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A B S T R A C T   

It is important to concentrate on monitoring and control of the pipeline transportation system 
before the failure resulting in fatal accidents. To enhance the supervision performances, the 
SCADA (Supervisory Control and Data Acquisition) platform is incorporated with IoT by utilizing 
the NB-IOT module holding a high-level engineering interface. In the proposed methodology, 
SCADA with the LQR-PID controller serves as Local Intelligence. When the local intelligence fails 
to react proactively during risk occurrences, immediately its performance is deactivated by the 
webserver through the NB (Narrow Band)-IoT module. For experimental real-time validation of 
the proposed work, a lab-scale DCS (Distributed Control System) based fluid transportation sys
tem is undertaken where flow and pressure prevail to be the most influencing parameters during 
risk occurrences in the pipelines. Also, the performance analyses are validated experimentally 
using unsupervised K-means clustering to identify abnormality caused by blockage and crack in 
the pipeline on the cloud-stored data.   

1. Introduction 

In recent years, communication occurs wirelessly to the remote information analytics center to examine and interpret the process 
behavior and provide the appropriate decision in case of risk circumstances. Through the use of the Proportional-Integral-Derivative 
(PID) controller, automated control systems facilitate complex transportation processes to be functioning safely and cost-effectively. 
This is attained by continually measuring operating parameters such as temperature, pressure, level, flow, and concentration, and 
creating decisions to open or close a valve, slow down or speed up a pump, or increase or decrease heat so that selected process 
measurements are sustained at the set range values. The main motivation for advanced control systems is safety since the loops having 
adequate performance are only 68% which are in manual mode. Hence in recent scenarios, the need for an advanced controller is 
increased to determine the optimal system performances [1]. Remote monitoring and controlling of the sub-station equipment are an 
important issue for the transportation management department which is normally done manually or using an expensive PLC and 
SCADA system. With the emergence of the internet and the computational era, a smart monitoring and reliable controlling system over 
the entire pipeline sensor parameters are highly desirable that can be achieved by introducing the Internet of Things (IoT) technology. 
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IoT is the network of physical devices embedded with electronics, software, sensors, actuators and network connectivity which can 
identify, collect and exchange the data [2]. Each thing is uniquely identifiable through its embedded computing system and able to 
interoperate within the existing internet infrastructure. Because of low-cost, networkable micro-controller modules, the Internet of 
Things is considered as the key technology to establish a smart sub-station. However, IoT itself has still not reached maturity and many 
IoT communication protocols such as CoAP, MQTT, XMPP have been proposed as IoT standards. These protocols vary in characteristics 
with different strengths and limitations. Finally, due to the technological revolution all over the world, smart technologies are 
replacing old ones. In the power sector, IoT technology is becoming more attractive nowadays. It is expected that within 2025, around 
20–50 billion things would be connected to the internet throughout the world [3]. 

Several relevant studies carried out on the IoT technology are summarized here. According to IoT technology in the smart metering 
system has already been implemented worldwide for grid power measurement and residential electricity billing system. In the power 
sector, many studies have been conducted for improving the energy crisis by adopting renewable energy sources [4]. The main aim of 
this work is to develop a fully automated SCADA with IoT based fluid transportation system that can be protected, monitored and 
controlled from any place in the world only by the authorized personnel at a very low cost. Reliability and reduction of manpower 
using IoT technology are also the prime concerns while developing the NB-IoT with SCADA-PID controller framework with data 
analysis using unsupervised K-means clustering-machine learning technique gives visual and statistical results to the inspection en
gineer to predict the risk occurrences promptly. The main advantage is that developed local intelligence performs better control actions 
only when the parameter changes are within the threshold limit when it goes beyond the monitoring range, it fails to provide 
appropriate decisions. Due to the IoT incorporation, the controller performances and local control unit control signals are stored and 
analyzed in the cloud to provide instantaneous solution before it leads to catastrophic situations. By implementing K-means clustering, 
the exact risk rate by extreme pressure rise or drop can be interpreted at the early stage from the transportation pipeline system. 

The rest of the paper is organized as follows. A detailed proposed methodology of combining SCADA with LQR-PID and IoT for fluid 
transportation system is discussed in Section 2. Section 3 brief out the experimental hardware setup of the DCS based fluid transport 
system. Section 4 illustrates the developed NB-IoT module with its features, real-time interfacing and performance measures vali
dations are provided. Section 5 represents the design and real-time experimental analyses of the LQR-PID controller with SCADA on the 
fluid transportation plant for pressure and flow control are discussed. Section 6 includes the real-time validation of the proposed 
methodology of IoT and K-means clustering machine learning technique statistical results on pressure data analysis are described. 
Finally, Section 7 concludes this paper. 

