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ABSTRACT A new structural optimization method of coupled extended finite element method and bound constrained
quadratic optimization method (XFEM-BCQO) is adopted to quantify the optimum values of four design parameters for a
circular tunnel lining when it is subjected to earthquakes. The parameters are: tunnel lining thickness, tunnel diameter,
tunnel lining concrete modulus of elasticity and tunnel lining concrete density. Monte-Carlo sampling method is dedicated
to construct the meta models so that to be used for the BCQO method using matlab codes. Numerical simulations of the
tensile damage in the tunnel lining due to a real earthquake in the literature are created for three design cases. XFEM
approach is used to show the cracks for the mentioned design cases. The results of the BCQO method for the maximum
design case for the tunnel tensile damage was matching the results obtained from XFEM approach to a fair extent. The
new coupled approach manifested a significant capability to predict the cracks and spalling of the tunnel lining concrete
under the effects of dynamic earthquakes.
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1 Introduction

The underground structures have been subjected to less
amount of damage compared to overground structures.
Probably, an appreciable rate of underground structures
manifested significant damages in the last strong earth-
quakes. Generation of ground strain and the deformation
due to wave propagation affect the responses of the
tunnels. The wave types are controlling the motion of the
soil which always are converted into a longitudinal and
transverse components [1]. The response of tunnels
subjected to seismic loadings is complex to some extent
until two decades ago which was not believed as a critical
issue in the design process. Just latest experimental and
numerical researches have made appreciable and important
proceedings for the understanding of the mechanisms
dominating the ground-tunnel interaction under seismic
loadings. Commonly, the seismic response of the tunnel in

soft soil is considered to be dominated by the soil around
the tunnel and in the same time, the inertial load of the
tunnel is neglected [2]. As a result, the alteration of the
internal forces in the tunnel lining due to seismic vibration
are commonly determined from the ground transient
response. When earhquakes occur, deformation exists in
the tunnel lining in the transverse and longitudinal sections
which are resulted by the soil shear strain in both
horizontal and vertical planes because of the non
concurrent movement over the tunnel axis. The general
methods of the design suggest separate mechanisms for the
two deformation, without considering coupling effect [3–
6].
Very extensive numerical simulations have been per-

formed to determine stresses and deformations of tunnels
in recent year. A research study has been performed by
Ref. [7] using numerical analysis and simulation of a
circular tunnel with uncertain three parameters related to
the surrounding soil during earthquakes. They quantified
the uncertainty of those parameters which are related to theArticle history: Received Oct 11, 2018; Accepted Dec 13, 2018
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responses of the tunnel through meta-models using an
experimental method. Another study was conducted by
Ref. [8] where they used finite element method to simulate
the forces in the tunnel lining and the deformation in the
soil for both Steinhaldenfeld and Heinenoord tunnels.
Lekhnitskii [9] suggested a complicated variable-function
method to accurately solve the stresses around a circular
hole applying in-plane loading. Furthermore, Lu et al. [10]
used the complex method and displayed the solutions for
the stress in a circular tunnel. A two-dimensional elastic
solution was founded by Ref. [11] for a deep circular
tunnel subjected to the far-field static loading [7–12].
Numerous computational models have been suggested

and advanced since 1926 for the design of tunnels. An
elastic continuum was adopted by Ref. [13] and they
suggested the first analysis method. Another analytical
solution was performed by Ref. [14] considering con-
tinuum models, where this solution adopts the elliptical
deformation of the tunnel lining. A model for a circular
tunnel in an elastic continuum was announced by Ref. [15]
which has a geometrical nonlinearity. It is worthy to
mention that the practical tunnel design method was
suggested by Ref. [16]. Another continuum model also a
bedded-beam model excluding ground pressure reduction
at the crown was introduced for shallow tunnels having a
ratio of tunnel depth to its diameter of C/D£2. The soil-
structure interaction was involved in the continuum model
automatically, where in the bedded-beam model, this
interaction can be secured by using bedding springs with a
suitable stiffness. Despite the fact that this model takes into
account the ground-tunnel interactions by using Winkler
springs, only radial pressures are considered. Furthermore,
a sophisticated model was introduces by Ref. [17] which
includes the tangential pressures [18].
Many research works in the literature can be studied to

