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Abstract
One of the most dynamic components of the environment is land use land cover (LULC), which have been changing remarkably
since after the industrial revolution at various scales. Frequent monitoring and quantifying LULC change dynamics provide a
better understanding of the function and health of ecosystems. This study aimed at modelling the future changes of LULC for the
Erbil governorate in the Kurdistan region of Iraq (KRI) using the synergy Cellular Automata (CA)-Markov model. For this aim,
three consecutive-year Landsat imagery (i.e., 1988, 2002, and 2017) were classified using the Maximum Likelihood Classifier.
From the classification, three LULC maps with several class categories were generated, and then change-detection analysis was
executed. Using the classified (1988–2002) and (2002–2017) LULC maps in the hybrid model, LULC maps for 2017 and 2050
were modelled respectively. The model output (modelled 2017) was validated with the classified 2017 LULCmap. The accuracy
of agreements between the classified and the modelled maps were Kno = 0.8339, Klocation = 0.8222, Kstandard = 0.7491, respec-
tively. Future predictions demonstrate between 2017 and 2050, built-up land, agricultural land, plantation, dense vegetation and
water body will increase by 173.7% (from 424.1 to 1160.8 km2), 79.5% (from 230 to 412.9 km2), 70.2% (from 70.2 to
119.5 km2), 48.9% (from 367.2 to 546.9 km2) and 132.7% (from 10.7 to 24.9 km2), respectively. In contrast, sparse vegetation,
barren land will decrease by 9.7% (2274.6 to 2052.8 km2), 18.4% (from 9463.9-7721 km2), respectively. The output of this study
is invaluable for environmental scientists, conservation biologists, nature-related NGOs, decision-makers, and urban planners.
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Introduction

Land use and land cover changes have been shown to have
a direct impact on the local, global environment, land

degradation, and climate, which in turn reduces ecosystem
services and functions (Karki et al. 2018; Tolessa et al.
2017). The intensity, speed, and degree of LULC changes
are now faster compared to the past because of the devel-
opment of society, and the rapid increase in population
resulted in disturbing a large number of landscapes on
Earth (Lambin and Meyfroidt 2011). For instance, at least
50% of Earth’s ice-free land surface of the planet trans-
formed by human actions (Hooke et al. 2012). Annually,
12 million hectares of agricultural land are lost (23 ha/min)
because of drought and desertification, where 20 million
tons of grain could have been grown (UN SDG 2020). On
the global scale, urban land area increased by 346.4 thou-
sand km2 and growth by 1.3% from 1992 to 2016 (He et al.
2019). In addition, considering the current trends in popu-
lation density change, by 2030, the urban land cover will
increase by 1.2 million km2 (Seto et al. 2012). Therefore,
estimating current and future LULC changes can be essen-
tial to the decision making of environmental management
and future planning.
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With the development of satellite sensors, there has been
increasing interest in using satellite remote sensing data for
monitoring land use/land cover changes due to its ability to
provide frequent data at different spatial and temporal cover-
age. Such characteristics have made the remote sensing data
critical input to the LULC classification and change detection
models. In this regard, Landsat image has been widely utilized
to study LULC changes because of its free access to four
decades of earth observation data and relatively high spatial
resolution (Gómez et al. 2016; Li et al. 2020; Pflugmacher
et al. 2019; Zhu and Woodcock 2014). Markov model and
cellular automata (CA) have potential benefits in the study
of land use changes. Although the Markov model has been
widely used for land use changes, with its traditional version,
it is challenging to predict the spatial pattern of land use
changes. However, the spatial variation of LULC changes
can be simulated more efficiently if the CA model with pow-
erful spatial computing can be incorporated. The CA-Markov
model is a robust and convenient approach in spatial and tem-
poral dynamic modelling of LULC changes since it has the
ability to incorporate both remote sensing and geographic in-
formation system (GIS) data efficiently (Hyandye and Martz
2017; Kamusoko et al. 2009; Singh et al. 2015). Numerous
previous studies have successfully examined the simulation of
the spatial-temporal change patterns of LULC using the CA
Markov model (Fu et al. 2018; Hishe et al. 2020; Muller and
Middleton 1994; Munthali et al. 2020). For instance, in China,
the CA model was employed to predict the spatial pattern of
land use in 2020 and 2036 in which the results can be used as a
basis for development planning in Jiangle County (Naboureh
et al. 2017). Parsa et al. (2016) successfully simulated the
spatial pattern of Land use of 2036 in Arasbaran, Iran, and
indicated that despite its usefulness in land use design, the
model could be used as an early warning system. In Nepal,
the CA-Markov model was compared to the GEOMODmod-
el to predict future LULC changes in Phewa Lake Watershed,
and it found that the integration of the Markov model and CA
were effective in projecting future LULC scenarios (Regmi
et al. 2017). Therefore, considering the vast application of
the model in this field and its ability to widen understanding
about the complexity of components of the spatial system, this
work adopted the CA-Markov model to predict future LULC
changes for Erbil governorate in Iraq.