2. Enhanced scada platform with LQR-PID controller and IoT 

The block diagram with enhanced Integrated IoT architecture with local intelligence (SCADA+ LQR-PID) for the lab-scale 

Fig. 1. IoT based architecture with local intelligence for the process.  
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experimental DCS plant visualizing the sensors and actuators positioned with the piping having directional tracks of their controls is 
shown in Fig. 1. A real-time pump status, pressure and flow rate sensors data which are regulated by the developed local intelligence 
(SCADA+ LQR-PID) are given to the fabricated smart module which comprises of I/O connectivity, controller and Wi-Fi module. This 
smart module will uphold the received input and push that to the cloud. In the cloud-centric storage, these sensor data will be updated 
frequently and it will put to data analytics to monitor and control the process plant field parameters. When it finds out any abnormality 
in these sensor data, it will send the control activation signal to the process plant. If the local intelligence did not respond to the 
detected abnormality in the process field parameters within the span of computation time, then the Cloud-centric server will take the 
role to regulate and control the pressure and flow rate before it reaches the state of over the threshold. Since this paper includes the 
development and application of local intelligence comprised of the LQR-PID controller with SCADA, the performance of local SCADA 
with the LQR controller can remotely monitor and controlled through IoT monitoring front end interface. This IoT front end is operated 
as a stand-alone station without depending on a central server with mutual backup configuration by regulating the operation of the 
corresponding pumps during cracks and leaks caused by extreme pressure and flow rate variations. Hence to upgrade the conventional 
control technique with the monitoring system in an industrial process plant, the developed LQR-PID controller with SCADA offers a 
local field station monitoring and control to progress functioning effectiveness in an integral part of DCS by exploiting CENTUM VP. A 
DCS plant of the fluid transport system can be supervised and functioned in real-time remotely by integrating local SCADA with the 
LQR-PID controller incorporated in IoT application creating automatic activation with trends, practically enlightening engineering 
ability and working safety. 

Fig. 2. The lab-scale experimental setup of the fluid transport system.  

Fig. 3. SCADA view of the lab-scale experimental fluid transport system.  
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3. Lab scale experimental setup of fluid transport system 

The process plant consists of two sections consisting of an electric pump, differential pressure transmitter holding a range of 03- 
15psi (0.1–3kg/cm2), and a pressure control valve at one section along with an orifice flow meter having the limit of 0-1800lph 
(Liters Per Hour), pump and flow control valve at another section. When the process plant is on track to run, initially reservoir 
tank fills up to 20% of its capacity, and then the electric pump is actuated to suck the fluid from the tank to transmit the fluid to each 
section. When the fluid starts to pass through the pipelines its corresponding pressure and flow transmitter send its present pressure 
and flow rate data to the I/O hub module station. During transportation to regulate the pressure and flow rate of the transmitting fluid, 
the opening, and closing of the control valves are operated by the I/P converter to maintain its preferred effective range limits until the 
destination of the long run, till it drains from the process tank as shown in Fig. 2. The experimentation using the LQR-PID controller can 
remotely monitor and control the pressure and flow rate as a separate loop through SCADA. It can be operated as a stand-alone station 
without depending on a central server with mutual backup configuration by regulating the operation of the corresponding control 
valves to reach its desired operating points of pressure and flow rate through CENTUM V-NET/IP protocol. 

The SCADA incorporating an LQR-PID controller is developed for the experimental setup of the fluid transport system to deal with 
remote surveillance and control of the entire DCS plant with interface displays for flow rate and its respective pressure monitoring/ 
control panel as shown in Fig. 3. The developed SCADA provides more functional utility options like system message banner, graphic 
view with graphics and control attributes, trend view, browser bar and tuning window. The system message banner expresses the 
alarm occurrence status visually. The alarm occurrence status is shown by colors and flashing of operation buttons, and the message 
display. The system message banner is always displayed at the top of the display, so it will never be hidden behind other windows. The 
browser bar is used to call up operation and monitoring windows. It can display a list of operations and monitoring windows and plant 
hierarchical structures in a tree-like fashion, allowing the entire system to be easily confirmed. The graphics view with graphics at
tributes displays system conditions which can be automatically operated and monitored [5]. The graphics view with the control 
attribute displays the function block statuses using instrument faceplates. 

4. Characterization and evaluation of multi-band IoT module for fluid pipeline system 

The main aim is to replace all heavy wiring in factories with an intelligent and alert system based on smart things and intelligent 
communication for control and monitoring. In this part of our paper, industrial communication is based on the IoT and multiband 
communication using Nb-IoT technology and the RS485. NB-IoT (Narrowband Internet of Things) is wireless communication tech
nology. NB-IoT competes directly with solutions such as Lora and Sigfox. Like the latter, it is characterized by very good indoor and 
outdoor coverage, low latency, very low connectivity costs, low power consumption and optimized network architecture. NB-IoT 
eliminates usage limitations, interference and congestion, which are often the biggest problems in unlicensed radio spectrum appli
cations. With extensive radio coverage, NB-IoT is based on 4G benefits from existing infrastructure. Besides, the frequency band used 
makes it possible to improve penetration inside buildings or underground [7]. This industrial gateway is a universal IoT device that 
allows data collection from several Modbus-based serial devices (ASCII, RTU) on the RS485 link simultaneously. Transfer of this data to 
industrial applications using multiple bands, to use a well-defined bandwidth for each level of the CIM pyramid (WSN, Machines, 
SCADA, ERP and EMS) via the NB-IoT network. The three layers of this NB-IoT system can be categorized as under:  