significantly understand the most efficient methods that are
related to the fracture modeling and they are considered
similar methods to XFEM approach which is intended to
be adopted in this study, for example, methods based on
damage and crack detection [19–29]. To assess the
reliability and structural safety of tunnels, advanced
computational methods are commonly applied which are
capable of capturing the damages. These methods can be
classified into continuous and discrete fracture approaches.
Continuous approaches to fracture smear the crack over a
certain width. They include non-local damage models
[30,31] and gradient models [32,33]. Also the introduction
of a viscosity [34–38] smears the crack over a certain
width. With the seminal work of Ref. [39], phase field
approaches have become another alternative to non-local
and gradient models. Instead of relating the non-local
damage to internal state variables, the damage is obtained
by solving a partial differential equations. Phase field
approaches have meanwhile been applied to numerous
interesting problems [40–46] including fracture in thin
shells. Discrete crack approaches include meshfree

methods [47–52], extended finite element methods [53–
55], smoothed extended finite element methods [56–58],
phantom node methods [59–62]. One serious problem in
these approaches is tracking the crack path especially in
three dimensional and in dynamic fracture.
In this study we will use a combination of two methods

as a new optimization technique supporting on a coupled
extended finite element method-bound constrained quad-
ratic optimization (XFEM-BCQO) in order to quantify the
optimum values of four parameters of a tunnel lining
constructed in a soft soil media which is subjected to a
ground motion for 10 s duration. The responses of the
tunnel system would be optimized regarding minimization
of cracks in the tunnel lining.

2 Analytical solution of a circular tunnel

The easiest way to guess ovaling deformation in a circular
tunnel is to suppose the deformations to be similar to free-
field, as a result disregarding the tunnel-ground interaction.
This hypothesis is suitable when the ovaling stiffness of the
tunnel lining is equal to the stiffness of the surrounding
soil. A continuous medium is considered for the circular
tunnel-ground shearing (referring to as non-perforated
ground) considering the absence of the tunnel (Fig. 1)
where the diametric strain for a circular section of the
tunnel would be calculated as Eq. (1) in Ref. [2]:

Δdf ree-f ield
d

¼ �gmax

2
: (1)

When the ovaling stiffness of the tunnel lining is too
small compared to the surrounding soil, the tunnel
diametric strain is calculated proposing an unlined tunnel
as Eq. (2) in Ref. [2]. referred to as perforated ground:

Δdf ree-f ield
d

¼ �2gmaxð1 – vmÞ: (2)

That Δdf ree-f ield is free-field diametric deflection in non-
perforated ground, d is the diameter of the tunnel, gmax is

Fig. 1 Free-field shear strain (ovaling deformation style).
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maximum free-field shear strain of soil or rock medium,
and vm is Poisson’s ratio of soil and this deformation is
much greater in the case where the presence of the tunnel is
included compared to the case where only the continuous
ground deformation is assumed. Also, the maximum shear
strain in the soil for both constant and variable shear strain
may be calculated as Ref. [3]:

Gm ¼ Em

2ð1þ vmÞ
, (3)

Cm ¼
ffiffiffiffiffiffiffi
Gm

�m

s
, (4)

gmax ¼
V s

Cm
, (5)

where �m ¼ gs=g, Em is Young’s modulus, Gm is shear
modulus, V s is peak particle velocity associated with
S-waves, and Cm is apparent velocity of S-wave propaga-
tion in soil. Full-slip assumption under simple shear strain,

may cause important under speculation of the maximum
thrust [2,3,63,64].

3 Earthquake amplitudes

A real time history from the literature with adjustment up
to the requirements of the parameric analysis has been used
for the duration of 10 s in the simulation of the tunnel
responses when subjected to the ground motion due to an
earthquake, see Figs. 2 and 3.