Over the last decades, LULC in Iraq as a whole has been
negatively affected by both anthropogenic and natural events.
In particular, the country has been subjected to several anthro-
pogenic and natural disturbances such as war and drought
over the last few decades resulting in vast LULC changes.
For instance, it has been estimated that 100,000 ha are lost
on average annually due to land degradation (UN 2013).
Meanwhile, an accurate estimation of LULC in Erbil and
Iraq is not existent, and the official Iraqi government statistics
may be unreliable (USDA 2008). However, several

researchers have conducted remotely sensed based classifica-
tion approaches to estimate LULC types at regional and sub-
regional levels in the country. For example, a phenology
based classification approach was developed by Qader et al.
(2016) to map the dominant vegetation land cover types an-
nually over Iraq; such as grassland, shrubland, and cropland,
with an overall accuracy >85% from 2002 to 2012. Gibson
et al. (2015) used Landsat satellite data to investigate the im-
pact of three decades of continuous war and instability on
central cultivated areas in Iraq, and the results revealed that
the largest increase in cultivated area (20%) was detected dur-
ing the period of United Nations sanctions (1990 to 2003).
Other works focused on local areas, including Landsat dataset
were used to investigate LULC changes in Sulaymaniyah
(Alkaradaghi et al. 2018), the impacts of LULC changes on
land surface temperature in Dohuk city (Faqe Ibrahim 2017),
environmental degradation for Basra province was assessed
using Landsat data (Hadeel et al. 2010), remote sensing data
were used to assess the LULC changes in Karbala city
(Mohammed et al. 2018). Almost all the previous works in
the country have focused on current or past LULC changes,
and based on our knowledge, there have been limited studies
(Hadi et al. 2014; Omar et al. 2014) on prediction of spatial
future LULC changes in Iraq. Therefore, this study aims to
model the future changes of LULC for the Erbil governorate
(seven administrative districts) in the Kurdistan region of Iraq
(KRI) using the synergy Cellular Automata (CA)-Markov
model.

Materials and methods

Study area

Erbil governorate is located in the north-east of the Republic
of Iraq. It sits within the latitudes 35.33951° - 37.28115° N
and longitudes 43.42642°- 44.79698° E. Erbil city is the po-
litical and economic capital of the KRI (https://gov.krd/
english/). The area of Erbil governorate is around
15,214 km2 (http://bot.gov.krd/erbil-province) with seven
administrative districts (Fig. 1). The governorate has a semi-
arid continental climate with very hot summer and cool, wet
winter; sometimes, the maximum temperature reaches 42.2 °C
in summer. Annual average maximum and minimum temper-
atures could range between 25.2 °C -13.9 °C, respectively.
The Erbil governorate’s northern and eastern parts are gener-
ally mountainous areas (Choman, Soran, and Mergasur).
Thus, the annual rainfall is significantly higher than the plain
western and southern parts (375-724 mm) (https://gov.krd/
english/). The elevation in the mountainous areas can reach
up to 3500 m above the sea level. Ecologically, Erbil is within
the moist steppe zone (Guest 1966). Zagros Mountains forest-
steppe and the Middle East Steppe Eco-region, which is
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mostly covered by grasses and herbs, also riverine woodlands/
shrublands and wetland areas are existing within the area
(https://www.worldwildlife.org/).

Dataset

The data used in this study are composed of three historic
consecutive-year (1988, 2002, and 2007) Landsat satellite im-
agery with a spatial resolution of 30 m (Table 1). The imagery
scenes with the least cloud cover percentagewere downloaded
from the United States Geological Survey (USGS) Earth
Explorer portal (https://earthexplorer.usgs.gov).

Dataset pre-processing and classification

Before employing the classification procedure, the images
were corrected from radiometric and atmospheric noises using
Fast Line-of-sight Atmospheric Analysis of Hypercubes

(FLAASH) settings of the ENVI 5.2 platform. Coefficients
obtained from the metadata of the images were used in the
setting. Radiometric and atmospheric corrections are required
for deriving accurate quantitative surface information from
satellite imagery (Liang et al. 2002).

Imagery scenes of the same time window and year were
mosaicked, and the study area was extracted. Then, different
band combinations, for example, RGB4,3,2 for TM and
RGB5,4,3 for OLI were displayed to accurately identify sur-
face features before generating training data or spectral signa-
ture data for the classification. Historical and current expert
knowledge on the physiography of the study site, together
with useful ancillary data, was taken into consideration when
delineating the prospect feature classes based on the training
samples.

