get fast convergence of
parameters for a mobile robot moving in a static and dynamic
environment. The approach is modified by applying directional
autowave control and accelerated firing of neurons based on the
dynamic thresholding strategy. A NN-based self-learning strategy
for the mobile robot is presented by Markoski et al. [114]. Pattern
recognition is used as a tool for mobile robot navigation in an un-
known environment with a NN and is demonstrated by Quinonez
et al. [115]. The NN is a widely applicable path planner approach
due to its ability to learn and model non-linear and complex rela-
tionship. It requires minimum statistical training, explores

X, X, X, X,and
consequent parameters

Fig. 13. The architecture of the Neuro-Fuzzy approach for mobile robot navigation
[109].

complicated relationship between dependent and independent
variables, is capable to detect and solve all probable interaction
between predictors variable and gives multiple training algorithms,
hence it is used in the path planning problem of humanoid robot
[116] and industrial robot [117] in a 2D environment, underwater
robot [118] and aerial robot [119] in 3D environment. In the defence
and aerospace sector, there has been a notable increase in the
number of sensors and data sources which are used for the guid-
ance, navigation, targeting, commanding and controlling the
equipment. Therefore, Bishop [120] provided the use of a NN for
modeling the nonlinear mapping from the inputs from multiple
sensors to the optimized output. He presented the NN based
pattern classification for target identification and later it is widely
used in military equipments. One more strategy based on NN for
intelligent target system from the target echo signal of the high-
resolution range is presented by Avci et al. [121]. In this work,
they have modeled the two-layer NN system i.e. wavelet and
multilayer perception. The wavelet layer is used for feature
extraction in the time-frequency domain and multi-layer percep-
tion for classification.

2.2.4. Firefly algorithm (FA)

Yang [122] introduced the FA in 2008. It is inspired by the fire-
flies flashing behavior, although it is also referred to as the meta-
heuristics algorithm. Its principle comprises random states and
general identification as trial and error of fireflies which is existing
in nature stochastically. The firefly is a winged beetle of the family
Lampyridae and commonly is called a lightning bug due to its
ability to produce light. It produces light by a process of oxidation of
Luciferin in the presence of the enzymes Luciferase, which occurs
very quickly. This process of producing light is known as biolumi-
nescence and fireflies use this light to glow without wasting heat
energy. Fireflies use this light for selection of a mate, communicate
amessage and sometimes also for scaring off animals who try to eat
them. The pseudo code and flowchart for navigation of a robot
using the FA are presented in Fig. 14. Recently the FA has been used
as an optimization tool and its application is spreading in almost all
areas of engineering such as mobile robot navigation. Hidalgo-
Paniagua et al. [123] have presented a FA based mobile robot
navigational approach in the presence of a static obstacle. They
have achieved the three primary objectives of navigation such as
path length, path smoothness, and path safety. Brand et al. [124]
presented the FA for the shortest collision-free path for single
mobile robot navigation in a simulational environment only.
Sutantyon et al. [125] demonstrated the FA for the underwater
mobile robot navigation. They developed the scheduling strategy
for swarm robots to avoid interference and jamming in 3D marine
conditioning. In the same environment [126], one more real-world
underwater navigation problem in the partially known environ-
ment is addressed by them using the levy light-firefly based
approach. The FA based cooperative strategy for detection of dead
robots in a multi-mobile robot system is presented by Christensen
et al. [127]. The application of FA to explore a 3D world for aerial
navigation is developed and experimented by Wang et al. [128]. In
their experiment, the improved version of FA is applied for path
planning of an UCAV in the complex crowded environment and to
avoid hazard areas and minimizing the fuel cost. The concentric
sphere based modified FA algorithm has [129] been presented to
avoid random moving of the fireflies in less computational efforts.
The experimental and simulational results show a great commit-
ment in achieving the goals of navigation in a complex environ-
ment. The analysis of a FA in the presence of a variety of obstacles
(concave, zigzag and convex) for a single as well as a multi-robot
system is evaluated in Ref. [130]. A variety of experiments for
robot path planning are performed by many researchers such as a
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Objective function f(x). x=(x.%,. xa)T
Generate initial population of fireflies x,(i=1.23.......... )
Light intensity I, at x; is determined by f(x;)
Define light absorption coefficient
While (¢ < Max Generation)
For i=1: nall n fireflies
Forj=1: nall n fireflies (inner loop)
If (I; < L)), Move firefly I towards j;
End if
Vary attractiveness with distance r via exp [-yr]
[Evaluate new solution and update light intensity/
End forj
End for i
Rank the fireflies and find the current global best g,
End while

Postprocessor results and visualization

| Robot motion towards the goal |

| Start firefly algorithm (FA) |

l

| Initialization: Number of firefies, y, o, f, K , K,

| S 3

| Calculate the fitness function value |

!

| Search the best firefly among the population |

| Best firefly is the existing position of robot |

Fig. 14. FA pseudo code and flowchart for navigation robot [136].

FA-vision-based system [131], FA-Q learning approach [132], FA-
ABC hybrid approach [133] and many more. The specific applica-
tion to a legged robot and underwater robot using FA is demon-
strated by Tighzert et al. [134] and Liu et al. [135] respectively. Patle
et al. [136] addressed the problem of navigation specifically in
dynamic conditions. They used the FA to demonstrate the path
planning approach in the presence of a moving goal and moving
obstacle.