• Perception layer (DORM nodes are deployed across a fluid transport system for sensing the surroundings)  
• Network Layer (Base-station is installed near an experimental setup that supports 5G network)  
• Cloud Platform (Cumulocity server is set up for supporting and interfacing users’ applications) 

DORM (integrateD cOmpact naRrowband platforM) nodes are deployed at the “Network Layer”, a commercial Base-station (BS), 
supports LTE Cat-NB1 network to collect all the transmitted data from the deployed nodes and send it further to the highest layer of the 
NB-IoT system, “Cloud Platform Server”. The “Cloud Platform Server” provides an interface for secure communication between the NB- 
IoT Network and the users’ applications, data analytics for decision making and data storage for backup and future use. Fig. 4 shows 

Fig. 4. The architecture of the NB-IOT module in data communication.  
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the architecture of the NB-IoT module with the transmission of data from the base station to the cloud. 
To evaluate the performance of the NB-IoT module, the nodes are assigned at different locations which are away around 300m from 

the base station. Since the hardware setup is 15m long, the first node is placed at 0m, then it continues with 3m, 9m, 12 m and finally 
15m respectively in the fluid transportation system zone. From the Cumulocity testing platform, the SNR (Signal to Noise ratio) and 
RSSI (Received Signal Strength Indicator) value of the deployed IoT module is measured for 5 hours and given in Table 1. 

From Table 1, it is confirmed that the RSSI value shows the estimated measure of power level that a client device is receiving from 
an access point. At larger distances, the signal gets stronger and the wireless data rates get higher, leading to higher overall data 
throughput. SNR value directly impacts the performance of a wireless LAN connection. A higher SNR value means that the signal 
strength is stronger concerning the noise levels, which allows higher data rates and fewer retransmissions. The obtained SNR and RSSI 
values show that the installed NB-IoT system at a fluid transport system provides good connectivity to satisfy the IoT application 
requirements in outdoor environments for different location levels. 

4.1. Interfacing of iot module with the sensors in the experimental setup 

Fig. 5 gives the interfacing of experimental hardware with the NB-IoT module along with the top view design of the PCB design of 
the NB-IoT module. An NB-IoT module is interfaced at the station which receives data from the pressure and flow rate transmitter 
which is operated through local intelligence using the LQR-PID controller with SCADA. In the IoT front end operator interface, the 
pressure transmitter data is labeled as IP1 and flow rate data is assigned as IP4. In the experimentation, only two field parameters such 
as pressure from the boosting station and flow rate from the final delivery station are acquired for remote monitoring and control 
purposes. 

In the IoT module, the analog current input port of AC1 is conFig.d to receive the pressure transmitter signal and AC4 is assigned to 
acquire flow transmitter data which is then transmitted to the cloud for storage and analysis. The digital output port of DO2 is 

Table 1 
The validated performance measure of SNR and RSSI value of deployed NB-IOT module in fluid transport system lab setup.  

Observation point Average SNR value (dB) Average RSSI value (dBm) Signal strength 

Node at 15m 17.99 − 65.21 Good 
Node at 12m 17.43 − 66.90 Good 
Node at 9m 19.56 − 67.54 Good 
Node at 3m 19.91 − 68.49 Good 
Node at 0m 21.37 − 69.55 Good  

Fig. 5. Interfacing the NB-IoT module with the fluid transportation system.  
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programmed to get activated during an emergency shut off enabled condition. This DO2 digital output relay directly makes the 
interfaced pump to an off state by disabling the local intelligence functioning at the field station. 

5. Performance analysis of LQR-PID controller with scada in pressure and flow control 

In the fluid transport system, the flow rate and pressure are maintained by adjusting the opening and closing of the control valve. 
Hence to develop the mathematical model of the fluid transport system, a transient response curve is recorded by regulating the control 
valve opening to acquire the equivalent pressure and flow rate changes on the pipeline in the open-loop structure. The open-loop test 
run is carried out by linearly adjusting the percentage of control valve opening (i.e. from 10% to 100% opening of the control valve) 
[8]. This open-loop experimentation reveals the pressure of the fluid is at a maximum rate with minimum flow rate when the opening 
of the control valve is around 10% of the overall opening and vice versa when the control valve opening reaches its full stretch of 100%. 
It is inferred that the initial flow rate of 179 lph and pressure of 2.2 kg/cm2 is obtained during a 10% opening of the control valve and 
continuous readings were documented which is given in Table 2. The result reveals that for 100% control valve opening the maximum 
flow rate and pressure accomplished are 1792 lph and 0.22 kg/cm2. The real-time open-loop readings of pressure and flow were noted 
for the percentage of control valve opening through the CENTUM VP platform is displayed in Fig. 6. From Table 2, the first-order model 
considerations (process gain kp and process time constant τp) of the fluid transport system parameters of pressure and flow rate are 
given in Table 3. 