For each LULC class identified, namely: dense vegetation,
sparse vegetation, agricultural land, agricultural fallow, plan-
tation, built-up area, barren land, and waterbody (Table 2),

Fig. 1 Location map of the study site

Table 1 Sensor and date/time of
the scene acquisitions from
Landsat 5 ThematicMapper (TM)
and Landsat 8 (OLI_TIRS)

Path Row Date/time (Sensor) Date/time (Sensor) Date/time (Sensor_OLI_TIRS)

168 35 21.07.1988 (TM) 28.07.2002 (TM) 21.07.2017 (OLI)

168 36 21.07.1988 (TM) 28.07.2002 (TM) 21.07.2017 (OLI)

169 34 28.07.1988 (TM) 03.07.2002 (TM) 28.07.2017 (OLI)

169 35 28.07.1988 (TM) 03.07.2002 (TM) 28.07.2017 (OLI)
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around 200 spectral signature (training samples) in the format
of small polygons were extracted from the mosaicked images
for each target year (Congalton and Green 2019). Employing
the spectral signatures, maximum likelihood classifier
(Richards and Richards 1999) was applied to classify the im-
age of each consecutive year. In turn, three LULC maps at
30 m spatial resolution were generated. Maximum likelihood
classification is based on the probability of a specific pixel
belonging to an aggregate of similar or alike pixels (i.e., hav-
ing similar/alike spectral distributions).

Classification assessment and change analysis

It is imperative to assess the degree of relationship or agree-
ment between automated classification data with references/
ground data (Congalton and Green 2019). An independent
dataset constituting 30% of the training dataset for each class
(i.e., 30% of the 200 spectral signature sample for each feature
class is 60 points) was established (Foody 2002) within a GIS
environment using ArcMap 10.3. That dataset was employed
to assess the accuracy of 1988, 2002, and 2017 LULC maps
resulted from the maximum likelihood classification. For do-
ing this, an equalizing random sampling technique was de-
signed by generating 480 points spreading across each
LULC map for each year. The 480 random points represent
60 points per class for the classified data (Stehman and
Czaplewski 1998). The points, for each target year, were then
exported as shape files into Google Earth’s historical imagery
(i.e. reference layout) to be identified and labelled. The la-
belled points were then exported back to ArcMap to establish
an error matrix with classified data (Rosenfield 1986; Van
Oort 2007). From the error matrix, several statistical indices
were calculated; for example, producer accuracy, user accura-
cy, and overall Kappa index of agreement.

After assessing the accuracy of the generated LULC maps
between 1988 and 2017, the quantification of the dynamics of
changes over time was investigated by calculating the area of

specific class category per time window (i.e., for each target
year 1988, 2002, and 2017) (Butt et al. 2015). Change detec-
tion was performed by comparing the status of certain class
category pixels with subsequent class category pixels (cross-
tabulation) (Jensen 1996; Pontius Jr and Cheuk 2006).

CA-Markov models

Markov model

Estimating the rate of change from one phase to another phase
over space and time in spatial data is important for predicting
future change scenarios (Takada et al. 2010). Markov chain
model is one of the widely accepted models to quantify the
magnitude of change over time by working out the transition
probability matrix, transition area matrix of two LULC time-
period maps (i.e., between t0 and t1). From these matrices,
several conditional probability class categories, based on their
pixel-wise status, are estimated (Eastman 2003; Houet and
Hubert-Moy 2006).

CA model

The Markov model is proven efficient in simulating the status
of change in LULC change detection studies (Biswas et al.
2019; López et al. 2001; Muller and Middleton 1994).
However, the Markov model has a limitation in simulating
the spatial allocation and distribution of the class categories
in the LULC maps (Eastman 2012). On the other hand, the
Cellular Automata (CA) model (Wolfram 1984) fills the gap
of the spatial dimension limitation. The CA model assumes
the status of a grid-cell is dependent on the dynamics of the
cell itself and the surrounding grid-cells (Yang and Li 2007).
The dynamics of the dependency could be simple and com-
plex (i.e., linear and nonlinear). In other words, based on
predefined transition conditions over time, the model predicts
the new status of LULC class category based on the previous

Table 2 Description of the LCLU classes

Class Description

Dense vegetation Very densely vegetated areas, mostly forest and dense
shrublands.

Sparse vegetation Scattered thin mixed forest areas, shrublands, and grassland patches.

Agricultural land Currently cropped land with obvious greenness.

Agricultural fallow Clearly visible croplands in the imagery, but no crops at the current time. Distinctive geometry for cropland is obvious.

Plantation Densely vegetated areas but following a definite pattern, man-made forests and green spaces

Built-up area Settlements: Artificial Infrastructure

Barren land Lands with no obvious/or minimal vegetation, especially no obvious patches of trees or shrubs. Bare rocks, hills, soil, wasteland,
rocky mounts and bare open lands.