2.2.5. Particle swarm optimization (PSO)

This is a nature-based metaheuristic algorithm which adopts the
social behavior of creatures such as fish schools and bird flocks. It is
developed by Eberhart and Kennedy [137] in 1995 and it is a rapidly
growing optimization tool for solving the various problems of en-
gineering and science. The PSO mimics the behavior of the social
animal but does not require any leader within the group to reach
the target. When the flock of birds goes to find food, they do not
require any leaders; they go with one of the members who is at the
nearest position to the food (Fig. 15). In this way, the flock of birds
reaches their required solution by proper communication with the
members of the population. The PSO algorithm consists of a group
of particles where each particle represents a potential solution.
Nowadays, PSO is widely used in the field of mobile robot naviga-
tion. Tang X. et al. [138] addressed the mapping and localization
issues of mobile robot navigation in the unknown environment by
using a multi-agent particle filter. The use of PSO helps to minimize
the calculation and holds more stable convergence characteristics.
To get an accurate trajectory and to avoid trapping in local optima
Xuan et al. [139] have used a PSO algorithm with MADS algorithm
(Mesh Adaptive Direct Search). Using the PSO MADS algorithm
together gives an efficient result over the GA and EKF (Extended
Kalman Filter). Atyabi et al. [140] have developed the Area
Extended PSO (AEPSO) as an extension of the basic PSO to address
the dynamic and time-dependent constraint problems of mobile

robot navigation. The AEPSO approach is successfully implemented
in search and rescue of survivors and bomb disarming. To handle
the navigation of a multi-mobile robot system, Tang et al. [ 141] have
addressed cooperative motion path planning in the complicated
environment by using the PSO. The PSO in combination with the
multibody system dynamics consisting of the properties of robot-
like acceleration, mass, force, inertia which is then considered for
investigation of fault tolerance of the proposed approach. Some
modification has been made by Couceiro et al. [142] for navigation
of multiple mobile robots in the real world. They modified the form
of PSO and Darwinian PSO (DPSO) system for obstacle avoidance
and mutual communication issues. They found that in a system of
12 physical robots the efficiency achieved was up to 90% in a sense
of maximum communication distance and global optimum. Chen
et al. [143] have tried to develop the human expert control strategy
with the learning-based ability for the uncertain environment by
using a multi-category classifier. For this, the PSO is used to get
higher accuracy within the short time. In comparison with the
conventional grid search, it gives higher accuracy.

Li et al. [144] have worked on a self-adaptive learning particle
swarm optimization (SLPSO) approach as shown in Fig. 16 for
solving the path planning problem of the robot in a complex
environment under various constraints. Initially, they transformed
the path planning problem into a minimization multi-objective
optimization problem and achieved the objective of navigation
such as path length, collision risk degree, and smoothness, and then
a self-adaptive learning mechanism was implemented to improve
the searchability of the PSO in the multi-constrained environment.
To develop efficient path planning, a hybrid approach has been
given by Das et al. [ 145]. They presented the application of PSO and
improved gravitational search algorithm (IGSA) as a hybrid meth-
odology to evaluate the optimal path planning for multiple mobile
robots in a cluttered environment. The use of PSO to underwater
navigation problem in a complex 3D environment is studied by He
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Initial position
of particle (x)

Position best

The best preferred
by swarm end for

PSO pseudo-code
while maximum iteration or minimum error criteria

is not attained do
for each particle do
initialize particle

for each particle do
Calculate the fitness value
If the fitness value is better than the best fitness
value in history (pbest)
Set current value the new pbest
end if
end for
for each particle do
Find in the particle neighborhood the particle with the
best fitness (gbest)
Calculate particle velocity using velocity equation
Apply the velocity construction
Update the particle position using position equation|
Apply the position constriction
end for
end while

Fig. 15. Basics of PSO and pseudocode.

Start

[ Model the workspace of mobile rubot|

Initialize the partiele population,
set paraneters Iter_ and U,

k=1

——| Calculate the inertia weight value by using Eq.(11) |

No

}

Update the selection ratio of each learning
poemtor for particle

Use the previous selection|
ratio of each learning

operatur for partiele i

I

| Select the most suitable learnig strategy and operatiors for particle 7 |

| Evaluate the fitress value of each partickle by using Eq.(7) |

'
f=k+1 | Update the personal and global best positions of each particle |

!

| Handling boundary violations of velocity and position |

!

Cakulate the progress value of cach learning operator for particle i by
using Eq.(15)

Calculate the reward of each learning operator for particle i by
using Egs. (13) and (14)

Calculate the selection ratio of each learning operator for particle i by
using Eq. (12)

If stapping criteria satisfied?

[ Output optimal results and reccond them |

End

Fig. 16. SLPSO flowchart for mobile robot navigation [144].
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et al. [146]. In that work, the combined PSO-UFastSLAM approach
has been used to improve the accuracy of estimation and to limit
the particles to get better results. Similar to underwater robots, the
PSO approach has been successfully implemented for navigation of
an aerial robot in a 3D unknown environment [147], humanoid
robot [148] and an industrial robot [149]. Algabri M et al. [ 150] have
presented the comparison of various approaches such as GA, PSO,
NN and FL to identify the best navigational control and concluded
that the FL paired with PSO gives the optimal results in distance
traveled. The applications of PSO are not limited to mobile robot
navigation only in the defence sector. Banks et al. [151] have
investigated the utilization of PSO for non-deterministic navigation
of UAV and allowing them to work cooperatively toward the goal of
protecting a wide area against airborne attack.

