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Abstract: Evaporation plays significant roles in agricultural production, climate change and water 

resources management. Hence, its accurate prediction is of paramount importance. This study aimed at 

investigating the potentials of artificial neural network (ANN), support vector regression (SVR) and 

classical multiple linear regression (MLR) models for monthly pan evaporation modeling in Erbil and 

Salahaddin stations of Iraq. Data including maximum, minimum, and mean temperatures, wind speed, 

relative humidity, and vapor pressure were used as inputs for 5 different input combinations to achieve 

the study objective. For performance evaluation of the applied models, root mean square error (RMSE) 

and determination coefficient (DC) were employed. In addition, Taylor diagrams were plotted to compare 

the performance of the models. The results showed that models with 6 inputs provided the best 

performance for Salahaddin station, but 5 inputs model led to better accuracy for MLR model in Erbil 

station. ANN provided superior performance with DC = 0.9527 and RMSE = 0.0660 for Erbil station while 

for Salahaddin station, SVR performed better with DC and RMSE of 0.8487 and 0.0753 in the validation 

phase. The general study results demonstrated that all the 3 applied models could be employed for 

successful pan evaporation modeling in the study stations, but for better accuracy, ANN is preferable. 

Keywords: Artificial Neural Network, Support Vector Regression, Erbil, Data, Salahaddin 

1. Introduction 

Pan evaporation (Ep) is extensively used in irrigation as well as regional water resources systems 

design being a significant factor for atmospheric evaporative demand (Azorin-Molina et al., 2015). It 

plays an important role in the global climate change context with respect to energy cycles and water 

balance (Yang & Yang, 2012; Wang et al., 2017). Analyses on the causes and trends of Ep have been 

carried out in different regions of the world by many studies including Zhang et al. (2015), yet, it is 

generally recognized that in some areas (more especially arid and semiarid regions which have scarce 

water resources), evaporation is among the hydrologic water cycle components with less 

understanding pattern (Valipour & Eslamian, 2014; Goyal et al., 2014). For agricultural production, 

irrigation control and water resources management, accurate estimation of Ep is of great priority (Shiri 

et al., 2014). 

Direct and indirect approaches are generally the two methods used for calculating or predicting 

evaporation. The direct method employed the use of instruments for measuring the evaporation (such 

as Ep); however, practical issues such as maintenance and measurement errors as well as instrumental 

limits may deter the efficiency of the evaporation measurements (Wang et al., 2017). Hence, for the 

evaporation prediction, several methods using observed meteorological parameters have been 

proposed by modeling the relationship linearly between Ep and meteorological data (including solar 

radiation, sunshine hours, air pressure, relative humidity, air temperature, etc.) (Wang et al., 2017). 

The empirical methods when applied to other sites however need to be recalibrated. The evaporation 
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process is however nonlinear, unsteady, incidental and complex (Kisi, 2015). Therefore, driven 

accurate relationship that will represent the physical processes involved between climatic parameters 

and Ep is difficult to be achieved (kim et al., 2015). Consequently, the use of nonlinear data driven 

methods for hydrological modeling studies on Ep have been emphasized by many researchers (Wang 

et al., 2017). 

Recently, application of artificial intelligence (AI) methods such as artificial neural network (ANN) 

and support vector regression (SVR) have been widely recognized for ecohydrological process 

modeling across the globe (Bewoor et al., 2016). For instance, Rahimikhoob (2009) estimated Ep in 

daily basis in a semiarid environment using ANN as a function of air temperature in the southwest of 

Iran. Shirsath and Singh (2010) applied ANN, MLR and climate-based models for daily pan 

evaporation estimation. Wang et al. (2017) used four heuristic approaches including least square-SVR 

and MLR for daily pan evaporation estimation in Dongting Lake Basin, China. Qasem et al. (2019) 

modeled monthly pan evaporation using ANN, SVR and their hybrid forms. 