From Table 4, the worst-case model with the leading process gain and lowest time constant are selected to represent the process 
model. Since it shows the parameter variations holding non-linear characteristics, First Order Plus Time Delay (FOPTD) transfer 

Table 2 
Open-loop response analyses of Pressure and flow for a different level of control valve openings.  

Percentage of control valve opening (in %) Flow rate (in lph) (Liters Per Hour) Pressure (in kg/cm2) 

10 179 2.20 
20 230 1.92 
30 373 1.83 
40 468 1.71 
50 585 1.48 
60 757 1.21 
70 919 0.91 
80 1137 0.55 
90 1429 0.36 
100 1792 0.22  

Fig. 6. Real-time recorded pressure and flow rates of the fluid for the different level of control valve opening.  

Table 3 
Recognized model parameters of fluid transport system from real-time experimental data.  

Percentage of control valve opening (%) Flow rate Pressure 
kp τp(s) θ(s) kp τp(s) θ(s) 

20 0.329 11.941 7.91 1.681 4.95 13.58 
40 0.485 8.317 12.83 1.364 6.43 22.84 
60 0.914 9.084 15.72 1.649 4.026 35.59 
80 0.046 13.51 9.89 1.024 9.88 21.91 
100 0.871 17.46 5.16 0.995 14.32 29.92 

Note: Bold values indicates the worst case model based parameter value. 
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function (G(s) =
Kp
τpS+1e

− θs) model is used to represent the pressure and flow rate maintenance of fluid transport system, wherekp =

process gain, τp = time constant and θ = process delay. The identified FOPTD model for the flow control loop from Table 4 is rep
resented as, 

G(s) =
0.914

8.317s + 1
e− 5.16s (1)  

Similarly, the FOPTD model for the pressure control loop from table 4 is exemplified as, 

G(s) =
1.681

4.026s + 1
e− 13.58s (2) 

The system model identification is developed from the real-time experimental data obtained from the fluid transport system in 
open-loop performance analysis by varying the control valve opening [9]. 

5.1. Robust controller design 

The PID controller serves as one of the popular and extensively applied controllers in the industrial sector due to its simplicity, 
robustness and wide applicability to near-optimal performance. Even though innovative control techniques can deliver substantial 
improvements, a well-tuned PID controller has been determined to be suitable for an enormous quantity of engineering control loops 
[10]. A PID type controller is used to optimize the performance of the control valve to regulate and uphold the pressure and flow rate of 
the fluids being transported in the pipeline system. 

5.1.1. Ziegler–Nichols PID (ZN-PID) Controller 
The Ziegler–Nichols PID (ZN-PID) Controller is the most commonly used heuristic method of tuning a PID controller in all the 

industrial feedback control applications. The ability to predict future errors in the process is possible in the PID controller, meanwhile, 
it can eliminate oscillations and can decrease the rise time in the performance. Since the process is modeled as FOPDT (First Order 
process with Dead Time), hence the implementation of the ZN-PID controller is the benchmark of conventional techniques used for the 
comparative purpose [11]. The parameters of the ZN-PID controller are shown in Table 4. 

5.1.2. Internal mode control PID (IMC-PID) controller 
The effectiveness of the internal model control (IMC) design principle has made it attractive in the process industries, where the 

Direct Synthesis for the disturbance (DS-d) method proposed by Edgar and Seborg, by obtaining the PI/PID controller parameters by 
computing the ideal feedback controller which gives a predefined desired closed-loop response. This closed-loop tuning method 
overcomes the shortcoming of the well-known Ziegler Nichols continuous cycling method and gives consistently better performance 
and robustness for a broad class of the process [12]. The resulting tuning rules for the PID controller based on Internal Mode controller 
design criteria is given as, 

kc =
α

kp(2τi − α+ θ); τi = α; τd = τ2 (3)  

Where kc is controller gain,τi is integral time and τd is derivative time. The value of α (non-minimum phase element) is selected so that 
it cancels out the pole at s=− 1/τ and the value of α is obtained as 

α = τ
{

1 −
(

1 −
τc
τ

)2
e−

θ
τ ; τc = 2θ (4)  

By using this tuning, it is possible to get the enhanced disturbance rejection performance by adjusting the single tuning parameter of 

Table 4 
ZN-PID controller tuning parameters with values.  