2.2.6. Ant colony optimization (ACO)

This is a swarm intelligence algorithm developed by Marco
Dorigo in 1992 in his Ph.D. thesis [152]. It is a population-based
approach used to solve the combinatorial optimization problem.
The ACO algorithm originated from the behavior of ants and its
ability to find the shortest path from their nest to a food source
(Fig. 17). The ACO algorithm is already applied to various fields of
science and engineering such as job-shop scheduling, vehicle
routing, quadratic assignment problem, travelling salesman prob-
lems, graph coloring and many more. Nowadays, the ACO is used to
handle the mobile robot navigation problem for obstacle avoidance
and effective path planning. Guan-Zheng et al. [153] presented the
application of ACO for real-time path planning of mobile robots.
The adoption of the ACO increases the convergence speed, solution
variation, computational efficiency and dynamic convergence
behavior when compared with other algorithms such as GA. Nav-
igation for multiple mobile robots is presented by Liu et al. [154] by
using ACO. They presented a collision avoidance strategy for
various robot systems in a static environment. They used a special
function to improve the selective strategy. When an ant finds a
dead-corner then a penalty function is used for the trail intensity to
avoid the path deadlock of the robot. An ACO-fuzzy based hybrid
approach for mobile robot navigation is presented by Castillo et al.
[155] for navigation in a static environment. An RA-ACO based
approach for navigation of a humanoid robot is presented for a
cluttered environment by Kumar et al. [156]. They tested the pro-
posed approach for navigation of multiple humanoid robots in a
real-time environment using Petri-Net and obtained a good
commitment in simulation results and real-time results. To in-
crease the performance of the present ACO approach in the static
environment some modification is suggested by Liu et al. [157].
According to them, convergence speed is the main contribution to
performance. They combined pheromone diffusion and geometric
local optimization for searching of the optimal path which results
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in the current path pheromone diffusing in the direction of the
potential field force during the searching - ants tend to search for a
higher fitness subspace, and the search space of the pattern be-
comes smaller. A further modification for the dynamic environ-
ment is presented by Rajput et al. [158]. They also presented a novel
pheromone updating technique to avoid unnecessary looping and
to achieve faster convergence. Purian et al. [ 159] have presented the
application of the ACO algorithm for mobile robot navigation in an
unknown dynamic environment. They have used the ACO for se-
lection and optimization of the fuzzy rules. The pseudocode and
flow chart (Fig. 18) for analysis of a mobile robot over the same
environmental setup in simulation and experiment is presented by
Brand et al. [160]. Path planning in 3D for underwater vehicles is
proposed by Liu et al. [161] using an ACO-based search algorithm
whose purpose to is find a collision-free path from the start posi-
tion to the destination. To resolve the unmanned aerial vehicle
route problem for a battlefield, the ACO algorithm has been pre-
sented by Chen et al. [162] with reinforcement learning to improve
the stagnation behavior and deficiency in searching speed of the
original ant colony algorithm. Application of ant colony algorithm is
also seen in the military equipment's. Gao et al. [ 163] presented the
application of ACO for route planning of a missile with improved
performance especially optimal route length and speed-up of the
convergence rate of the optimal route search process.

2.2.7. Bacterial foraging optimization (BFO) algorithm

Passino [164] in 2002 presented the new nature-inspired opti-
mization algorithm which is originated from the behavior of an
E. coli and M. Xanthus bacteria. These bacteria search for nutrients
by making the best use of energy achieved per unit time. The BFO
algorithm is featured by chemotaxis that perceives chemical gra-
dients by which bacteria communicate specific signals with each
other. It has four basic principles such as chemotaxis, swarming,
reproduction and elimination, and dispersal. The behavior of the
bacteria [165] for searching the nutrient region is presented as
below and explained in Fig. 19.

e Bacteria always travel in search of more nutrient regions on the

map. Bacteria with sufficient food have a longer life and split

into two equal parts whereas bacteria in the lesser nutrient

region will disperse and die.

Bacteria present in the more nutrient region are attracted to

others by chemical phenomenon and those who are in the lesser

nutrient region give a warning signal to other bacteria using a

specific signal.

Bacteria get a highly nutrient region on the map.

e Bacteria are dispersed again in the map for a new region of
nutrients.
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Fig. 17. The behavior of ants while searching the food.
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Pseudo code of ACO
Begin
Initialize
While stopping criterion not satisfied do
Position each ant in a starting node|
Repeat
For each ant do
Choose next node by applying the state transition rule
Apply step by step pheromone update
End for
Until every ant has built a solution
Update best solution
Apply offline pheromone update

End While

Set current position

Find the best point for the next
move based on ACO

Back to starting point

Fig. 18. ACO pseudo code and flowchart for path planning of robot by Brand et al. [160].

Begin

calculation, chemotaxis step, etc.
For Nc=1: Maximum climination stcp
For Nre=1: maximum reproduction step
For Nel= 1: maximum chemotaxis step
For Each bacterium
Do: Chemotax process Eq.(1); end
Do: Tumbling process; end
End //population
End // chemotaxis iteration
Do: Reproduction Eq.(2-3)
End // reproduction iteration
Do: Elimination
End // elimination iteration

Algorithm: Bacterial Foraging Optimization (BFO)

Initialization: Dim, initialization of population, fitness

Output: Optimal position according to fitness function

Random disturbance
(Alternative process)

O

e
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I
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Fig. 19. BFO pseudo code by Tan et al. [165].

The application of the BFO algorithm for mobile robot naviga-
tion in a static environment is provided firstly by Coelho et al. [166]
with variable velocity based on uniform, Gauss, and Cauchy dis-
tribution. The same strategy in the presence of multiple obstacles is
presented in Refs. [167—169] for navigation in a static environment.
Real-time navigation in corridor, lobby and building floor envi-
ronments for a single mobile robot system is presented by Gasparri
et al. [170]. To improve the performance of a wheeled robot in path
planning, an enhanced BFO algorithm is developed by Abbas et al.
[171]. The developed approach models the environment using an
APF technique over two opposing forces i.e. attractive force for the
goal and repulsive force for the obstacles; the approach inspects
negative feedback from the algorithm to select suitable direction
vectors that guide the search process to the promising area with a
better local search. The navigation in the presence of multiple ro-
bots is itself a challenging task; a BFO algorithm to deal with such a
situation is presented by Jati et al. [172]. In their work, they hy-
bridized the harmony search algorithm with BFO. Apart from the

application to the wheeled robot, the BFO algorithm has been
tested successfully for an industrial manipulator - see Coelho et al.
[173] who observed that the improved BFO gives better results
compared to the classical BFO. The navigation problem of an UAV
using BFO have presented by Oyekan et al. [174]. In this approach,
the BFO has been presented with a proportional integral derivative
(PID) controller to get optimal search parameters in 3D space and to
avoid complicated modeling while tuning the controller for UAV.

