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DEGREE REDUCTION OF BÉZIER CURVES WITH CHEBYSHEV WEIGHTED

G3-CONTINUITY

SALISU IBRAHIM1,2 , ABEDALLAH RABABAH3

Abstract. This paper considers Chebyshev weighted G3-multi-degree reduction of Bézier curves. Exact degree
reduction is not possible, based on this fact, approximative process to reduce a given Bézier curve of higher degree
n to a Bézier curve of lower degree m, m < n is required. The weight function w[t] = 2t(1− t), t ∈ [0, 1] is used
with the L2 -norm in multi degree reduction with G3- continuity at the end points of the curve. Explicit results
and comparisons are verified by examples. The numerical result obtained from the new method yields minimum
approximation error, improves the approximation in the middle of the curve, and shows up helpful applications
to many scientists and engineers on how to design and reconstruct complex systems.
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1. INTRODUCTION

In degree reduction, we approximate a Bézier curve of degree n by a Bézier curve of degree m,m < n under
the satisfaction of boundary conditions and minimum error conditions. The struggles of finding a solution
are disturbed by the requirement of solving a non-linear problem. This requires using numerical methods. In
1999, D. Lutterkort, J. Peter, and U. Reif proved in [6] that degree reduction of Bézier curves in the L2 norm
equals best Euclidean approximation of Bézier points. The generalization to the constrained case was done by
Ahn et. al. in [1] while the author in [2] studied the discrete cases. The idea of using the Jacobi basis and
Bernstein was introduced by Rababah et.al in 2007, see [12]. The existing methods to find degree reduction
have many issues including: stability issues, accuracy, complexity, accumulate round-off errors, experiencing
ill-conditioned systems, leading to a singularity, difficulty and indirect in applying the methods. A. Rababah
and S. Mann presented also in [13] linear G1, G2, and G3-multiple degree reduction methods for Bézier curves.
We observe a significant progress in degree reduction of Bézier curves when Rababah and Ibrahim introduced
the weighted G0 and weighted G1, weighted G1 and weighted G2 methods in [8, 9, 10] respectively. Simsek
Y and Gunay M use the application of Bernstein polynomials to find an explicit polynomial representation of
Bézier curves in [14]. Because of the new development in modern design and digital technology, the author in
[3] makes use of Intrusion Identification with an idea of Bézier curve to verify the automated offline signature.
Bézier curves are more user friendly and significant in the area of medical image practice, [5] use Bihistogram
Bezier curve contrast enhancement to improve medical image visual appearance. Recently, the authors in [15]
present Geometric Degree Reduction of Bézier Curves.

Most of degree reducing methods consider application of free parameters and conditions at the end points,
but in this paper, we present the Chebyshev weight with the problem of degree reduction of Bézier curves. So
that it gives more weight to the center of the curve. It is more suitable to consider degree reduction with the
weight function w[t] = 2t(1− t), t ∈ [0, 1]. The obtained result yields better approximation at the center of the
curves with minimum error. This method has not been studied and appeared in the literature yet; and this
paper fills this vacancy.

2. PRELIMINARIES

Defination 1. A Bézier curve Pn(t) of degree n is defined algebraically as follows:

Pn(t) =

n∑
i=0

piB
n
i (t) 0 ≤ t ≤ 1,(1)

where

Bn
i (t) =

(
n

i

)
(1− t)n−iti, i = 0, 1, . . . , n,

are the Bernstein polynomials of degree n, and p0, p1, . . . , pn are refers to as the Bézier control points of the
Bézier curve.
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The product of two Bernstein polynomials with the weight function 2t(1− t) is given by

Bm
i (t)Bn

j (t)2t(1− t) =
2
(
m
i

)(
n
j

)
(
m+n+2
i+j+1

)Bm+n+2
i+j+1 (t).

We define the Gram matrix Gm,n as the (m+ 1)× (n+ 1)-matrix, whose elements are given by

gij =

∫ 1

0
Bm

i (t)Bn
j (t)2t(1− t)dt =

2
(
m
i

)(
n
j

)

(m+ n+ 3)
(
m+n+2
i+j+1

) ,(2)

i = 0, . . . ,m, j = 0, 1, . . . , n.

The matrix Gm,m is positive definite, symmetric, and real [13].
The process of analysing the continuity and studying the behaviour of two curves with some geometric

properties is refers to as Geometric continuity. It does not depend on their parametrization and is denoted by
Gk. Geometric continuity provides extra free parameters, see [7, 13] that are used to minimize the error.