Tuning Rules Tuning Parameters for pressure Tuning Parameters for flow rate 
kc τi (s) τd (s) ki= (kc/τi) kd= (kc*τd) kc τi (s) τd (s) ki= (kc/τi) kd= (kc*τd) 

kc =
aτp
θKp

; a∈ [1.2,2] τi = 2θ and τd = 0.5θ  1.896 1.263 0.159 1.501 0.303 1.849 3.771 1.421 0.4903 2.629 

Where kc is controller gain and τi, τd indicates the integral and derivative gain. 

Table 5 
IMC-PID controller parameters.  

Controller Tuning Parameters for pressure Tuning Parameters for flow rate 
kc τi (s) τd (s) ki= (kc/τi) kd= (kc*τd) kc τi (s) τd (s) ki= (kc/τi) kd= (kc*τd) 

IMC-PID controller 1.765 12.73 0.448 0.1385 0.791 1.896 3.468 2.377 0.5466 4.508  
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the controller [13]. The important feature of this controller is that it deals with the nonlinear and stable process in a unified way. The 
parameters of the IMC-PID controller are shown in Table 5. 

5.2. Linear quadratic regulator (LQR-PID) controller 

Linear Quadratic Regulator (LQR) control theory is well recognized for the modern optimal control with assured robustness 
property. The LQR method is an efficient procedure for creating controllers for a complex process plant having tedious control re
quirements that seek to catch the optimal controller that reduces a plant cost function [14]. Consider the first-order model of the 
validating fluid transport system as in the form 

G(s) =
b

cs + a
e− Ls =

0.914
8.317s + 1

e− 5.16s(for flow) (5a)  

G(s) =
b

cs + a
e− Ls =

1.681
4.026s + 1

e− 13.58s(for pressure) (5b)  

From the developed transfer function for pressure and flow, the corresponding values to the coefficients of a, b and c can be obtained 
from equation 5a &5b. A PID controller can be represented as 

u(t) = Kp
(

e(t)+
1
Ti

∫

e(t)dt+ τd d(e(t))
/
dt
)

= KPe(t) + Ki
∫

e(t)dt + Kdde(t)
/
dt (6)  

Whent ≥ L, this flow and pressure control system has a possible non zero input signal. Here L becomes system time delay. Where A, B, C 
are the specified matrices with suitable dimension, Q ≥ 0 andR > 0 with F is a gain matrix for pressure and flow control loop [15]. The 
closed-loop system matrix Ac for DCS fluid transport system becomes to obtain gain values of PID the controller is 

Ac = A − BF =

⎡

⎢
⎣

0 a2 +
(
R− 1c2q3 + p21q2b

)
p12c

−
b2( ac2 + R− 1bc+ p21p22a2c

)

b2c
− R− 2a2p11

⎤

⎥
⎦ =

[
0 d1
d2 d3

]

(7)  

To obtain feedback gain, its necessity to calculate exp(Act) using inverse Laplace transformation [51,52] hence 

exp(Ac t) = l− 1(sI − Ac )
− 1 (8) 

After calculating exp(Act) and then multiplying with corresponding gain matrix F of flowrate and pressure, the corresponding LQR 
optimal tuning value kp, ki and kd for PID controller whent ≥ L is calculated using Eq. 7 

Kp(t) = R(− 1)(b+ c)
/
d1d3

]
,Ki(t) = R(− 1)c2d2,

Kd(t) = R(− 1) c
ba

(
d1d2

d3
d1

)

,
(9)  

Then the final form of the PID controller structure as given in Eq. 8 with gain values attained from Eq. 9 is 

u(t) = 0.841e(t) + 0.602
∫

e(t)dt + 1.024de(t)
/
dt for the pressure control loop, (10)  

u(t) = 4.934e(t) + 1.567
∫

e(t)dt + 2.641de(t)
/
dt for the flowrate control loop (11)  

The corresponding values of kc,ki and kd are determined for a flow and pressure control of a fluid transport system of DCS plant ob
tained from Eq. 10 and 11 are given in Table 6. 

5.3. Real-time experimental analysis in a DCS plant 

The LQR-PID controller performance is experimentally validated in real-time on a lab-scale experimental set up of the fluid 
transport system by comparing with IMC, ZN-PID controllers. The resultant tuning values of the PID controller using the LQR technique 
are confirmed through simulation and are put on to the created operator interface tune window using CENTUM VP. The DCS plant is 

Table 6 
LQR-PID controller parameters.  

Controller Tuning Parameters for pressure Tuning Parameters for flow rate 
kc ki= (kc/τi) kd= (kc*τd) kc ki=(kc/τi) kd= (kc*τd) 

LQR-PID controller 0.841 0.602 1.024 4.934 1.567 2.641  

P.E. Bhaskaran et al.                                                                                                                                                                                                  



Computers and Electrical Engineering 89 (2021) 106899

9

put to run by enabling the auto mode initiated by the operator when the setpoint for pressure and flow rate is given in the corre
sponding pressure and flow rate faceplate present in the SCADA front end panel. 