2.2.8. Artificial bee colony (ABC) algorithm

The ABC algorithm is a swarm-based intelligent approach
inspired by the activities of honey bees (Fig. 20) in search of food
and is proposed by Kharaboga [175]. The ABC algorithm is a
population-based strategy consisting of a population of inherent
solutions (food source for bees). It is relatively simple in use, fast in
processing and is a population-based stochastic search approach in
the field of swarm algorithms. The food search cycle of ABC consists
of the following three rules.
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Initial food position
Calculate nectar amounts

Determine new food positions
for the employed bees

Determine a neighbor food
source position for the onlooker

|
Calculate nectar amounts

Scout bee
searching food

Food
(flowers)

Select a food source for
the onlooker

Onlookers
distributed?
Yes

Memories the position of best food
source

| Find the abandoned food source I

Produce new position for the
exhausted food source

Are the termination
criteria satisfied?

Yes
Final food position

Fig. 20. ABC structure with pseudo code.

¢ Sending the employed bees to a food source and evaluating the
nectar quality.

e Onlookers choosing the food sources after obtaining informa-
tion from employed bees and calculating the nectar quality.

e Determining the scout bees and sending them onto possible
food sources.

The application of the ABC algorithm to mobile robot navigation
in a static environment is presented by Contreras-Cruz et al. [176].
The developed approach uses ABC for a local search and evolu-
tionary algorithm to define the optimal path. Real-time experi-
ments in an indoor environment are presented for result validation.
A similar approach in a static environment is also presented by
Saffari et al. [177] but results are limited to simulational environ-
ments. To meet the goal of navigation in a real-time dynamic
environment, the ABC based approach is presented by Ma et al.
[178]. They presented a hybridized approach by combining the ABC
algorithm with a time rolling window strategy. Multiple mobile
robot navigation in an environment is a difficult task, the imple-
mentation of ABC is done successfully in a static environment by
Bhattacharjee et al. [179] and Liang et al. [180]. Similar to wheeled
mobile robot navigation, the ABC algorithm is tested for aerial
navigation [181], underwater navigation [182], and autonomous
vehicle routine problems [183]. UCAV path planning aims to obtain
an optimal flight route in the 3D world by considering the threats
and constraints in the combat field. Li et al. [166.1] addressed this
UCAV navigation problem using an improved ABC algorithm. The
ABC algorithm is modified by a balance-evolution strategy (BES)
which fully utilizes the convergence information during the itera-
tion to manipulate the exploration accuracy and to pursue a bal-
ance between the local exploitation and global exploration
capabilities. Application of the ABC algorithm in the defence sector
has been provided by Ding et al. [166.2]. In their work, an un-
manned helicopter has been tested for a challenging mission such
as information gathering, accurate measurement, and border

patrol. Based on the flight data collected from the experiments,
they used a novel identification algorithm consisting of a chaotic
operator and ABC controller to identify the unknown parameters of
the two decoupled linear models.

2.2.9. Cuckoo search (CS) algorithm

The CS algorithm is a metaheuristic algorithm presented by
Yang and Deb [186] in 2009. The algorithm is based on the lazy
behavior of some cuckoos for laying their own eggs in the nests of
other host birds. According to Yang, the algorithm follows three
basic rules for an optimization problem as follows.

e Each cuckoo lays one egg at a time in a randomly chosen nest.

e The best nests with high-quality eggs will be carried over to the
next generation.

o The number of available host nests is fixed, and the egg laid by a
cuckoo may be discovered by the host bird with a probability pa
€ (0,1). In this case, the host bird can either get rid of the egg or
simply abandon the nest and build a completely new nest.

The CS algorithm is an improved method because it increases
the convergence rate and efficiency hence it is widely accepted in
various engineering optimization problem; mobile robot naviga-
tion is one area where performance and computational time is to be
optimized. The general flow chart of the CS algorithm is presented
in Fig. 21. Research papers using the CS algorithm in mobile robot
path planning are limited as it is a newly developed algorithm. The
algorithm for navigation of a wheeled robot in a static environment
is provided by Mohanty et al. [187]. The environment is partially
unknown, and they have presented simulation and real-time ex-
periments on a wheeled robot over the complex environment. The
experimental and simulation results show good agreemnt as there
is a much smaller deviation error. The CS-based algorithm performs
well when hybridized with other navigational approaches. One
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Pseudo Codes

Objective function f(x), X = (X, Xy, .00 Xy )T

Generate initial population of n host nests

while (t<Max Generation) or (Stop criterion) do
Get a cuckoo randomly by Levy flights

Evaluate its quality/fitness F;

i

Choose a nest among n (say j) randomly
If (F; > F;)

then

replace j by the new solution

end

A fraction (p,) of worse nests are abandoned and new ones- are
built

Keep the best solutions (or nests with quality solutions)

Rank the solutions and find the current best

End while

Start/Sensing

[ Robot proceeds...towards the target J«——

Is there
any obstacle on the
target path?

Yes
[ Implement CS algorithm |

[ Generate initial population of host nests |

[ Calculate the current best location for each nest|

Calculate golbal best location for nest from swarm
according to function values of each nest

Abandon a fraction of worse nest and build
new ones at new position via levy flights

Robot proceeds...towards the global
best nest location

Fig. 21. The pseudo code of CS and Flowchart for CS based mobile robot navigation [187].

such approach is provided by Mohanty et al. [188]; in that
approach, a hybrid of CS and ANFIS was presented for obtaining
better results of navigation in an uncertain environment. Another
hybrid path planning approach for an unknown 3D environment is
suggested by Wang et al. [189] by combining the differential evo-
lution algorithm with CS to accelerate the global convergence
speed. The increased convergence speed helps the aerial robot to
explore the 3-D environment. An application of the CS algorithm
for exploring the 3D environment especially for a battlefield has
been presented by Xie et al. [170.1]. In their work, the hybrid
approach (including CS and differential evolution algorithm) has
been demonstrated for solving the 3D aerial path planning prob-
lem. The differential evolution is applied to optimize the process of
selecting cuckoos of the improved CS model where the cuckoos can
act as an agent in searching the optimal path.