4 Finite element model

Figure 4 illustrates the 2D model of both the tunnel lining
and the soil media generated in ABAQUS with dimensions
to be prepared for simulating the earthquake events for the
duration of 10 s both in vertical and horizontal directions.
The tunnel lining thickness, diameter, concrete modulus

of elasticity, and concrete density are the selected
parameters to predict the responses of the tunnel regarding

Fig. 2 Horizontal component time history of the ground motion.

Fig. 3 Vertical component time history of the ground motion.
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the damage in the tunnel lining. The dimensions of the soil
media are 100 m � 50 m. The tunnel lining material is
made of reinforced concrete where the reinforcement effect
is neglected for simplicity. Concrete damaged plasticity
model used for damage detection analysis supporting on
real data in Ref. [65]. The XFEM approach has been used
to detect the cracks and damages in the tunnel lining due to
the 10 s duration earthquake supporting on the maximum
principal stress output.
The density and elastic properties of the soil were

assigned with different values for meta-modeling process.
Mohr Coulomb plasticity model was used for the soil
media to define its shear strengths at different effective
stresses. In the initial step, two predefined fields were
created for the soil, geostatic stress of 20601 Pa and void

ratio of 1. A geostatic step of 1 s duration was generated,
where the gravity loads of the model system were assigned.
Two different boundary conditions were assigned for both
the base and the sides of the soil media, by preventing the
displacement in x-axis direction for both of them and
providing two degrees of freedom for the sides in
y-direction and rotation about z-axis for both of them. A
static step with duration of 1e–10 s was created for the
model system. A dynamic implicit step with 10 s duration
was created to simulate the ground motion due to the
earthquake by assigning acceleration boundary conditions
in both x and y directions with magnitude of 4.905 m/s2 . A
tie constraint was assigned to model the surface contact
between the soil media and the tunnel lining. The soil
media and the tunnel lining were modeled with standard

Fig. 4 Finite element model. (a) Soil and tunnel lining models; (b) tunnel lining model; (c) boundary conditions.
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plain strain linear with reduced integration hourglass
control elements CPE4R.

5 Monte Carlo sampling

Monte Carlo techniques are commonly used to perform
uncertainty and sensitivity analysis. A key element of
Monte Carlo method is the sampling of input parameters
for the simulation, where the goal is to explore the entire
input space with a reasonable sample size N. The sample
size determines the computational cost of the analysis since
N is equal to the required number of simulation runs. The
unbiased mean and variance of the model output can be
calculated by the following equations:

y ¼ 1

N

XN
i¼1

yi, (6)

VarðyÞ ¼ 1

N – 1

XN
i¼1

yi – yð Þ2: (7)

The mean and the variance resulting from the sample
and calculated with these Eqs. (6) and (7) are uncertain
[66,67].

5.1 Response surface model

A response surface model (RSM) is a collection of
statistical and mathematical techniques that are useful for
developing, improving, and optimizing processes.The
choice of RSM for a given computational model depends
on the knowledge of the computational model itself
[68,69]. It is used in the development of an adequate
functional relationship between a response of interest y,
and a number of associated input parameters denoted by
(x1, x2, . . . , xk). In general, such a relationship is unknown
but can be approximated by a low-degree polynomial
model of the form:

y ¼ f 0ðxÞβ þ ε, (8)

where x = (x1, x2, . . . , xk), f(x) is a vector function of p
elements that consists of powers and cross-products of
powers of x1, x2, . . . , xk up to a certain degree denoted by d