After fixing the required operating range, the pump will be on track to run which is enabled by an operator remotely. The real-time 
successive data of both pressure and flow rate parameters of the fluid being transported is displayed continuously in the created trend 
view window in PIC100.PV/ FIC100.PV tag tab is present below the trend graph and these data can be exported to excel by enabling 
the local utility data box option as shown in Fig. 7. The real-time performance analyses by ZN, IMC and LQR-PID controller on 
monitoring and control of pressure and flow rate in the DCS plant of the fluid transport system are conducted by fixing the setpoint of 
pressure and the flow rate is given as 1.2 kg/cm2 and 800 lph respectively. The validated controller performances readings are taken 
along with controller output signals are shown in Fig.s 8, 9 and its corresponding time integral performance criteria are tabulated as 
seen in Table 7. 

Based on the operating setpoint of pressure and flow rate, the implemented controller running on the back end of the SCADA adjusts 
the feedback signal going from the remote master control panel to the I/P converter incorporated with a corresponding control valve to 
regulate its opening and closing installed on the process plant control loops. 

Fig. 7. Real-time monitoring and control of pressure and flow using a Local Intelligence at a field control station.  

Fig. 8. Real-time performance analyses of pressure and flow rate using ZN, IMC and LQR-PID controller.  
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The real-time experimentation discloses that the LQR-PID controller accomplishes better results by its settling time of 12 seconds 
(for pressure loop) and 10.27 seconds (flow loop) than ZN, IMC-PID controller by comparing error indices in regulating the control 
valve to maintain pressure and flow rate. When the percentage of control valve opening gets increased, the field parameters such as 
pressure and flow rate of the fluids passing through the pipelines get decreases and increases consistently. The developed LQR-PID 
controllers confirm the enhanced performance of 26.2% by its connectivity and interoperability possessing minimum error indices 
and highest robustness. But, the SCADA with the LQR-PID controller cannot offer timely control action when the pressure and flow rate 
undergoes sudden rise or drop due to fault occurrences. This is because the SCADA could not able to process numerous sensor data on 
the database management resulting in delayed data communication [16]. This causes time delay to activate the emergency shut off 
during crack or leakages in the oil pipeline. The existing SCADA system can able to handle the field control action only when the 
monitoring parameters subjects to minor deviations from the threshold point of ±0.65 variations. To sort out these issues, SCADA with 
IoT application is proposed in which the same data are simultaneously sent to the cloud through the NB-IoT module as proposed in 
section 4. During abnormal changes of pressure and flow rate caused by cracks and leaks in the transportation system, the IoT module 
associated with the IoT operator interface handles the decision-making functions. 

Fig. 9. Controllers output signals for pressure and flow control in the DCS fluid transportation system.  

Table 7 
Performance measures at the operating point of pressure at 1.2 kg/cm2 and flow rate at 800 lph.  

Performance Measures Pressure Flow rate 
ZN-PID IMC-PID LQR-PID LQR-PID IMC-PID ZN-PID 

ISE 0.0923 0.0798 0.0374 0.02347 0.0521 0.0752 
IAE 0.0725 0.0427 0.0249 0.0193 0.0296 0.0341 
ITAE 0.03114 0.0275 0.0136 0.00952 0.018 0.0127 
tr (s) 5.34 4.057 2.01 4.871 6.32 8.34 
ts (s) 24.02 19 12 10.27 12.621 18.241 
%Mp 21.03 15.68 Nil Nil 12.38 19.937  

Fig. 10. The API key for used Bolt IoT Wi-Fi device in the smart IoT module.  
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6. Performance evaluation of IoT application in fluid transport system 

The developed IoT architecture application layer exhibits the data analysis with monitoring and control applications. It is 
accomplished by designing SCADA with the PID controller as local intelligence and cloud server as a centralized database along with 
cloud computing techniques to proactively decide and react promptly. 

The data processing algorithms like K-means clustering running on stored cloud data will perform online control actions (fire alerts, 
shut down of different equipment, identifying the exact location and rectifying the fault, operator alerts) against risk events like oil 
pipeline crack, bursts, etc., [17]. Figs. 10 and 11 shows the created IoT front interface for DCS fluid transport plant comprising of trend 
visualizing the real-time parameters’ values along with pump status for each pressure and flow rate control loop using API key. Table 8 
gives the limit for manipulating pressure variable acquired during crack and leak in the pipeline done manually to observe maximum 
and minimum ranges along with its notation on the IoT interface of input and output ports. Since pressure is the main attribute taken 
for data analysis, its threshold limit values alone are given in the configuration table. 

The main emergency shut off control is provided in this cloud server gets activated by stopping the pumps when the local intel
ligence fails to respond at the appropriate time during crack or leakage or burst in the pipeline during fluid transportation. The message 
monitor displays the enabled and disabled status of emergency shutoff and local intelligence associated with the DCS plant. Through 
the incorporation of IoT with the validated local intelligence (LQR-PID controller with SCADA), hardware configuration gets syn
chronized with the flexibility of software customized application to the DCS plant to provide monitoring and control capabilities online 
from a remote location [6]. 