Defination 2. Bézier curves Pn and Rm are said to be Gk-continuous at t = 0, 1 if there exists a strictly
increasing parametrization s(t) : [0, 1] → [0, 1] with s(0) = 0, s(1) = 1, and

R(i)
m (t) = P (i)

n (s(t)), t = 0, 1, i = 0, 1, . . . , k.(3)

3. DEGREE REDUCTION OF BÉZIER CURVES

Degree reduction can be defined as a method of approximating a given Bézier curve of degree n by a Bézier
curve of degree m,m < n. Degree reduction is approximative process in nature and exact degree reduction is
ordinarily not possible. In this paper, our aim is to find a Bézier curve Rm(t) of degree m with control points
{ri}mi=0 that approximates a given Bézier curve Pn(t) of degree n with control points {pi}ni=0, where m < n.
The Bézier curve Rm has to satisfy the following two conditions:

(1) Pn and Rm are G3-continuous at the end points and
(2) the L2-error between Pn and Rm is minimum.

We can write two Bézier curves Pn(t) and Rm(t) in matrix form as.

Pn(t) =

n∑
i=0

piB
n
i (t) =: BnPn, 0 ≤ t ≤ 1,(4)

Rm(t) =
m∑
i=0

riB
m
i (t) =: BmRm, 0 ≤ t ≤ 1,(5)

where Bn, Bm are the row matrices involving the Bernstein polynomials of degree n, m, respectively, and Pn

and Rm are the column matrices involving the Bézier points of degrees n and m, respectively.
In this research, we consider the weighted L2-norm to measure distance between the Bézier curves Pn(t) and

Rm(t); therefore, the error term is given by

ε =

∫ 1

0
||BnPn −BmRm||22t(1− t)dt

=

∫ 1

0
||BnPn −Bc

mRc
m −Bf

mRf
m||2.2t(1− t)dt.(6)

4. METHODOLOGY

We form the linear systems and solve them for G3-degree reduction. The control polygons of the Bézier
curve are extended into their x and y subparts. Therefore, the vectors of our system of equations are rxk ,
ryk, k = 4, . . . ,m− 4, η0,η1,ζ0 and ζ1. The following vectors are defined to express the linear system in explicit
form:

PC = [px0 , ..., p
x
n, p

y
0, ..., p

y
n]

t,

RF = [rx4 , . . . , r
x
m−4, r

y
4 , . . . , r

y
m−4, η0, η1, ζ0, ζ1]

t,

RC = [rx0 , rx1 , vx2 , vx3 , vxm−3, vxm−2, rxm−1, rxm,

ry0 , ry1 , vy2 , vy3 , vym−3, vym−2, rym−1, rym]t.
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DEGREE REDUCTION OF BÉZIER CURVES WITH CHEBYSHEV WEIGHTED G3-CONTINUITY 3

For G3-degree reduction, we have to decompose each of r2,r3, and rm−3,rm−2 into a constant part and a part
involving η0,η1,ζ0 and ζ1. We define the following notations as the constant parts of r2,r3, and rm−3,rm−2:

v2 = 2r1 − r0 +
n(n− 1)

m(m− 1)
Δ2p0,(7)

vm−2 = 2rm−1 − rm +
n(n− 1)

m(m− 1)
Δ2pn−2,(8)

v3 = 3v2 − 3r1 + r0 +
n(n− 1)(n− 2)

m(m− 1)(m− 2)
Δ3p0,(9)

vm−3 = 3vm−2 − 3rm−1 + rm − n(n− 1)(n− 2)

m(m− 1)(m− 2)
Δ3pn−3.(10)

Let η∗0 and η∗1 be the coefficients of η0 and η1 in r3 and rm−3 respectively:

η∗0 = 3Δp0 +
3(n− 1)

(m− 2)
Δ2p0,(11)

η∗1 = 3Δpn−1 − 3(n− 1)

(m− 2)
Δ2pn−2.(12)

The following vectors are defined to express the linear system in explicit form:

PC
n = [px0 , ..., p

x
n, p

y
0, ..., p

y
n]

t,

RF
m = [rx2 , . . . , r

x
m−2, r

y
2 , . . . , r

y
m−2, δ0, δ1]

t,

RC
m = [rx0 , vx1 , vxm−1, rxm, ry0 , vy1 , vym−1, rym]t.

We can find our unknowns as, see [13]

RF
m = (GF

m,m)−1
(
GPC

m,nP
C
n −GC

m,mRC
m

)
,(13)

where

Gp
m,n := Gm,n(4, . . . ,m− 4; 0, 1, . . . , n),

Gc
m,m := Gm,m(4, . . . ,m− 4; 0, 1, 2, 3,m− 3,m− 2,m− 1,m),

Gf
m,m := Gm,m(4, . . . ,m− 4; 4, . . . ,m− 4),

and Gm,n(. . . ; . . .) is the sub-matrix of Gm,n formed by the indicated rows and columns.