(≥1), β is a vector of p unknown constant coefficients
referred to as parameters, and ε is a random experimental
error assumed to have a zero mean. This is conditioned on
considering the model provides an adequate representation
of the response. In this case, the quantity f 0ðxÞβ represents
the mean response, that is, the expected value of y, and is
denoted by m(x). Two important models are commonly
used in RSM. These are special cases of model in Eq. (8)
and include the first-degree model (d = 1)

y ¼ β0 þ
Xk
i¼1

βixi þ ε, (9)

and the second-degree model (d = 2)

y ¼ β0 þ
Xk
i¼1

βixi þ
X
i<j

X
βijxixj þ

Xk
i¼1

βiix
2
i þ ε,

(10)

where x1, x2, . . . , xk are the input factors which influence
the response y; β0, βii (i = 1,2,…,k), βij (i = 1,2, . . . ,k; j =
1,2,. . .,k) are unknown parameters and ε is a random error.
The β coefficients are obtained by the least squares
method. A series of n experiments should first be carried
out, in each of which the response y is measured (or
observed) for specified settings of the control parameters.
The totality of these settings constitutes the so-called
response surface design, or just design, which can be
represented by a matrix, denoted by D, of order n � k
called the design matrix,

D ¼
x11 x12 ::: x1k
x21 x22 ::: x2k

:::

xn1 xn2 ::: xnk

0
BB@

1
CCA, (11)

where xui denotes the uth design setting of xi (i = 1,2,. . .,k;
u = 1,2,. . .,n). Each row of D represents a point, referred to
as a design point, in a k-dimensional Euclidean space. Let
yu denote the response value obtained as a result of
applying the uth setting of x, namely xu = (xu1,xu2,:::,xuk),
(u = 1,2,. . .,n). From Eq. (8), we then have

yu ¼ f 0ðxuÞβ þ εu, u ¼ 1,2,:::,n, (12)

Table 1 Ranges of tunnel lining parameters

parameter symbol minimum value maximum value

tunnel lining thickness (m) X1 0.3 0.5

tunnel diameter (m) X2 8 10

tunnel lining (concrete) modulus of elasticity (GPa) X3 17 31

tunnel lining concrete density (kg/m3) X4 2300 2500
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where εu denotes the error term at the uth experimental run.
Equation (12) can be expressed in matrix form as:

y ¼ Xβ þ ε, (13)

where y = (y1,y2,:::,yn), X is a matrix of order n � p whose
uth row is f 0ðxuÞ, and ε ¼ ðε1,ε2,:::,εnÞ. Note that the first
column of X is the column of ones 1n.
Assuming that ε has a zero mean, the so called ordinary

least-squares estimator of β is [70]:

β̂ ¼ ðX 0XÞ – 1X 0y: (14)

5.2 Range of parameters

The parameters under study to construct the surrogate
model for the damage detection are illustrated in Table 1
where the name and symbol of each parameter would be
used in the optimization process. It is worthy to mention
that quadratic and interaction terms would be used for the
surrogate model.

5.3 Results of response surface model

To efficiently construct the surrogate model for the
maximum principal stress, we are comparing the actual
maximum principal stress from the numerical simulations
for the 40 samples of the ground motion simulation with
the predicted maximum principal stress quantified from the
surrogate model and determine the coefficient of regression
so that to construct an efficient representation of the
structural system responses as much as we could. The
coefficient of regression was R2 = 0.9736 (see Fig. 5)
which is a very good representation that can be support on
to predict the responses of the tunnel during the 10 s of
ground motion.
The surrogate model equation for the maximaum

principal stress at the top point inside the tunnel lining
has been quantified as follows:

Y ¼ – 1220729þ 538971X 1 – 125488X 2

þ 0:01968X 3 þ 1410:92X 4 þ 796483X 2
1

þ 7603:66X 2
2 – 0:00000000025X

2
3 – 0:19799X

2
4

þ 16126:3X 1X 2 – 0:00323X 1X 3 – 576:641X 1X 4

þ 0:00143X 2X 3 – 15:5855X 2X 4 – 0:000004645X 3X 4:

(15)