Despite the significance of using AI techniques in modeling evaporation process which is an important 

parameter in irrigation system, water resources management and hydrologic water cycle, based on the 

overall assessment of the authors, there is no study in the present literature that used ANN, SVR and 

MLR models for monthly pan evaporation modeling in Erbil and Salahaddin stations in particular and 

Iraq in general. Therefore the main aim of this study was to evaluate the performance of ANN, SVR 

and MLR models using different input combinations of meteorological parameters (including 

maximum temperature, minimum temperature, mean temperature, relative humidity, vapor pressure 

and wind speed) for monthly Ep modeling. 

2. Materials and Method 

2.1 Study Locations and Data 

Erbil is the largest and the capital city of Kurdistan region in northern Iraq. Its location is within a 

continental semiarid climate. Erbil experiences cool and rainy winters with warm and dry summers 

(Nourani et al., 2019a). Erbil governorate estimated population in 2010 was 1,820,000 whereas the 

city population was 852,000. The Erbil district population density in terms of persons/km2 was 472.9 

(Rasul et al., 2015). Salahaddin city is also located in Kurdistan region in further north of Iraq. The 

climate of Salahaddin is considered semiarid according to Sarlak and Agha (2018) study. Figure 1 

shows map of Iraq and respective study locations. 
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Figure 1: Study country and location of the study stations 

The data used in this study are of 20 years duration (1992-2011) of monthly measurement including 

maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean), relative 

humidity (RH), vapor pressure (VP), Ep and wind speed (U2) obtained for each study station from 

general directorate of dams and reservoirs, Kurdistan. Table 1 gives statistical description of the used 

data. 

Table 1: Data descriptive statistics 

Station  Variable  unit Minimum Maximum Mean St.deviation 

Erbil Tmean 0C 6 37.3 21.28 9.37 

 Tmax 0C 9.5 45 27.5 10.63 

 Tmin 0C 0.6 30 15.07 8.26 

 RH % 5 88 46.73 18.78 

 VP mbar 3.5 18.3 11.12 2.57 

 U2 m/s 1 7 2.5 0.8 

  Ep mm/day 1 16 6.84 4.39 

Salahaddin Tmean 0C 0 34.6 18.02 9.27 

 Tmax 0C 0 39.9 22.26 10.29 

 Tmin 0C -1.6 29.2 13.35 8.57 

 RH % 24 92 52.27 16 

 VP mbar 4.7 20.1 10.46 3.58 

 U2 m/s 1 4 2.36 0.64 

  Ep mm/day 0.1 15.5 4.99 3.48 
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As seen in Table 1, Erbil station is more semiarid which has Tmax as high as 45 0C and RH as low as 

5% whereas Salahaddin is more humid with Tmax as 39.9 0C and maximum RH of 92%. Evaporation is 

less in Salahaddin station as minimum Ep value of 0.1 mm/day could be seen. This is because of the 

dryness of the Erbil land coupled with high temperature which increase the rate of Ep for Erbil station. 

To determine the effect and correlation of each variable on the target, Pearson correlation matrix was 

developed. Table 2 provides the results of the used correlation matrix. 

Table 2: Results of the applied correlation matrix 

Station Variable Ep 

(mm/day) 

Tmean 0C Tmax 0C Tmin 0C RH (%) VP 

(mbar) 

U2 

(m/s) 

Erbil Ep 

(mm/day) 

1       

 Tmean 0C 0.95187 1      

 Tmax 0C 0.947304 0.99118 1     

 Tmin 0C 0.948491 0.989551 0.971483 1    

 RH (%) -0.86684 -0.88408 -0.89572 -0.86305 1   

 VP 

(mbar) 

0.725395 0.778229 0.762167 0.792531 -0.54576 1  

  U2 (m/s) 0.000203 -0.03324 -0.02856 -0.04811 0.027797 0.001558 1 

Salahaddin Ep 

(mm/day) 

1       

 Tmean 0C 0.886293 1      

 Tmax 0C 0.887104 0.981548 1     

 Tmin 0C 0.903824 0.982538 0.990335 1    

 RH (%) -0.88738 -0.87041 -0.88985 -0.88183 1   

 VP 

(mbar) 

0.786193 0.871481 0.873193 0.889176 -0.69521 1  

  U2 (m/s) 0.240498 0.098463 0.074705 0.106517 -0.16363 0.042088 1 

 
The results shown in Table 2 demonstrated that the correlation between Ep and temperature is directly 

proportional, implying that as the temperature increases the rate of Ep increases and vice versa. This 

is why the temperatures (Tmean, Tmax, and Tmin) in Erbil station have higher correlation than in 

Salahaddin station. Among all the variables, RH was found to be less correlated with Ep compared to 

the rest. 