5. APPLICATIONS AND ILLUSTRATIONS

We apply the methods on an example to support the effectiveness of the new method. Considering the
Bézier curve Pn(t) of degree 19 with the following control points, see [13]:
P0 = (37, 38), P1 = (43, 37), P2 = (39, 27), P3 = (29, 26), P4 = (23, 36),
P5 = (26, 50), P6 = (45, 56), P7 = (58, 47), P8 = (58, 29), P9 = (46, 14),
P10 = (26, 6), P11 = (5, 15), P12 = (0, 40), P13 = (3, 58), P14 = (24, 68),
P15 = (50, 75), P16 = (79, 69), P17 = (79, 36), P18 = (65, 12), P19 = (50, 0).
This curve is reduced to Bézier curve Rm(t) of degree 8.
Fig. 1 depicts the original curve in solid-black, weighted G1-degree reduction in dashed-green curve, while at
the right: the curve is reduced to degree 8 with C1-method in (dashed-red), G1-method in (dashed-blue) and
real curve in (black).
Fig. 2 illustrates the real curve in black, weighted G2-degree reduction in dashed-red curve, while at the right:
the curve is reduced to degree 8 with C2-method in (dashed-red), C1/G2-method in (dashed-green) and real
curve in (black).
Fig. 3 illustrates the real curve in solid-black, weighted G3-degree reduction in dashed-red curve, while at
the right: the curves is reduced to degree 8 with C3-method in (dashed-red), C1/G3-method in (dashed-green)
and real curve in (black).
Regarding the error functions in Fig. 4 long dashed-blue, dotted-green and dashed-red curves represent
weighted G1, G2 and G3-degree reduction respectively, while on the Right: it is reduced to degree 8 with
G1-method in (blue), C1/G2-method in (green) and weighted C1/G3-method in red and using (black) no
constraints.
Fig. 5 illustrates the real curve in solid-black, weighted G3-degree reduction in dashed-green curve, while at
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the right: the curve is reduced to degree 9 with C3-method in (dashed-red), C1/G3-method in (dot-green),
and real curve in (black).

Figure 1. Left: The curve of degree 19 reduced to degree 8 with weighted G1 in (dot-green)
and real curve in (black). Right: It is reduced to degree 8 with C1 method in (dashed-red),
G1-method in (dashed-blue) and real curve in (black).

Figure 2. Left: The curve of degree 19 reduced to degree 8 with weighted G2 in (dot-red) and
real curve in (black). Right: It is reduced to degree 8 with C2 method in (dashed-red), C1/G2

method in (dot-green) and real curve in (black).

Figure 3. Left: The curve of degree 19 reduced to degree 8 with weighted G3 in (dashed-red)
and real curve in (black). Right: It is reduced to degree 8 with C3 method in (dashed-red),
C1/G3 method in (dashed-green) and real curve in (black).

Fig. Errors of existing G1, C1/G2, C1/G3 Errors of proposed Weighted G1, G2, G3

1 and 4 Error of existing G1 : 5.1 Error of proposed weighted G1: 0.9
2 and 4 Error of existing C1/G2: 12.5 Error of proposed weighted G2: 3.7
3 and 4 Error of existing C1/G3: 29.2 Error of proposed weighted G3: 8

Table 1: Comparison with other existing methods
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Figure 4. Error plots: Left: Degree 19 reduced to degree 8 with weighted G3-method in
(dashed-red), weighted G2 method in (dotted-green) and weighted G1 method in (long-dashed-
blue). Right: It is reduced to degree 8 with G1-method in (blue), C1/G2 method in (green) and
C1/G3 method in (red) and using (black) no constraints.
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DEGREE REDUCTION OF BÉZIER CURVES WITH CHEBYSHEV WEIGHTED G3-CONTINUITY 5

degree 19
C3
C1/G3

Figure 5. Left: The curve of degree 19 reduced to degree 9 with weighted G3-method in
(dashed-green) and real curve in (solid- black). Right: It is reduced to degree 9 with C3-method
in (dashed red), C1/G3 method in (dashed-green), and real curve in (black).

6. CONCLUSION

By considering weighted G3- method and comparing it with the existing methods of degree reduction of
Bézier curves. The Numerical results obtained from our examples show that our method outperforms and
guarantee lesser error than the existing methods.
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