6 BCQO method

The purpose of optimization is to find the best solution or
optimal solution from a set of solutions called feasible
region. Mathematically, most of the interesting optimiza-
tion problems can be formulated to optimize some
objective function, subject to some equality and/or
inequality constraints. The general form of optimization
problems is: Min. or Max. f(x1, x2, …,xn) (objective
function) Subject to gi(x) {£, = ,≥} bi(i = 1,2,…,m)
which are the constraints and lj£xj£uj (j = 1,2,…,n) are
the bounded constrains.
The goal is to find x1,x2,…,xn that satisfy the constraints

and achieve min(max) objective function value.
Regarding the objective function, the classification

based on the number of objective functions, objective
functions can be classified as single and multiobjective
programming problems, linear or nonlinear and the
structure of the formulation of the variables.
The formulation problem leads to a quadratic optimiza-

tion problem which is called Bound-Constrained Quadratic
Optimization. It is an objective function subject to bound
constraints on the values of the variables. We have a
special case of the bound constrained which we have only
simple constrained lb£x£ub for each variable.
Bound constrained optimization problems has important

Fig. 5 Coefficient of regression-maximum principal stress of the tunnel.
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role in engineering and industries applications. Also they
arise where the parameters that describe physical quantities
are constrained to be in a given range. The mathematical
form is

Min  Z ¼ 0:5XTQX þ CTX , (16)

where Q 2 Rn � n is symmetric and positive definite matrix
[71].
Solving this type of the problem depends on type of the

constraints. A solution was introduced by Ref. [72].
through extending the simplex method to solve constrained
minimization problem where the constraints were in
simple and inequalities form.
In our objective function, X is a vector of variables

(x1, x2,x3, x4)
T,Q is a (4�4) not positive definite matrix and

CT
= (c1, c2, c3,c4) [73].
A set of lower and upper bounds on the design variables

in x are defined andMatlab program is used to calculate the
maximum value of the parameters with regard to the tensile
damage in the tunnel lining during the earthquake.

6.1 Optimum results

Optimization completed because the objective function is
non-decreasing in feasible directions within the default
value of the function tolerance, and constraints are satisfied
within the default value of the constraint tolerance.
The maximum values of the parameters are as follows
X 1 ¼ 0:4 m, X 2 ¼ 10 m, X 3 ¼ 20:2 GPa, and X 4 ¼
2458:6 kg=m3:
The maximum principal stress in the lining = 5.3894e+ 05

Pa. This value would be compared to the maximum principal
stress calculated using XFEM approach for the maximum
case to double check the accuracy of the coupling method.

7 Optimization regarding tunnel damages

The optimization has been studied regarding the responses
of the circular tunnel during an earthquake. The parameters
are used in three situations as shown in Table 2 which are
the maximum, minimum and medium cases by taking the
stiffness of the tunnel lining as a criteria, for example for
the maximum case the highest value of the concrete density
was chosen, the highest lining thickness of the lining was
considered, lowest value of the lining diameter was
selected and the lowest value of the modulus of elasticity

of the concrete was adopted. While for the minimum case,
the same mentioned parameters values are the lowest,
lowest, highest and highest simultaneously. While for the
medium case, the medium values of the parameters were
used. Two outputs are considered for the damage responses
of the circular tunnel which are compressive damage and
tensile damage of the lining.

7.1 Compressive damage— design cases

The minimum case for the design (worst case) and when
the peak ground acceleration is 4.905 m/s2, where the
values of the four parameters for the tunnel lining are
(density = 2300 kg/m3, thickness = 0.3 m, diameter = 10 m,
and Young’s modulus of concrete = 31 GPa) . The results
of the simulation at the last 10 s of the earthquake loading
are as follows:
The maximum compressive damage in the tunnel lining

is 1.44e–02 (see Fig. 6). The damage appears in the right
and left sides inside the tunnel lining.
While for the medium case where the values of the four

parameters are (density = 2400 kg/m3, thickness = 0.4 m,
diameter = 9 m, and Young’s modulus of concrete =
24 GPa), the maximum compressive damage appears in the
same region but it decreases to the value 8.015e–03 (see
Fig. 7).
But when we consider the maximum design case with