2.2 Data Normalization and Performance Criteria 

At initial stage, the data were normalized to eliminate the dimension of inputs and output and to ensure 

equal attention is given to all variables. The data were normalized between 0 and 1 according to Elkiran 

et al. (2018) as. 

𝐸𝑝𝑛𝑜𝑟𝑚 =
𝐸𝑝𝑖−𝐸𝑝𝑚𝑖𝑛

𝐸𝑝𝑚𝑎𝑥−𝐸𝑝𝑚𝑖𝑛
        [1] 

Where 𝐸𝑝𝑛𝑜𝑟𝑚, 𝐸𝑝𝑖, 𝐸𝑝𝑚𝑎𝑥 and 𝐸𝑝𝑚𝑖𝑛 are respectively the normalized, observed, maximum and 

minimum values of Ep. 
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To determine the accuracy of the applied models, this study endorsed Legates and McCabe (1999) 

study which suggested that for any hydroclimatic model, Determination Coefficient (DC) and Root 

Measn Square Error can be sufficient for performance evaluation (Nourani et al., 2019a), given by; 

𝐷𝐶 = 1 −
∑ (𝐸𝑝𝑖−𝐸𝑝̂𝑖)2𝑁

𝑖=1

∑ (𝐸𝑝𝑖−𝐸𝑝̅̅ ̅̅ 𝑖)2𝑁
𝑖=1

        [2] 

𝑅𝑀𝑆𝐸 =
∑ (𝐸𝑝𝑖−𝐸𝑝̂𝑖)2𝑁

𝑖=1

𝑁
        [3] 

Where 𝐸𝑝𝑖 has been defined, 𝑁, 𝐸𝑝̂𝑖, and 𝐸𝑝̅̅̅̅
𝑖 are the number of observations, predicted values and 

mean of the observed values, respectively. The DC ranges between - ∞ to 1 and RMSE between 0 to 

∞ with DC towards 1 and RMSE close to 0 imply high efficiency (Nourani et al., 2019b). 

2.3 Proposed Methodology 

In this study, AI based and MLR models were applied for modeling Ep in two meteorological stations 

in Iraq. At initial stage, correlation matrix was applied to determine the effectiveness of the variables 

on Ep. Based on the obtained results, five different input combinations were formed given as. 

𝐸𝑝𝑠 = 𝑓(𝑇𝑚𝑖𝑛
𝑠 , 𝑇𝑚𝑒𝑎𝑛

𝑠 )        [4] 

𝐸𝑝𝑠 = 𝑓(𝑇𝑚𝑖𝑛
𝑠 , 𝑇𝑚𝑒𝑎𝑛

𝑠 , 𝑇𝑚𝑎𝑥
𝑠 )       [5] 

𝐸𝑝𝑠 = 𝑓(𝑇𝑚𝑖𝑛
𝑠 , 𝑇𝑚𝑒𝑎𝑛

𝑠 , 𝑇𝑚𝑎𝑥
𝑠 , 𝑉𝑝

𝑠)       [6] 

𝐸𝑝𝑠 = 𝑓(𝑇𝑚𝑖𝑛
𝑠 , 𝑇𝑚𝑒𝑎𝑛

𝑠 , 𝑇𝑚𝑎𝑥
𝑠 , 𝑉𝑝

𝑠, 𝑈2
𝑠)      [7] 