Waterbody Water bodies: any water bodies, e.g., rivers, fishponds, lakes, streams.
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status of LULC and those of its neighboring class categories
(Guan et al. 2011; He et al. 2014; Liping et al. 2018).

Markov-CA synergy model

Markov chain model integrated with the CA model, provides
a unique opportunity to predict and simulate LULC changes in
both space and time consistently. This synergy model is effi-
cient in simulating and predicting complex LULC classes
(Hyandye and Martz 2017; Irwin et al. 2009; Singh et al.
2015). This study adopted the CA-Markov model to predict
LULC changes in the year 2050 for Erbil governorate based
on the (1988–2002) and (2002–2017) LULC maps produced
from the maximum likelihood classification (Fig. 2). This was
accomplished in two steps; firstly, the Markov model was
used to generate transition probability matrices of areas and
hence conditional probability maps for (1988–2002) and
(2002–2017) LULC maps respectively (Fig. 2). Model set-
tings allowed only 15% proportional error for input images
(i.e., with the maximum likelihood classification, assigning a
proportional error of around 0.15 (15%) is recommended (Eric
and Aldrik 2007; Takada et al. 2010). Secondly, using the
probability of transition and conditional maps as input to the
CA-Markov model, a 2017 LULC map was simulated. This
map was then validated with the actual 2017 LULC map as a
necessary step to calibrate the model (section 2.5.3.1). After
model validation, a LULC map for 2050 was modelled from
the existing (2002–2017) maps. In the Markov-CA modelling
for the 2017 and 2050, model settings of 5 × 5 grid-cell con-
tiguity filter and 11 iterations of cellular automata within the
IDRISI 17.0. were used (Sang et al. 2011; Takada et al. 2010).

Model validation

Before modelling the LULC map for 2050, it was neces-
sary to validate the model output. The validation was ac-
complished by using a time window of the classified data
as reference data (classified 2017 LULC map) against the
2017 modelled LULC map. An embedded VALIDATE
module in IDRISI 17.0. was used to compare the degree
of agreements between the modelled and the classified
map. The agreement indices are based on the standard
Kappa Index of Agreement (KIA) with some spatial cor-
relation variations. These variations, namely include;
Kappa for locationStrata (KlocationStrata), for location
(Klocation), for no information (Kno), and Kappa standard
(Kstandard) (Pontius Jr 2002; Pontius Jr and Millones 2011;
Pontius 2000). The K location and locationSrata indicate
the accuracy of spatial dimensions of the quantity and
locations of the grid-cells of a certain class category of
the LULC maps. Kno indicates the general agreement
between proportions of the reference and modelled maps,
regardless of having information on the quantity and

location of certain class categories. K standard refers to
the proportion of correctly correlating a class category
against the ones that correlated correctly by chance. The
Kappa values for these variations range between 0 and 1
(0% and 100%); the closer the value to 100%, the better is
the accuracy of the agreement (Christensen and Jokar
Arsanjani 2020).

a

b

Fig. 2 Research workflow
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Results and discussion

Classification assessment and change analysis

For accuracy assessment of the maximum likelihood classifi-
cation, error matrices for the target years were established
(Tables 3, 4 and 5). The overall Kappa index of the agreement
for the three consecutive years; 1988, 2002, and 2017 were
0.88 (88%), 0.95 (95%), 0.92(92%), respectively. The user’s
and producer’s accuracies as per class category were in the
range of 0.77 (77%) and 1.00 (100%) (Tables 3, 4 and 5).
These values indicate that the number of pixels correctly clas-
sified in proportion to classified pixels by chance was much
higher. Thus the LULC maps can reliably be used for change
analysis and prediction (Anderson 1976). Employing the

Google Earth Historical Imagery significantly assisted the
process of classification accuracy assessment. However, local
knowledge on the study area’s physiography was also useful
in accurately extracting class categories. Overall, eight class
categories were identified from the satellite imagery, which
were acquired during early and late July of 1988, 2002, and
2017. The time of image acquisition may play a role in defin-
ing the class category quantity.

Change statistics demonstrated between 1988 and 2002,
the dense vegetation, agricultural fallow, plantation, built-up
land, and water bodies have increased by 3.8%, 1.2%, 0.2%,
0.1%, and 0.1%, respectively (Table 6). These changes are
proportional with respect to the whole land cover types be-
tween the two-time-period. The increase in the built-up area
for 14 years (1988–2002) is not quite significant, yet one may