the four parameters values (density = 2500 kg/m3, thick-
ness = 0.5 m, diameter = 8 m, and Young’s modulus of
concrete = 17 GPa), the maximum compressive damage in
the tunnel lining reaches 2.284e–03 (see Fig. 8) which is
seen in the left and right sides with a small portion in the
top part of the tunnel lining, which means that it has been
decreased.
The results of the compressive damage show a semi-

linear behavior of the tunnel lining against the earthquake
when changing the four parameters, as a result we
recognize that the maximum case is the better design
case for the tunnel structure to withstand the compressive
stresses in the tunnel lining because the maximum
compressive damage in this case is 2.284e–03 which is
smaller than its values both in minimum and medium cases
which are 1.44e–02 and 8.015e–03, respectively.

7.2 Tensile damage— design cases

In the same way, depending on the results of the
optimization process, the minimum case for the design

Table 2 Design cases

parameter minimum design case medium design case maximum design case

tunnel lining thickness (m) 0.3 0.4 0.5

tunnel diameter (m) 10 9 8

tunnel lining (concrete) modulus of elasticity (GPa) 31 24 17

tunnel lining concrete density (kg/m3) 2300 2400 2500
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where the values of the four parameters for the tunnel
lining are (density = 2300 kg/m3, thickness = 0.3 m,
diameter = 10 m, and Young’s modulus of concrete = 31
GPa) at the last 10 s of the earthquake loading the
maximum tensile damage in the tunnel lining is 6.501e–01
(see Fig. 9). The damage appears in the top and bottom
sides inside the tunnel lining.
While for the medium case where the values of the four

parameters are (density = 2400 kg/m3, thickness = 0.4 m,
diameter = 9 m, and Young’s modulus of concrete = 24
GPa), the maximum tensile damage appears in the same
region but it increases to the value 7.883e–01 (see Fig. 10).
But when we consider the maximum design case with

the four parameters values (density = 2500 kg/m3, thick-

ness = 0.5 m, diameter = 8 m, and Young’s modulus of
concrete = 17 GPa), the maximum tensile damage in the
tunnel lining reaches 7.479e–01 (see Fig. 11) which is seen
in the top and bottom sides of the tunnel lining, which
means that it has been decreased.
The results of the tensile damage show a nonlinear

behavior of the tunnel lining against the earthquake when
changing the four parameters, we conclude that the
minimum case is the better design case for the tunnel
structure to withstand the tensile stresses in the tunnel
lining because the maximum tensile damage in this case is
6.51e–01 which is smaller than its values both in medium
and maximum cases which are 7.883e–01 and 7.479e–01,
respectively.

Fig. 6 Compressive damage of the tunnel-minimum case.

Fig. 7 Compressive damage of the tunnel-medium case.
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8 Application of XFEM for tensile damage

We are dedicating the extended finite element XFEM
approach in detecting the cracks in addition to RSM
approach for doubling the accuracy of the structural design
optimization of the tunnel lining. In the following section
we will discuss the results in details.

8.1 Minimum case

When the minimum case is considered for the tensile
damage, and after applying the XFEM approach we see the
start of the crack at the top part inside the tunnel lining a
little to the left side as seen in Fig. 12 starting at 3.607 s
after earthquake loading.The crack continues to propagate

starting from 6.138 s toward the top of the tunnel lining
and the crack stops without further propagation, see
Fig. 13. The maximum principal stress in the minimum
case is 3.234e+ 06 Pa where the output is very crucial in
detecting the propafation of cracks in the tunnel lining. The
principal stress depends on the normal stresses which are
normal to the cross-section at each point of consideration.

8.2 Medium case

While for the medium case, we see the start of the crack at
the top part inside the tunnel lining as seen in Fig. 14
starting at 2.454 s. The crack continues to propagate
starting from 5.565 s toward the top of the tunnel lining
and the crack stops from propagation, see Fig. 15. It is

Fig. 8 Compressive damage of the tunnel-maximum case.

Fig. 9 Tensile damage of the tunnel-minimum case.
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Fig. 10 Tensile damage of the tunnel-medium case.