𝐸𝑝𝑠 = 𝑓(𝑇𝑚𝑖𝑛
𝑠 , 𝑇𝑚𝑒𝑎𝑛

𝑠 , 𝑇𝑚𝑎𝑥
𝑠 , 𝑉𝑝

𝑠, 𝑈2
𝑠, 𝑅𝐻

𝑠 )      [8] 

Where the superscript s (such as in 𝐸𝑝𝑠) represents the station (e.g. Erbil or Salahaddin), 

𝑇𝑚𝑖𝑛, 𝑇𝑚𝑒𝑎𝑛, 𝑇𝑚𝑎𝑥, 𝑉𝑝, 𝑈2 and 𝑅𝐻 were previously defined. The general methodology employed in this 

study is given in Fig 2. 
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Figure 2: The overall methodology of the study 

2.4 Model Validation 

A stratified k-fold cross validation was applied in this study. The main advantages of using this 

validation approach over hold-out validation approach (which uses single test set per station) are that 

both training and validation are done by all observations and each observation is used exactly once for 

the model validation (Nourani et al., 2019a). The data were randomly divided into 4-folds of equal 

subsamples as shown in Fig.4. The model was trained using ¾ of the subsamples while the remaining 

¼ was used for testing the model. The procedure was repeated 4 times (the number of subsamples), in 

each case, different k-1 (4-1) subsamples were used for training and the remaining subsample for 

testing the model. Figure 3 shows the data splitting procedure for training and validation of the models. 
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Figure 3: Data division for the applied k-fold cross validation 

2.5 Artificial Neural Network (ANN) 

ANN provides a determined approach in dealing with non-linear, noisy, and dynamic data, more 

specifically when the physical fundamental relationship are not completely known (Nourani et al., 

2012).  

ANN constitutes a number of simple processing elements that are interconnected by nodes or neurons 

with fascinating characteristics of information processing including parallelism, nonlinearity, 

generalization capability, learning and noise tolerance. For solving many engineering problems, a feed 

forward neural network trained with back propagation (FFBP) algorithm is the most applied ANN 

method (Nourani et al., 2009; Abdullahi et al., 2017). The FFBP method is comprised of layers of 

parallel processing elements known as neurons, with every successive layer neuron completely 

connected to its predecessor layer by weight (Abdullahi & Elkiran, 2017). BP algorithm generally 

accomplished this ANN learning (Hornik et al., 1989).  Figure 4 shows the ANN structure with 4 

inputs, 5 hidden layer neurons and an output (Ep). 
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Figure 4: A three layered FFNN structure 

2.6 Support Vector Regression (SVR) 

The concept of SVM learning was introduced by Cortes and Vapnik (1995). It presents a satisfactory 

approach to the problems of classification, pattern recognition, regression and prediction.  SVM based 

methods such as SVR is different from many other black box methods, in such a way that instead of 

minimizing the error between predicted and observed values, the operational risk is considered as the 

objective function to be minimized. A linear regression is fitted first on the data in SVR, and then to 

catch the nonlinear data pattern, the output go through a nonlinear kernel.  

Given a set of training data {(𝑥𝑖, 𝑑𝑖)} 𝑑𝑖 is the actual value, 𝑥𝑖 is the input vector and N is the data 

patterns total number), the general SVR function is (Wang et al., 2013): 

𝑦 = 𝑓(𝑥) = 𝑤𝜑(𝑥𝑖) + 𝑏      [4] 

where 𝜑(𝑥𝑖) non-linearly mapped from input vector x which implies feature spaces (Vapnik 1998). 

minimization of the objective function and assigning positive values for the slack parameters of ξ and 

ξ* may determine regression parameters of b and w (Wang et al., 2013). 