2.2.10. Shuffled frog leaping algorithm (SFLA)
This is a metaheuristic optimization approach developed by
Eusuff and Lansey [191] based on the behavior of frogs in search of

Sub-M21

Search space

(a) Sorting and partitioning

(b) After local srarch

food as shown in Fig. 22. The SFLA has become popular in the field
of engineering optimization. Characteristics such as improved
convergence speed, easy to implement, fewer parameters, higher
success rate and better search capacity in presence of uncertainty
make it unique over other metaheuristic algorithms. Nowadays, the
application of SFLA is commonly observed for engineering opti-
mization problems and navigation of a mobile robot is a typical
example. Ni et al. [192] have developed a path planning strategy
based on the median strategy for avoiding a local optimal solution
problem. They modified the fitness function for optimal path gen-
eration, obtaining the globally best frog, and its position is used to
lead the movement of the robot in the presence of static and dy-
namic obstacles. A multi-objective approach based SFLA has been
demonstrated by Hidalgo-Paniagua et al. [193] to achieve main
targets of navigation such as path safety, path length, and path
smoothness. The developed approach is then compared with the
GA in a static condition; the result using the modified SFLA was
much greater in the sense of path smoothness. A navigational
strategy for 3D underwater conditions has studied and presented

(c) Partitioning after shuffling

Fig. 22. SFLA mechanism [194].
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by Kundu et al. [194]. In their work, an adaptive SFLA navigational
strategy for dynamic conditions is used while tracking the target.
With the use of the adaptation technique, the path and required
time of navigation are optimized by avoiding local minima situa-
tions (Fig. 23). Validation of simulation results with experimental
results is presented with good agreement in a messy environment.
A similar type of modified SFLA approach for mobile robot navi-
gation is provided for solving UAV 3D path planning [195] and
vehicle routing [196]. For defence applications, Liang et al. [197]
developed an SFLA-based flight control strategy for air-breathing
hypersonic vehicles. To achieve the climbing, cruising and
descending flight control, a modified SFLA with the proportional
integral derivative method is designed including the height loop,
pitch angle loop, and velocity loop.

2.2.11. Other miscellaneous algorithm [OMA]

Many researchers gave different intelligent techniques to
perform the task of mobile robot navigation in various environ-
mental situations such as Invasive Weed Optimization (IWO) [198—

| Initialization of parameters |

l

Random generation of population
by following eq.(5.2)

Initialization

Evaluate fitness of each population
member byfollowing eq.(5.3)

l

Sort the population in
descending order

Convergence
achieved or not?

l Yes

Global
optimal Partition population into
solution has ‘m’ memplexes by
achieved following Figure 5.3

1 l
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200], Harmony Search (HS) Algorithm [201-202], Bat Algorithm
(BA) [203-205], Differential Evolution (DE) Algorithm [206-208],
reactive obstacle avoidance based on boundary following using
sliding mode control [209], collision avoidance based on geometric
approach [210-211] and many more.

3. Discussion

After a rigorous evaluation of the research papers cited in the
literature, the navigational strategies are classified as classical ap-
proaches and reactive approaches. A few decades ago, most of the
work in the field of robotics was conducted using classical ap-
proaches only. Classical methods have several shortcomings such as
computational intensiveness, trapping in local minima, inability in
handling maximum uncertainty, demand for precise information
about the environment, the requirement of an accurate sensing
mechanism for real-time navigation and many more. Hence, in the
adoption of the classical approach, there always remains doubt
whether a solution will be obtained, or it would be assumed that

Count of memplexes

I

Initialization of parameters maximum
evolution and no. number of submemplexes
T

'

Partition memplex into submemplexes

Update the worst frog of each
submemplex using eq.(5.6 & 5.7)

If fitness (new frog)
<fitness (worst frog)

Replace the local best one by
global best value in eq.(5.6)

If fitness (new frog)
<fitness (worst frog)

Random generation of virtual
frog by following eq.(5.10)

!

[ Stop Evolution
within each
memplex

Shuffle all memplexes and
termine the global best frog

I

Update the global best frog
by using eq.(5.5)

I Adaptive
Global search local ——
search

L——»| Replace the worst frog by new one |

Maximum evolution
is completed or not?

All memplexes are
comdeted or not?

Back to global search

Fig. 23. Flowchart for a proposed adaptive version of SFLA [194].
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Fig. 24. Classical Approaches comparison based on a paper published.

such a solution does not exist. The unpredictable and unreliable
nature of these approaches makes their usage brittle in a real-time
environment. Although many researchers have tried to estimate
loopholes in the classical approaches and developed several new
strategies such as APF and some hybrid algorithms, these strategies
are not performing better in real-time conditions when compared
to reactive approaches. Classical approaches are mainly adopted for
navigation in a known environment as they require the initial in-
formation of the working environment. On the other hand, reactive
approaches are used for navigation in an unknown environment
due to their ability to tackle the high level of uncertainty present in
the environment. They are easy to implement, intelligent and more
efficient; hence they are used for real-time navigation problems
and give optimal results over classical approaches. Although reac-
tive approaches are than classical approaches, they still have
several disadvantages such as longer computational time, complex
design, necessary learning phase, requires large memory, and un-
suitable for low-cost robots. In Figs. 24—25, the comparison has
been made based on the percentage of the paper published for
individual classical and reactive approaches.