Table 3 Error matrix for the year 1988

Class Dv Sv ALa Afa Pla BLa BaL Wa Total User Accuracy

Dv 54.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 60.00 0.90

Sv 0.00 56.00 1.00 2.00 0.00 0.00 1.00 0.00 60.00 0.93

ALa 1.00 6.00 52.00 1.00 0.00 0.00 0.00 0.00 60.00 0.87

Afa 0.00 0.00 1.00 51.00 0.00 4.00 4.00 0.00 60.00 0.85

Pla 8.00 0.00 0.00 0.00 52.00 0.00 0.00 0.00 60.00 0.87

BLa 0.00 0.00 0.00 6.00 0.00 54.00 0.00 0.00 60.00 0.90

BaL 0.00 1.00 0.00 5.00 0.00 0.00 54.00 0.00 60.00 0.90

Wa 0.00 0.00 3.00 1.00 0.00 0.00 0.00 56.00 60.00 0.93

Total 63.00 63.00 57.00 66.00 58.00 58.00 59.00 56.00 480.00 0.00

Producer Accuracy 0.86 0.89 0.91 0.77 0.90 0.93 0.92 1.00 0.00 0.89

Kappa 0.88

Key: Dv (Dense Vegetation) Sv (Sparse Vegetation) ALa (Agricultural Land) Afa (Agricultural Fallow) Pla (Plantation) BLa (Built-up Area) BaL
(Barren Land) Wa (Waterbody)

Table 4 Error matrix for the year 2002

Class Dv Sv ALa Afa Pla BLa BaL Wa Total User Accuracy

Dv 59.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 60.00 0.98

Sv 0.00 58.00 2.00 0.00 0.00 0.00 0.00 0.00 60.00 0.97

ALa 0.00 0.00 60.00 0.00 0.00 0.00 0.00 0.00 60.00 1.00

Afa 0.00 0.00 0.00 55.00 0.00 3.00 0.00 2.00 60.00 0.92

Pla 5.00 0.00 0.00 0.00 55.00 0.00 0.00 0.00 60.00 0.92

BLa 0.00 0.00 0.00 0.00 0.00 60.00 0.00 0.00 60.00 1.00

BaL 0.00 0.00 0.00 4.00 0.00 0.00 56.00 0.00 60.00 0.93

Wa 0.00 0.00 3.00 3.00 0.00 0.00 0.00 54.00 60.00 0.90

Total 64.00 58.00 66.00 62.00 55.00 63.00 56.00 56.00 480.00 0.00

Producer Accuracy 0.92 1.00 0.91 0.89 1.00 0.95 1.00 0.96 0.00 0.95

Kappa 0.95

Key: Dv (Dense Vegetation) Sv (Sparse Vegetation) ALa (Agricultural Land) Afa (Agricultural Fallow) Pla (Plantation) BLa (Built-up Area) BaL
(Barren Land) Wa (Waterbody)
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consider that the economic and the political situations were
not stable during that period. In 1988 the eight years of the
Iran-Iraq war just ceased, and after that, in 1991, the gulf war
was started and followed by the United Nations (UN) eco-
nomic sanctions. The increase in agricultural fallow may refer
to limited agricultural activity by farmers in 2002, or the land
has already been harvested. The increase in the dense vegeta-
tion and plantation in the remote mountainous areas (e.g.,
Choman, Soran, and Mergasur), both in density and in mag-
nitude, can be noticed (Fig. 5). Surprisingly, the water bod-
ies increased by 0.1% (from 9.6 km2 to 21.9 km2), most
likely due to fish farming activity and the establishing
some small and moderate scale artificial reservoirs. In
contrast, sparse vegetation, agricultural land, and barren
land have decreased by 2.7%, 0.1%, 2.6%, respectively.
Spare vegetation (Table 6) is mostly composed of thin

forest and oak tree shrubland (Khwarahm 2020). Over
time some of these classes change in structure, for ex-
ample, change to dense vegetation. The same argument
is likely accurate to agriculture and barren lands, for
example, barren land changed to a built-up area or the
plantation.

Between the period 2002–2017, change statistics demon-
strated dense vegetation, barren land, and water bodies have
reduced by −2.4%, 10.2%, and 0.1%, respectively. In contrast,
the built-up area and agricultural fallow increased by 2.3%
and 8.6%, respectively. During that period, a significant area
of barren land was exploited for agricultural activity; thus, it
reduced by around 10% (from 10,953.7 km2 to 9463.9 km2)
(Table 6). Aftermath of the Iraq invasion in 2003 by the USA
and the coalition forces brought foreign aids and investment
into the region. For example, reviving the agricultural sector