To compare the performance of SCADA with the LQR-PID controller and IoT with local intelligence, the Cumulocity software 

Fig. 11. IoT front end panel to monitor and control pressure and flow rate remotely.  

Table 8 
Configuration of pressure and flow rate variable in IoT operator interface.  

Fluid transport pipeline station 
Manipulating parameters Pressure Flow rate 

Upper limit 2.35 kg/cm2 - 
Lower limit 0.15 kg/cm2 - 
Label notation in IoT front end IP1 IP4 
Input port configuration in IoT module AC1 AC4 
Emergency shutoff activating output port in IoT module DO2  
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testing platform is utilized. By interfacing each data processing execution flow chart to compute the time taken to complete the task is 
given in Table 9. The obtained results show that proposed research on IoT with SCADA has taken only 24µs (microseconds) to process 
each acquired data with fast activation of alert signals with a duration of 17µs (microseconds) respectively. 

6.1. K-means clustering machine learning to identify abnormal pressure variations in the cloud stored data 

In the cloud storage, to identify abnormal pressure rise and drop caused by the fault in the fluid pipeline system, the K-means 
clustering machine learning technique is implemented. K-means clustering belongs to hard or exclusive clustering in which each data 
point be appropriate to precisely one cluster with no more uncertainty in the orientation of cluster membership formulation [18–21]. 
Each data item in the evaluating database is allotted to only the cluster which possesses the maximum priority of similarity. The 
optimization model of K-means which incorporates intra-cluster compactness points to the statistics of dispersions and inter-cluster 
separation gives the distances between different clusters is summarized as 

P(U,W, Z) =
∑K

p=1

∑K

q=1

∑m

j=1
wp,q,jDp,q,j + γ

∑K

p=1

∑K

q=1

∑m

j=1
wp,q,jlog

(
wp,q,j

)
(12)  

Dp,q,j =
∑n

i=1
ui,p

[(
xi,j − zp,j

)2
− β

(
zp,j − zq,j

)2] (13)  

Subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑k

p=1
ui,p = 1, ui,p ∈ {0, 1}

∑m

j=1
wp,q,j = 1, 0 ≤ wp,q,j ≤ 1.

(14)  

Where X={X1, X2,……..Xn} be an input of n data set, Z= {Z1,…ZK} is a group of k vector, wp,q, j is the weight of the features, γ - features 
weight optimizing parameter, β -intra-cluster firmness and inter-cluster separation are contributing parameter, p, q represent cluster 
groups [22]. 

X={X1,X2,……..Xn} be an input of n data set characterized by Xi={xi,1,xi,2,...,xi,m}with m features. u is a membership matrix of n × k 
with ui,p = 1by denoting the feature assigned to cluster p otherwise it will not be grouped to cluster p. Z= {Z1 …ZK} is a group of k vector 
indicating the centroid of k clusters and wp,q, j is the weight of the features j in cluster p while comparing cluster p with q, as always 
p∕=q. The parameter γ is to optimize the allocation of features weight in each cluster and parameter β regulates the scheme of intra- 
cluster firmness and inter-cluster separation [23–25]. The software computing K-means includes the method of clustering data groups 
with minimum intra-cluster firmness and maximum inter-cluster segregation to enhance the strength of forming clusters on the 
implied data. Table 10 gives the pressure range statistical analysis during fluid transported in the pipeline showing normal 
performance. 

Table 10 provides the final cluster center points by showing the maximum rate optimal value where cluster formation terminated. 

Table 9 
Performance comparison of SCADA with LQR-PID and IoT with local intelligence.  

Parameters Local intelligence without IoT local intelligence with IoT 

Time is taken to transmit received data to the processing station 69µs (microseconds) 24 µs(microseconds) 
Time is taken to identify the abnormality ≥ 84µs (microseconds) ≤ 13µs (microseconds) 
Time is taken to activate the shutoff 17µs (microseconds) 9µs (microseconds) 
Data storing time 11µs (microseconds) 5µs (microseconds) 
Control signal initiating time ≤ 19µs (microseconds) ≤ 6µs (microseconds)  

Table 10 
Final cluster centers information regarding pressure attributes during normal condition.  

Pipeline station Final Cluster Distance between final cluster centers 
Cluster 1 Cluster 2 Cluster 1 Cluster 2 

pressure 1.8572 .4689 0.096 0.096  

Table 11 
Final cluster centers information regarding pressure attributes during abnormal condition.  