Table 1 provides a detailed analysis of the algorithms used for
navigation of robots to date. The performance of each algorithm is
judged based on parameters such as application as a hybrid algo-
rithm, navigation in static and dynamic environments, application
to multiple robot systems, results over simulational and real-time
environments and kinematic analysis. Table 1 shows that
research papers published on navigation of robots by using reactive
approaches are comparatively more than classical approaches. In
classical approaches, it is observed that the APF approach has been
used very successfully for navigation of a robot around a static

25

obstacle, dynamic obstacle, and for dynamic goal conditions; it is
applied for multiple mobile robot systems and presented for real-
time application as compared to CD and RA. For the hybrid navi-
gation system, the cell decomposition approach has been used
more than APF and RA. In classical approaches, it is observed that
use of the APF approach has increased in the last two decades for
solving the navigational problem of a robot in partially known and
unknown environments as compared to CD and RA. The charts in
Fig. 26-28 clearly represent that research papers based on dynamic
obstacles and goals, multiple robot navigation and real-time ap-
plications using classical approaches are very few compared to
reactive approaches.

Nowadays, reactive approaches are more popular as they have
the ability to deal an uncertain environment quickly with less
computational effort. In Fig. 29, implementation of classical and
reactive approaches, arranged in decades, has been shown for robot
navigation. It shows that the popularity of reactive approaches has
increased from 0% to 95%, whereas the popularity of classical ap-
proaches has decreased from 95% to 5% in the year 1970—2018. In
the 21st century, rapid growth is observed in the implementation of
the reactive algorithm for mobile robot navigation. At the present
time, more than 95% of work is being conducted using reactive
algorithms only. Among the reactive approaches, the fuzzy-based
approach is studied for path planning by various researchers fol-
lowed by GA and NN respectively. In the field of mobile robot
navigation, the contribution of algorithms such as FL, GA, and NN is
more than 50%. The newly developed metaheuristic algorithms
such as FA, PSO, ACO, ABC, CS, SFLA, and OMA are rapidly growing
approaches in the field of mobile robot navigation and the appli-
cations of this algorithm are commonly seen everywhere. The
contribution of this metaheuristic algorithm in the field of robot
navigation is about 50%. From Table 1, most of the reactive ap-
proaches such as FL, GA, NN, ACO, PSO, and FA have been used for
the navigation in a dynamic environment in the presence of moving
obstacles and moving goals. Algorithms such as SFLA, PSO, ABC, and
BFO are newly developed approaches which have been successfully
used for navigation in the presence of moving obstacles only. All
reactive and classical approaches can handle the real-time navi-
gational path planning problem as a standalone controller with
greater efficiency except RA and CD. Multiple mobile robot navi-
gation is one of the most challenging tasks for path planning and it
requires a high level of intelligence to coordinate the robots. Almost
all approaches, except CD, RA, SFLA, BFO, and OMA, handle the
multi-robot problem accurately without collision. To solve the
complex problem of navigation many researchers presented a
hybrid navigational approach and, from the literature review, it is

20

15

Papers/%

1§”||||||..L

PSO

ACO ABC

SFLA  Others

Reactive Navigation Approaches

Fig. 25. Reactive Approaches comparison based on a paper published.
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Table 1
Analysis of various navigational techniques.
Ref. No. Navigational Techniques Year Navigation in the presence of Used as a Hybrid  Application to multiple mobile Real-time Simulation Kinematic
- - — approach robot systems Result Result Analysis
Static Dynamic Dynamic
obstacle obstacle goal
[4] Cell Decomposition 2007 Y N N N N N Y N
[6] 1983 Y N N N N N Y Y
[7] 1993 Y N N N N N Y Y
[8] 1991 Y N N N N N Y Y
[9] 1995 Y N N N N N Y N
[11] 1990 Y N N N N N Y N
[12] 2004 Y N N Y N N Y N
[13] 2005 Y N N Y N N Y Y
[14] 1999 Y N N N N N Y Y
[15] 2009 Y N N N N N Y N
[16] 2013 Y N N N N Y Y Y
[17] 2009 Y N N Y N N Y N
[18] 2016 Y N N Y N N Y N
[19] 2010 Y N N Y N N Y N
[20] 2017 Y N N N N N N N
[21] 2016 Y N N Y N N Y Y
[22] Roadmap Approach 2000 Y N N N N N Y Y
[23] 1989 Y N N N N N Y N
[28] 2011'Y N N N N N Y N
[29] 2010 Y N N N N N Y N
[30] 2009 Y N N N N N Y N
[31] 2008 Y N N N N N Y N
[32] 2004 Y N N N N N Y N
[33] 2007 Y N N N N N Y N
[34] 2007 Y N N N N N Y Y
[35] 1996 Y N N N N N Y N
[36] 2001 Y N N N N N Y N
[37] 2013 Y N N N N Y Y N
[38] Artificial Potential Field 1985 Y N N N N N Y N
[39] Approach 1991 Y N N N N N Y N
[40] 1992 Y N N N N N Y Y
[41] 1989 Y N N N N N Y N
[42] 2002 N Y Y N N Y Y Y
[43] 2015 Y Y N Y N N Y N
[44] 2000 Y N N N N N Y N
[45] 2009 Y Y Y N N N Y Y
[46] 2009 Y N N N N N Y Y
[47] 2011Y N N N N N Y Y
[48] 2006 Y N N N Y N Y N
[49] 2018 Y N N Y N N Y N
[50] 2015 Y N N N N Y Y Y
[51] 2017 Y N N Y N Y Y Y
[52] 2012 Y Y Y Y N N Y N
[53] 2013 Y N N N N N N N
[54] 2010 Y N N N N N Y Y
[57] Genetic Algorithm 1993 Y N N Y N N Y N
[58] 1993 Y N N N N N Y N
[59] 1997 Y N N N N N Y N
[60] 2011 Y N N N N N Y N
[61] 2010 Y Y N N N N Y N
[62] 1999 Y N N Y N N Y N
[63] 2009 Y N N N N N Y N
[64] 2015 Y Y N Y N N Y N
[65] 2014 Y N N N Y N Y N
[66] 2014 Y N N N N N Y N
[67] 2006 Y Y N N Y N Y N
[68] 2013 Y N N N Y N Y N
[69] 2016 Y N N N Y Y Y N
[70] 2018 Y N N Y N Y Y Y
[71] 2018 N Y Y N N N Y Y
[72] 2018 N Y Y Y N N Y Y
[73] 2018 Y N N Y Y Y Y N
[74] 2017 Y Y Y N Y Y Y N
[75] 1998 Y N N Y N N Y N
[76] 2011Y N N N N N Y Y
[78] Fuzzy Logic 2003 Y N N N N N Y N
[79] 1997 Y N N N N Y Y N
[80] 2010 Y N N N N N Y Y
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Table 1 (continued )