Table 5 Error matrix for the year 2017

Class Dv Sv ALa Afa Pla BLa BaL Wa Total User Accuracy

Dv 56.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 60.00 0.93

Sv 0.00 50.00 10.00 0.00 0.00 0.00 0.00 0.00 60.00 0.83

ALa 0.00 0.00 57.00 3.00 0.00 0.00 0.00 0.00 60.00 0.95

Afa 0.00 0.00 0.00 57.00 0.00 0.00 3.00 0.00 60.00 0.95

Pla 4.00 0.00 0.00 0.00 56.00 0.00 0.00 0.00 60.00 0.93

BLa 0.00 0.00 0.00 0.00 0.00 56.00 4.00 0.00 60.00 0.93

BaL 0.00 0.00 0.00 1.00 0.00 2.00 57.00 0.00 60.00 0.95

Wa 0.00 0.00 0.00 1.00 0.00 0.00 0.00 59.00 60.00 0.98

Total 60.00 50.00 67.00 62.00 60.00 58.00 64.00 59.00 480.00 0.00

Producer Accuracy 0.93 1.00 0.85 0.92 0.93 0.97 0.89 1.00 0.00 0.93

Kappa 0.92

Key: Dv (Dense Vegetation) Sv (Sparse Vegetation) ALa (Agricultural Land) Afa (Agricultural Fallow) Pla (Plantation) BLa (Built-up Area) BaL
(Barren Land) Wa (Waterbody)

Table 6 Change analysis: Area and percentage of the land cover land use classes

1988 2002 2017 2017_ Modelled 2050_Modelled

Class Area_km2 Area % Area_km2 Area % Area_km2 Area % Area_km2 Area % Area_km2 Area %

Dv 156.8 1.1 706.5 4.9 367.2 2.5 625 4.3 546.9 3.8

Sv 2539.5 17.5 2154.0 14.8 2274.6 15.6 2829.3 19.4 2052.8 14.1

ALa 128.6 0.9 115.4 0.8 230.0 1.6 220.4 1.5 412.9 2.8

Afa 277.4 1.9 453.4 3.1 1705.7 11.7 791.5 5.4 2507.7 17.2

Pla 29.8 0.2 60.9 0.4 70.8 0.5 64.8 0.4 120 0.8

BLa 73.6 0.5 81.2 0.6 424.1 2.9 113.3 0.8 1160.8 8.0

BaL 11,331.7 77.9 10,953.7 75.3 9463.9 65.1 9880.9 67.9 7721.0 53.1

Wa 9.6 0.1 21.9 0.2 10.7 0.1 21.8 0.1 24.9 0.2

Total 14,547 100 14,547 100 14,547 100 14,547 100 14,547 100

Key: Dv (Dense Vegetation) Sv (Sparse Vegetation) ALa (Agricultural Land) Afa (Agricultural Fallow) Pla (Plantation) BLa (Built-up Area) BaL
(Barren Land) Wa (Waterbody)
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and building/rebuilding infrastructure may have contributed to
these changes.

In the period between 1988 and 2017, contrary to the built-
up area, barren land showed a steady decrease of around 13%
of the total area, whereas the built-up area increased from
73.6 km2 to 424.1km2 (Table 6). The increase in the area of
a built-up area refers to increasing the population and devel-
opment of infrastructure (Pandey and Khare 2017). One of the
main drivers that trigger LULC changes is population growth
(Berihun et al. 2019). Iraq and KRI, like the rest of the Middle
East, have seen significant population growth and partial eco-
nomic growth in the last two decades. For example, in Iraq,
the population has increased from ~12.46 million to ~38.275
in just four decades (i.e., an increase by 308% between 1977
to 2017) (UN 2017).

Model validation

The modelled LULC map of 2017 generated by CA-Markov
model based on the historical status of 1988–2002 was vali-
dated by the actual LULC map of 2017 produced from the
satellite images. Overall, there was a significant level of agree-
ment between the modelled and actual LULC maps (Table 7).
The overall Kappa statistical variations of Kno = 0.8339,
Klocation = 0.8222, KlocationStrata = 0.8222, Kstandard = 0.7491
were achieved. These values are considered acceptable as far
as the reliability of model validation is concerned for further
use (Landis and Koch 1977; Pontius Jr and Millones 2011).
The model performed satisfactorily in predicting the water
bodies, barren land, agricultural land, plantation, and sparse
vegetation (Table 6). However, it has overestimated the dense

Table 7 Coefficients of
agreement between the actual
LULC map 2017 and modelled
2017 LULC map

Classification agreement/disagreement

According to the ability to specify accurately quantity and allocation

Information of Quantity

Information of Allocation No[n] Medium[m] Perfect[p]