Minimize: 
1

2
∥ 𝑤 ∥2+ 𝐶[∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖 ]        

Subject to: {

𝑤𝑖𝜑(𝑥𝑖) + 𝑏𝑖 − 𝑑𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝑑𝑖 − 𝑤𝑖𝜑(𝑥𝑖) + 𝑏𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗                                          

    i=1,2,…,N    

where 
1

2
∥ 𝑤 ∥2 is the weights vector norm and the trade-off between the regularized term and the 

empirical error is determined by C referred to as the regularized constant? ε is equivalent to the 

approximation accuracy placed within the training data points and is called the tube size. By defining 

Lagrange multipliers αi and αi*, optimization problem mentioned can be changed to the dual quadratic 
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optimization problem.  After solving the quadratic optimization problem, vector w in Eq. (9) can be 

computed as (Wang et al., 2013): 

𝑤∗ = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝜑(𝑥𝑖)𝑁

𝑖=1        [9] 

So, SVR can be expressed in the final form of as (Wang et al., 2013): 

𝑓(𝑥, 𝛼𝑖, 𝛼𝑖
∗) = ∑ (𝛼𝑖 −𝑁

𝑖=1 𝛼𝑖
∗)𝐾(𝑥, 𝑥𝑖) + 𝑏     [10] 

b is bias term and non-linear mapping into feature space is performed by k (xi, xj) which is the kernel 

function. Gaussian Radial Basis Function (RBF) kernel is one of the commonly used kernel functions 

as (Haghiabi et al. 2017): 

𝑘(𝑥1, 𝑥2) = exp (−𝛾||𝑥1 − 𝑥2||2)      [11] 

where, γ is the kernel parameter. Figure 5 show the SVR structure. 

 

Figure 5: The structure of SVM model (Ghorbani et al., 2018) 

2.7 Multiple Linear Regression 

Multiple linear regression (MLR) is a famous method of modeling mathematically, the linear 

relationship between one or more independent variables and dependent variable. In general, the 

dependent variable 𝑦, and 𝑛 regressor variables may be related by (Elkiran et al., 2018): 

𝑦 =  𝑏0 + 𝑏1𝑥1 +  𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑖𝑥𝑖 + 𝜉                         [12] 

Where 𝑥𝑖 is the value of the 𝑖𝑡ℎ predictor, 𝑏0 is the regression constant, and 𝑏𝑖 is the coefficient of the 

𝑖𝑡ℎ predictor and 𝜉 is the error term. 
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3. Results and Discussion 

This study was performed to model Ep for Erbil and Salahaddin stations in the Kurdistan region of 

Iraq, hence the results and discussion section is provided accordingly. For the ANN model in both 

stations, FFNN was used for the model training using Levenberg Marquardt (LM) algorithm. Single 

hidden layer was used and via trial and error, the best number of hidden layer neurons was selected. 

For SVR modeling, RBF kernel shows better accuracy and hence used in this study (Sharghi et al., 

2018). Lastly, based on input-output linear relationship, MLR modeling of Ep was performed. Table 

3 shows the results of applied models for Erbil station. 

Table 3: Results of Ep modeling for Erbil station 

    Training Validation 

Model Model 

No. 