Ref. No. Navigational Techniques  Year Navigation in the presence of Used as a Hybrid  Application to multiple mobile Real-time Simulation Kinematic
~ X —_ approach robot systems Result Result Analysis
Static Dynamic Dynamic
obstacle obstacle goal

[81] 2007 Y N N Y N N Y Y
[82] 2009 Y N N N N N Y N
[83] 2008 Y N N N N N Y N
[84] 2011Y N N N N N Y Y
[85] 2003 Y N N N N N Y N
[86] 2011Y Y Y Y N Y Y Y
[87] 1997 Y N N Y N N Y N
[88] 1995 Y N N Y N N Y N
[89] 2012 Y Y Y Y N N Y N
[90] 2018 Y N N Y N N Y N
[91] 2003 N Y N Y N N Y N
[92] 2012 Y N N N N Y Y Y
[93] 2012 Y N N N Y Y Y Y
[94] 2013 Y N N N N Y N N
[95] 2015Y N N Y N Y Y N
[96] 2015 Y N N Y N N Y Y
[97] 2015 Y N N Y N N Y N
[98] 2015 Y N N Y Y Y Y Y
[99] 2016 Y N N N N Y Y Y
[100] 2018 Y N N N N Y Y N
[101] 2017 Y N N N N N Y N
[102] 2018 Y N N Y N N Y N
[103] 2000 Y N N N N N Y Y
[104] 2011Y N N N N N Y Y
[105]  Neural Network 2004 Y Y Y N N Y Y N
[106] 2009 Y N N N N Y Y N
[107] 2015 Y N N Y N Y Y N
[108] 2003 Y N N Y N Y Y N
[109] 2015Y N N Y Y Y Y N
[110] 2012 Y N N Y N N Y N
[111] 1996 Y N N N N Y Y N
[112] 2014 Y N N N N Y Y N
[113] 2014 Y N N N N Y Y N
[114] 2009 Y N N N N N Y N
[115] 2015 Y N N N N Y N N
[116] 2017 Y N N N N N Y Y
[117] 2018 Y N N N N Y Y Y
[118] 2018 Y N N N N N Y Y
[119] 2017 Y N N N N Y Y Y
[120] 1995 N N N N N N Y N
[121] 2005 Y N N N N N Y

[123]  Firefly Algorithm 2015 Y N N N N N Y N
[124] 2013 Y N N N N N Y N
[125] 2015 Y N N N N N Y N
[126] 2003 Y N N N N Y Y N
[127] 2008 Y N N N N N Y N
[128] 2012 Y N N N N N Y N
[129] 2017 Y N N N N Y Y Y
[130] 2013 Y N N N Y N Y N
[131] 2015 Y N N N N Y Y Y
[132] 2018 Y N N N N Y Y N
[133] 2016 Y N N Y N N Y Y
[134] 2018 Y N N N N N Y Y
[135] 2015 Y N N N N N Y Y
[136] 2018 Y Y Y N Y Y Y N
[138]  Particle Swarm 2014 Y N N N N N Y N
[139] Optimization 2013 Y N N Y N Y Y Y
[140] 2010 Y Y N N N Y Y Y
[141] 2011Y N N N N N Y Y
[142] 2013 Y N N N Y Y Y Y
[143] 2013 Y N N Y N Y Y Y
[144] 2018 Y N N N N Y Y N
[145] 2016 Y N N Y Y Y Y N
[146] 2015 Y N N Y N Y N N
[147] 2017 Y N N N N N Y Y
[148] 2017 Y N N Y N Y Y Y
[149] 2017 Y N N N N N Y N
[150] 2015 Y N N N N N Y N
[151] 2008 Y N N N N N Y Y

(continued on next page)
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Table 1 (continued )