Perfect[P(x)] P(n) = 0.3753 P(m) = 0.9477 P(p) = 1.0000

Perfect Stratum[K(x)] K(n) = 0.3753 K(m) = 0.9477 K(p) = 1.0000

Medium Grid[M(x)] M(n) = 0.3195 M(m) = 0.8523 M(p) = 0.8658

Medium Stratum[H(x)] H(n) = 0.1111 H(m) = 0.4114 H(p) = 0.4046

No[N(x)] N(n) = 0.1111 N(m) = 0.4114 N(p) = 0.4046

Agreement Chance = 0.1111

Agreement Quantity = 0.3003

Agreement Gridcell = 0.4409

Disagree Gridcell = 0.0953

Disagree Quantity = 0.0523

Kno = 0.8339

Klocation = 0.8222

KlocationStrata = 0.8222

Kstandard = 0.7491

Fig. 3 Linear trend line indicating
the relationship between the
actual and predicted (modelled)
LULC maps of 2017
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vegetation by 1.8% of the actual area (367.2 km2). In contrast,
it has underestimated the agricultural fallow and built-up area
by 6.3% (1705.7) and 2.1% (424.1 km2) of the actual area,
respectively. The underestimation, most likely caused by the
disagreement quantity value (Table 7), which in turn has
slightly affected the overall performance of the model.
Furthermore, the source of the difference between the classi-
fied LULC map of 2017 and the modelled map of 2017 was
likely to come from underestimating some class categories,
particularly agricultural fallow and built-up area (Table 7).
The underestimation, most likely caused by the input data
(i.e., LULC maps of 1988 and 2002). Because there is an
obvious time difference between 2002 and 2017, during
which the pace and quantity of LULC change dynamic were
apparently different compared to the period between 1988 and
2002. However, the overall performance of the model in sim-
ulating a future scenario based on the transition probability
matrix of 1988–2002 demonstrated decent accuracy (Table 7
and Fig. 3). Previous studies have reported various values of
Kappa coefficient variation for CA-Markov model. For exam-
ple, Hyandye andMartz (2017) and Singh et al. (2018) report-
ed the Kstandard of 0.68 and 0.59, respectively. Others have
reported values of 0.88 (Rimal et al. 2017) and 0.95
(Munthali et al. 2020). The model capability of simulating
near-perfect scenario from predefined inputs partly depends
on the contiguity filter number (i.e., 5X5 filter and 10X10

performance), the suitability maps (Verburg et al. 2008), and
probably the type of classifier used for input data classifica-
tion. Furthermore, the overall model settings, for example,
cellular automata iteration and various validation techniques,
probably should be considered.

Correlation between actual and modelled LULC

Even though IDRISI 17.0. has an embedded VALIDATE
module, which allows validating the modelled map with a
reference map by executing various Kappa statistical varia-
tions; representing the agreement and disagreement degrees
between corresponding class categories based on both quality
and quantity (Table 7). Moreover, area-wise, the overall rela-
tionship between the modelled and classified maps, demon-
strated the co-efficient of determination value of (R2 = 0.9838)
(Fig. 3). This result concurs with the study of Akbar et al.
(2019), which reported the R2 = 0.90 between actual and
modelled LULC maps.

LULC change modelling

To accomplish the second main objective of this study, the pro-
duced LULC maps for the 1988–2002 and 2002–2017 were
used to model 2017 and 2050 LULC maps, respectively.
Future predictions demonstrate between 2017 and 2050, built-
up area, agricultural land, plantation, dense vegetation, agricul-
tural fallow and water body will increase by 173.7% (from 424.1
to 1160.8 km2), 79.5% (from 230 to 412.9 km2), 70.2%, (from
70.2 to 119.5 km2), 48.9% (from 367.2–546.9 km2), 47% (from
1705.7- 2507.7 km2) and 132.7% (from 10.7 to 24.9 km2), re-
spectively. In contrast, sparse vegetation and barren land will
decrease by 9.8%, (2274.6 to 2052.8 km2), 18.4% (9463.9 to
7721.0 km2), respectively (Table 6 and Fig. 4). These increases
and decreases are proportional changes in respect to LULC class
categories. In other words, the 173.7% increase in the built-up
area in 2050 will be at the cost of reducing the area of other class
categories.Moreover, changes in the areas (%) per class category
from the period 2017 to 2050 indicated that the most dynamic
class cover types were agricultural land, agricultural fallow,

Fig. 4 Area percentage (%) of
changes per class category
between 2017 and 2015

Table 8 Shows the probability of transition% (class change) from 2017
to 2050

Class Dv Sv ALa Afa Pla BLa BaL Wa

Dv 0.835 0.077 0.000 0.000 0.085 0.003 0.000 0.000

Sv 0.069 0.807 0.005 0.000 0.000 0.000 0.118 0.000

ALa 0.001 0.000 0.792 0.142 0.000 0.006 0.055 0.004

Afa 0.001 0.000 0.038 0.827 0.001 0.023 0.110 0.000

Pla 0.004 0.021 0.152 0.000 0.823 0.000 0.000 0.000

BLa 0.001 0.003 0.145 0.000 0.000 0.850 0.000 0.002

BaL 0.000 0.063 0.013 0.093 0.000 0.011 0.820 0.000

Wa 0.001 0.008 0.101 0.041 0.000 0.000 0.000 0.849
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barren land, and built-up area. The least dynamic cover types
were dense vegetation, sparse vegetation, and water bodies. In
2050, the area of the water body will increase by only 1%,
whereas the built-up area by more than 5% with respect to other

cover types (Fig. 4). Themost significant change that balance out
the overall dynamic of the class categories will be the barren
land. This class category comprises a remarkable area in com-
parison to the classes.