Fig. 11 Tensile damage of the tunnel-maximum case.

Fig. 12 Minimum case (time = 3.607 s).
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worthy to mention that the maximum principal stress in
this case is 6.253e+ 06 Pa. The magnitude of this output
has been increased to double of its value approximately
compared to the previous minimum case, which is an
indication that the cracks appears earlier in the medium
case regardless of increasing the thickness, decreasing the
diameter, decreasing the Young’s modulus and increasing
the density of the concrete for the tunnel lining. The head
of the overburden of the soil on the top part of the tunnel
becomes higher with 1 m height which generates further
static and impact stresses in the tunnel lining at this region

which is beyond the generation of cracks earlier in this
case.

8.3 Maximum case

But for the maximum case, the crack starts to appear at the
top part inside the tunnel lining a little to the right side as
seen in Fig. 16 starting at 1.981 s. The crack continues to
propagate starting from 4.937 s toward the left side of the
tunnel lining and the crack propagates further in the same
direction at 4.941 s and finally stops from propagation, see

Fig. 13 Minimum case (time = 6.138 s).

Fig. 14 Medium case (time = 2.454 s).

Fig. 15 Medium case (time = 5.565 s).
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Figs. 17 and 18 and it is worthy to mention that the damage
in this case is near to spalling than the normal cracks
compared to the previous two cases. For this case, the
maximum principal stress is 3.314e+ 06 Pa. The
magnitude of this output has been decreased to half of its
value approximately compared to the medium case, also
the cracks appears earlier in the maximum case regardless
of increasing the thickness, decreasing the diameter,
decreasing the Young’s modulus and increasing the density
of the concrete for the tunnel lining. The head of the
overburden of the soil on the top part of the tunnel becomes
higher with 2 m height in this case which generates further

static and impact stresses in the tunnel lining at this region,
but the decrease in the circumference of the tunnel lining
decreases the static and impact stresses which is the main
reason of decreasing the maximum principal stress.
The responses of the tunnel lining with respect to the

tensile damage and the crack during the earthquake for 10 s
showed a nonlinear behavior regarding optimization of the
four parameters of the tunnel lining, where the normal
stresses are not dependent on stronger concrete only but
the overburden height of the soil also plays a vital role in
determining the optimum design case of the tunnel lining.
The maximum principal stress is 3.314e+ 06 Pa

Fig. 17 Maximum case (time = 4.937 s).

Fig. 18 Maximum case (time = 4.941 s).

Fig. 16 Maximum case (time = 1.981 s).
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compared to the same output value 5.3894e+ 05 Pa
calculated previously in the BCQO method are similar to
the extent of 83.74%, which means that we can use this
coupling method for the purpose of structural optimization
for the tensile damage in the tunnel lining due to ground
motion.

9 Conclusions

The results of the numerical simulations using XFEM-
BCQO detected many significant points for the structural
design of tunnel lining as follows:
1) The Monte Carlo sampling method showed efficient

approach in detecting the responses of the tunnel lining
during earthquakes supporting on the numerical simula-
tions through quantifying optimum design case consider-
ing the surrogate model.
2) The XFEM approach manifested a great role in

predicting the time and positions of the tensile cracks in the
tunnel lining by standing on the results of the surrogate
model from Monte Carlo sampling mehod in addition to
using BCQO method to verify the results of the structural
optimization of the four parameters which showed
significant efficiency.
3) The concrete tensile strength of the tunnel lining isn’t

the only controlling factor to avoid cracks and failure
during earthquakes, but the surrounding soil type proper-
ties, the head of the overburden weight of the soil above the
tunnel lining and the external circumferencial area of the
tunnel are effective factors, too.
4) The most sensitive part of the tunnel lining is the top

region of it where the combination of the static and the
dynamic impact load of the overburden soil above the
tunnel during the earthquake is critical in generating the
early cracks and spalling as seen in the maximum design
case of the tunnel lining.
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