Pipeline station Final Cluster Distance between final cluster centers 
1 2 Cluster 1 Cluster 2 

pressure 2.1572 0.1886 1.982 0.237  
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The final cluster centers conclude 1.8572–0.4689 kg/cm2 for pressure correspondingly. Hence by this final cluster center data, the 
inspection engineer observes the pressure range variations to estimate normal and abnormal performance. In the obtained results of 
final cluster centers, all attributes are within the normal threshold limit pointing not the existence of any risk occurrence in the 
evaluated performance. Similarly, Table 11 gives the analysis result regarding pressure variation due to abnormality in the pipeline 
caused by leak during the long run passage. The obtained analysis inference confirms that the inspection engineer identifies that the 
pressure goes beyond the desired limit. Further, it ensures that the experimental run data of pressure data obtained during normal 
operating conditions summarized in Tables 2 and 3 coincides with the final cluster centers range. The ANOVA result shown in Table 12 

Table 12 
ANOVA table for designed clusters based on pressure attributes in first-month data.  

ANOVA- Oil Station  
Cluster Error F Sig. 
Mean Square df Mean Square Df 

Pressure 4 55157.067 1 0.092 19017 59991.962 0.000  

Fig. 12. Executing the K-means algorithm on pressure 4 attributes for first-month datasets of the oil station.  

Fig. 13. Cluster formation for pressure during the normal performance (X & Y-axes are in kg/cm2).  
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indicates the most prominent attributes constituting more contribution for the cluster solution can be identified by the cluster-based 
mean square value. Regarding the predominant contribution in sub-stations, only one parameter is considered to holds the mean 
square value of 55157.06 for pressure four labels. Meanwhile, the attribute with the uppermost F (F-statistics) value offers maximum 
separation between the cluster formations. In ANOVA table on pipeline station incorporates all the undertaken attribute holds 
maximum F value pointing the clusters well-oriented with more similarity data between the designed clusters with the rate of around 
59991 for oil station. 

The descriptive statistic summary output of the K-means clustering algorithm on a different bimonthly real-time database of 
pressure variables acquired from stations 1 and 2 is further validated by this software platform. In this platform, once the execution of 
K-means clustering has been completed on the given datasets, it is feasible to visualize clusters by utilizing the visualize cluster as
signments option available in the results list as shown in Fig. 12. Figs. 13 and 14 shows the visualization of the final cluster result of 
Tables 10 and 11 showing the cluster assignment structure during the normal and abnormal performance by analyzing the pressure 
data using WEKA software. 

Fig. 14 shows that two cluster groups have not coincided whereas most of the datasets accumulated in cluster 1 indicating regular 
operating performance whereas cluster 2 with minimum datasets figuring out the appearance of unusual sudden pressure drops 
occurred during transportation in the fluid pipelines. It can be concluded that if the processing historical pressure datasets are lying 
within the safer threshold limit, two clusters get overlapped pointing to normal transportation performance as seen in Fig. 13. In 
another case, if the pressure range were out of the threshold fit range indicates two clusters without overlap pointing to abnormal 
performance during transportation as shown in Fig. 14. On identifying occurred abnormal performance by K-means clustering al
gorithm, between the two separated clusters, the cluster with minimum datasets infers the abnormal pressure rises or drops existed 
during transportation. Hence by implementing K-means clustering on the historical datasets holding multiple pressure variables, it will 
be possible to identify the occurred pressure rises or drops at the early stage by proactively making a decision rather than before it leads 
to great losses in the surrounding circumstances. 

7. Conclusion and future scope 

The proposed SCADA architecture with the LQR-PID controller and IoT application provides better improvement in online 
monitoring and control of field parameters by overcoming the drawbacks of the SCADA system. The conducted experimental results of 
the NB-IoT module proves its excellent signal strength of data transmission with maximum throughput having SNR value > -60 dBm 
range. The real-time validation of the LQR-PID controller with the SCADA system offers better control action only when the field 
parameters show deviation with ±0.65 range of threshold range. But when the risk occurrences like crack and blockages exist in the 
pipeline, it undergoes abnormal deviation by exceeding the ±0.65 range of the threshold range. The designed local intelligence fails to 
act instantly which leads to great damage to human life and the environment. The incorporated IoT with local intelligence provides 
timely monitoring and control action by executing the k-means clustering machine learning technique to analyze the pressure ab
normality. The performance comparison of SCADA with the LQR-PID controller and IoT with local intelligence using the Cumulocity 
software platform shows that the proposed architecture has taken only 24µs (microseconds) to process each acquired data with fast 
activation of alert signals with a duration of 17µs (microseconds) respectively. Further, the final cluster assignment statistical result of 
normal and abnormal pressure range of data analysis gets matched with the real-time threshold limit decided for a smooth trans
portation over a long distance. 

Regarding the future work, the present experimented LQR-PID controller with SCADA as a local intelligence in an Internet of Things 
(IoT) based reliable monitoring and control modular architecture will be implied in real-time in the industrial oil pipeline system. 

Fig. 14. Cluster formation for pressure during the abnormal performance (X & Y-axes are in kg/cm2).  
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Advanced deep learning algorithms will be applied for data analysis to identify risk occurrences on the process plant. 
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