Fig. 5 LULC maps for a) 1988, b) 2002, c) 2007, and d) modelled 2017
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The trend of changes in the class categories seemed to
be linear, and they will further grow linear in the future.
Linear positive or negative trend changes together with
the spatial direction provide useful information on the
pace and dynamic of transformation. This information is
useful in environmental management and understanding
ecosystems’ function comprehensively (Dewan and
Yamaguchi 2009) (Fig. 4).

The proportionality of transition or changes from one
class category to another in the study area is surprisingly
in balance (Table 8). The transition probability matrix
between 2017 and 2050 indicated that (16.5%) of dense
vegetation would change to the built-up area, plantation,
and sparse vegetation; the remainder stays as it is. Sparse
vegetation predominantly will change by 19.2% to dense
vegetation and agricultural land. Similarly, around 14.6%
of agricultural land will mostly change to agricultural fal-
low and water bodies (Table 8). The majority of the

changed portion of barren land will change to built land
and agricultural land by around 1.1% and 9.5% of agri-
culture, respectively. Counterintuitively, 14.2% of water
bodies will change to agricultural land (etc., active and
fallow). In other words, this result indicates that some
areas, which were covered by water bodies in 2017, will
be replaced by agricultural lands and, in turn, other water
bodies will emerge. The emergence of water bodies will
be most probably be in the form of catchments and small
scale reservoirs from fishery activities (Figs. 5 and 6).

Conclusions

Erbil governorate is one of the major governorates in the
Republic of Iraq, which includes seven administrative dis-
tricts, and it isthe political and economic capital of the KRI
in the north of Iraq. This region is considered one of the vital

Fig. 6 The modelled land cover
land use status of Erbil
governorate for the year 2050
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biodiversity hot spots in Iraq (Zohary 1973). The landscape of
the area has been changing at a linear pace, particularly in the
past 15 years. Developing techniques to measure spatially
past, current, and future changes provide invaluable informa-
tion for decision-makers, biodiversity conservationists, and
assist in identifying ecologically degraded areas concerning
the landscape’s total mosaic. This study has used integrated
systems of remote sensing, GIS, and earth surface modeller
(CA-Markov) to predict the future dynamics of LULC class
categories in 2050 for Erbil governorate. GIS and remote
sensing provide a unique opportunity to monitor and quantify
LULC changes over space and time consistently.

There have been significant LULC changes specifically to
urban development (i.e., built-up area) since 1988 in Erbil
city, particularly in the vicinity of the main roads and towards,
west, south-east, and south-west of the city. Province-wise in
the south of the city, Makhmur district and the north Shaqlawa
and Soran will see significant urban growth in 2050.
Nevertheless, these developments will come at the cost of
other landscape fabrics, for example, agricultural land and
barren land.

Future predictions demonstrate that between 2017 and
2050, built-up land, agricultural land, plantation, dense vege-
tation and water bodywill increase by 173.7%, 79.5%, 70.2%,
48.9% and 132.7%, respectively. In contrast, sparse vegeta-
tion, barren land will decrease by 9.7%, 18.4%, respectively.
Barren lands and spare vegetation are equally important hab-
itats for various plant and animal species. For example, birds
(See-see Partridge Ammoperdix griseogularis, Black-headed
Bunting Emberiza melanocephala, Eastern Black-eared
Wheatear Oenanthe melanoleuca, and Finsch’s Wheatear
Oenanthe finschii), plants (Quercus spp., Prunus spp., and
Pistachio eurocarpa and genus Astragalus); and mammals
(Golden Jackal Canis aureus, Red Fox Vulpes vulpes, Grey
WolfCanis lupus, and Bezoar Ibex Capra aegagrus). Current
and future exploitation of the LULC should take into account
the significance of these endemic species to the region as far as
the conservation effort of biodiversity is concerned.

The transition probability matrix indicated that (16.5%)
of dense vegetation would change to the built-up area,
plantation, and sparse vegetation. Sparse vegetation pre-
dominantly will change by 19.2% to dense vegetation
and agricultural land. Similarly, around 14.6% of agricul-
tural land will mostly change to agricultural fallow and
water bodies (Table 8). Portions of barren land will change
to built land and agricultural land by around 1.1% and
9.5%, respectively.

The study outputs provide robust baseline information for
future exploitation of the land surface features with less im-
pact on biodiversity and landscape integrity. The 2050 map
can confidently be used as a benchmark for decision making,
planning, sustainable management of the natural environment,
and biodiversity conservation.
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