Input Structure DC RMSE DC RMSE 

ANN M1 Tmin, Tmean 2-7-1 0.9215 0.0803 0.9042 0.0938 

 M2 Tmax, Tmin, Tmean 3-6-1 0.9444 0.0675 0.8906 0.1003 

 M3 Tmax, Tmin, Tmean, VP 4-12-1 0.9385 0.0711 0.9268 0.0820 

 M4 Tmax, Tmin, Tmean, VP, U2 5-15-1 0.9417 0.0692 0.9376 0.0757 

  M5 Tmax, Tmin, Tmean, VP, U2, RH 6-14-1 0.9506 0.0637 0.9527 0.0660 

SVR M1 Tmin, Tmean RBF 0.9236 0.0792 0.8988 0.0964 

 M2 Tmax, Tmin, Tmean RBF 0.9282 0.0768 0.9098 0.0910 

 M3 Tmax, Tmin, Tmean, VP RBF 0.9290 0.0763 0.9120 0.0899 

 M4 Tmax, Tmin, Tmean, VP, U2 RBF 0.9301 0.0758 0.9154 0.0882 

  M5 Tmax, Tmin, Tmean, VP, U2, RH RBF 0.9360 0.0725 0.9155 0.0881 

MLR M1 Tmin, Tmean 2-1 0.9104 0.0858 0.8915 0.0998 

 M2 Tmax, Tmin, Tmean 3-1 0.9110 0.0855 0.8979 0.0969 

 M3 Tmax, Tmin, Tmean, VP 4-1 0.9122 0.0849 0.9036 0.0941 

 M4 Tmax, Tmin, Tmean, VP, U2 5-1 0.9132 0.0844 0.9054 0.0932 

  M5 Tmax, Tmin, Tmean, VP, U2, RH 6-1 0.9148 0.0836 0.9030 0.0944 

 The data have been normalized, so RMSE has no unit 

For the structure of ANN model in Table 3, a-b-c represent the number of inputs, number of hidden 

layer nodes and number of outputs. For SVR, RBF stands for tuned kernel’s parameters used in SVR 

construction and x-y for MLR model signifies inputs and output number, respectively. 

In view of the obtained results in Table 3, it is apparent that all the applied models are sufficient for 

Ep modeling in Erbil station with DC and RMSE up to 0.9527 and 0.0660 for ANN model, 0.9155 and 

0.0881 for SVR model and 0.9054 and 0.0932 for MLR model in the validation phase for the best 

performance models. Also, from Table 3, it can be seen that the AI models have superior performance 

over MLR model both in training and validation phases. This could be attributed to the ability of AI 

techniques to deal with complex and nonlinear Ep process. Among the AI models, ANN is found to 

have better prediction accuracy, though fluctuations could be observed such as in M2 where better 

performance is achieved by SVR model using both DC and RMSE performance indicators in the 

validation phase. Many reasons could be associated to this development some of which include. 
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1. Time series prediction involved complex and uncertain behavior of a system due to the huge 

amount of data used for a long period of time, which could be affected by seasonality, non-

stationarity and missing values. This could result in increase and decrease (or rise and fall) of 

the observations, which in turn might lead to failure of a particular model to capture all the 

aspects of the data efficiently. As such, one model may perform better at certain stage and 

inferior at another stage of the modeling. 

2. Though the applied models are both nonlinear in nature, but their methodologies of application 

as well as the training parameters are quite different, thus an adjustment of a particular parameter 

may increase accuracy of one model and could be deterrent to another. 

Figure 6 shows the time series and scatter plots for the best performance models in the validation phase 

of Erbil station. 

 

Figure 6: Time series and scatter plots for the best performance models in Erbil station for (a) ANN 

model (b) SVR model (c) MLR model 

Table 4 shows the results of applied models for Salahaddin station. Both the models applied and 

structure are same as in the case of Erbil station. 
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Table 4: Results of Ep modeling for Salahaddin station  

    Training Validation 

Model Model 

No. 

Input Structure DC RMSE DC RMSE 

ANN M1 Tmax, Tmean 2-4-1 0.8519 0.0648 0.7356 0.1236 

 M2 Tmax, Tmin, Tmean 3-5-1 0.8612 0.0627 0.8004 0.1074 

 M3 Tmax, Tmin, Tmean, VP 4-11-1 0.8192 0.1022 0.7699 0.0808 

 M4 Tmax, Tmin, Tmean, VP, U2 5-10-1 0.9053 0.0518 0.7944 0.1090 

 M5 Tmax, Tmin, Tmean, VP, U2, RH 6-16-1 0.8776 0.0589 0.8473 0.0753 

SVR M1 Tmin, Tmean RBF 0.8111 0.0732 0.7775 0.1134 

 M2 Tmax, Tmin, Tmean RBF 0.8210 0.0713 0.7788 0.1130 

 M3 Tmax, Tmin, Tmean, VP RBF 0.8356 0.0683 0.7776 0.1134 

 M4 Tmax, Tmin, Tmean, VP, U2 RBF 0.8846 0.0572 0.7889 0.1104 

 M5 Tmax, Tmin, Tmean, VP, U2, RH RBF 0.9041 0.0522 0.8487 0.0935 

MLR M1 Tmin, Tmean 2-1 0.7880 0.1107 0.7235 0.0886 

 M2 Tmax, Tmin, Tmean 3-1 0.7888 0.1104 0.7249 0.0883 

 M3 Tmax, Tmin, Tmean, VP 4-1 0.7894 0.1103 0.6943 0.0931 

 M4 Tmax, Tmin, Tmean, VP, U2 5-1 0.8003 0.1074 0.8003 0.0851 

 M5 Tmax, Tmin, Tmean, VP, U2, RH 6-1 0.8618 0.0626 0.8301 0.0825 

 The data have been normalized, so RMSE has no unit 

Being semiarid climate stations, the results in Table 4 show similar characteristics to the results 