Ref. No. Navigational Techniques Year Navigation in the presence of

Used as a Hybrid  Application to multiple mobile Real-time

Simulation Kinematic

Static Dynamic Dynamic approach robot systems Result Result Analysis
obstacle obstacle goal
[153]  Ant Colony Optimization 2007 Y Y Y Y Y Y Y N
[154] 2006 Y N N N Y N Y N
[155] 2015 Y N N Y N N Y N
[156] 2018 Y N N Y Y Y Y N
[157] 2017 Y N N N N N Y N
[158] 2017 Y Y N N N Y Y N
[159] 2013 Y N N Y N N Y N
[160] 2010 N Y N N N N Y N
[161] 2008 Y N N N N N Y Y
[162] 2009 Y N N N N N Y Y
[163] 2012 Y N Y N N N Y Y
[166]  Bacterial Forging 2005 Y N N N N N Y N
[167] Optimization 2006 Y N N N N N Y N
[168] 2013 Y N N N N N Y N
[169] 2013 Y N N N N N Y N
[170] 2008 Y N N N N N Y Y
[171] 2017 Y Y N N N N Y N
[172] 2012 Y N N Y N N Y N
[173] 2006 Y N N N N N Y N
[174] 2010 Y N N N N N Y Y
[176]  Artificial BEE Colony (ABC) 2015 Y N N Y N Y Y Y
[177]  Algorithm 2009 Y N N N N N Y Y
[178] 2010 Y Y N N N N Y Y
[179] 2011 Y N N N Y N Y N
[180] 2015 Y N N N Y N Y Y
[181] 2011 Y N N N N N Y Y
[182] 2014 Y N N N N N Y N
[183] 2012 Y N N N N N Y N
[184] 2014 N N N Y N N Y Y
[185] 2015 Y N N N N Y Y Y
[187]  Cuckoo Search Algorithm 2016 Y N N N N Y Y N
[188] 2015 Y N N Y Y Y Y N
[189] 2012 Y N N Y N N Y Y
[190] 2016 Y N N N N N Y N
[192]  Shuffled Frog Leaping 2014 Y Y N N N N Y N
[193]  Algorithm 2015 Y N N N N N Y Y
[194] 2015 Y N N N N Y Y Y
[195] 2011 Y N N N N N Y Y
[196] 2014 Y N N N N N Y Y
[197] 2016 Y Y N N N N Y Y
[198]  Other Miscellaneous 2014 Y N N N N Y Y N
[199]  Algorithms 2011 Y N N N N N Y Y
[200] 2009 Y Y N N N N Y Y
[201] 2016 Y N N N N Y Y Y
[202] 2010 Y N N N N N Y Y
[203] 2015 Y N N N N N Y N
[204] 2017 Y N N N N Y Y N
[205] 2016 Y N N Y N N Y Y
[206] 2008 Y N N N Y Y Y N
[207] 2005 Y N N N N N Y N
[208] 2017 Y N N N N Y Y Y
[209] 2013 Y N N N N Y Y Y
[210] 2018 Y N N N N N Y Y
[211] 2018 Y Y N N N N Y Y

Here Y stands for “Yes” and N stands for “No”.

observed that all approaches deal with it well except for SFLA, RA,
CD and OMA.

The application of classical and reactive approaches has been
studied over a 3D workspace for path planning of aerial and un-
derwater vehicles. In Table 2, the applications of an individual al-
gorithm for 3D path planning are shown and, from the data, it is
clear that reactive approaches have been used more widely for
exploring the 3D environment in the presence of maximum un-
certainty compared with classical approaches. The classical ap-
proaches are not sufficiently intelligent for autonomous path
planning in a 3D environment, hence to improve their performance
they have been hybridized with the FL, GA, etc. Almost all reactive
and classical approaches are used to tackle the path planning

problem in an aerial environment. The exceptions are harmony
search, differential evolution and reactive obstacle avoidance based
on boundary following using a sliding mode control approach.
Similarly; CD, RA, BFO, CS, IWO, bat algorithms have not yet used for
underwater path planning of mobile robots.

The discussion is further continued over the use of navigational
approaches for mobile robot navigation in military or defence ap-
plications. In military applications, it is observed that reactive ap-
proaches have been used more than classical approaches due to the
high exploring capacity of the environment, efficient computing
ability, quick action and response, flexibility in operation, advanced
intelligence system and self-decision-making ability. For an accu-
rate self-governing system, the equipment needs to have a reliable
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navigation system together with proper guidance and control to
provide an appropriate path and to reach the destination. Nowa-
days, military equipment such as a submarine, anti-missile defence
system, tanks, guns, drone, advanced war aircraft, missile, heli-
copter, etc. are used for dangerous situations and all these plat-
forms use reactive intelligence approaches in partially and
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Fig. 28. Analysis of navigational techniques for application as a hybrid algorithm,
multiple robot navigation system and kinematic analysis.

completely unknown environments. The reactive based algorithm
provides the facility to handle these platforms without the physical
presence of a human in the battle area and it can be controlled
through a remote or GPS based system by sitting in a control room.
In the future, it will be common to see solders are being replaced by
robots and a technological war will result. In most defence equip-
ment the FL, GA, and NN have been used as an intelligent approach
for performing the task automatically. Classical approaches such as
CD, RA and APF are not preferred for defence applications due to
lack of intelligence, computationally intensiveness, trapping in
local minima etc.

4. Conclusion

This study on mobile robot navigation classifies the various
methods into classical and reactive approaches. The key points of
the study are as follows.

e Reactive approaches perform better than classical approaches
because they have a higher capability to handle uncertainty
present in the environment.

e Reactive approaches are most preferably used for real-time
navigation problems.

e Very few research papers are published based on a dynamic
environment compared with a static environment.

e In a dynamic environment, there are many fewer papers on

navigation of a robot for a moving goal problem compared with

a moving obstacle problem.

To date, most papers demonstrate only a simulation analysis;

papers on the real-time application are much fewer.

Papers on the navigation of multiple mobile robot systems are

few compared with the single mobile robot system.

There are many fewer papers on hybrid algorithms compared

with those on standalone algorithms.

There is great scope in applying newly developed algorithms

such as SFLA, CS, IWO, BA, HS, DE, BFO, ABC and FA for naviga-

tion in an unknown complex environment in the presence of
maximum uncertainty and these can be used to develop new
kinds of hybrid approaches.

e The performance of classical approaches can be improved by
hybridizing with reactive approaches.
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Table 2

Analysis of various navigational techniques in 3D workspace.

S.N. Navigational Techniques Application for 3D workspace Underwater navigation
Aerial navigation
1 Cell Decomposition Y N
2 Roadmap Approach Y N
3 Artificial Potential Field Y Y
4 Genetic Algorithm Y Y
5 Fuzzy Logic Y Y
6 Neural Network Y Y
7 Firefly Algorithm Y Y
8 Particle Swarm Optimization Y Y
9 Ant Colony Optimization Y Y
10 Bacterial Foraging Optimization Y N
11 Artificial Bee Colony Y Y
12 Cuckoo Search Y N
13 SFLA Y Y
14 Invasive Weed Optimization Y N
15 Harmony Search N Y
16 Bat Algorithm Y N
17 Differential Evolution N Y
18 Reactive obstacle avoidance based on boundary following using sliding mode control N N
19 Collision avoidance based on geometric approach Y N
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