obtained for Erbil station. It can be seen that for all the applied models, the performance of the models 

increases as the number of inputs increases. This shows that evaporation process has a complex 

stochastic nature which its accurate prediction requires several climatological parameters and depends 

on many factors. Despite the existence of strong correlation between Ep and temperatures, more 

variables are needed for efficient Ep modeling. For example, comparing M1 (which has only Tmin, and 

Tmean) with M5 (which has Tmax, Tmin, Tmean, VP, U2, and RH) a difference in performance in terms of 

DC up to 11% could be achieved for ANN models in the validation phase. 

Comparing Tables 3 and 4 results for Erbil and Salahaddin stations it can be deduced that, the applied 

models provided better performances in Erbil station than in Salahaddin station despite having same 

semiarid climate. This is because evaporation has a direct relationship with temperature. As shown in 

Table 1, the Tmax, Tmin, and Tmean are all higher in Erbil station than in Salahaddin station, hence as the 

temperature increases the rate of evaporation increases, hence higher Ep prediction by the models. 

However, behavior of the climate between the stations may lead to higher results in Erbil than 

Salahaddin. For instance, Sarlak and Agha (2018) study shows that different aridity index and period 

of investigation give varied climate for Salahaddin station. Using UNEP (1992) aridity index, 

Salahaddin station was found to be semiarid between 1998 – 2011, subhumid between 1980 – 1997 

and subhumid between 1980 – 2011. The unrealistic nature of the climate in the station leads to 

inefficiency of models to give comparable performance with the results of Erbil station. Figure 7 shows 

the time series and scatter plots for the best performance models in the validation phase of Salahaddin 

station. 
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Figure 7: Time series and scatter plots for the best performance models in Salahaddin station for (a) 

ANN model (b) SVR model (c) MLR model 

To further compare the performance of the models in both stations, Taylor diagrams are plotted. The 

overall models’ performances are summarizing by Taylor diagram considering models variability, 

error (RMSE) between computed and observed data and pattern correlation (Mehr et al., 2019). The 

records similarity between predicted and observed models is ascertained based on correlation 

coefficient (R) and standard deviation (SD), while the distance from the reference (observed) point is 

measured by RMSE (Yaseen et al., (2019). Figures 8 and 9 show the Taylor diagrams demonstrating 

the performances of the best models in both Erbil and Salahaddin stations. 
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Figure 8: Taylor diagram demonstrating the performance of the applied models for Erbil station 

 

Figure 9. Taylor diagram demonstrating the performance of the applied models for Salahaddin 

station 
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It can be seen that in both stations, the AI based models show better performance than MLR model. 

For Erbil station, in terms of R, the performances of the models are 0.9757, 0.9646 and 0.9570 for 

ANN, SVR and MLR models, respectively. Similarly, for Salahaddin station, the performances of 

ANN, SVR and MLR models are 0.9564, 0.9449 and 0.9370, respectively. By observing the 

performances of the models with regard to their difference with the observed value, it can be deduced 

that the AI models are more close to the observed value which indicate better agreement between 

predicted and observed values and hence, superior performance.  

4. Conclusion 

In this study, the potentials of two AI and (ANN and SVR) and MLR models in prediction of pan 

evaporation in Erbil and Salahaddin stations of Iraq were ascertained using five different input 

combinations. Pearson correlation matrix was applied to determine the preferred inputs. 

The results of the study showed that Temperatures (Tmax, Tmin, and Tmean) have higher correlation to 

Ep. The results also showed an increased performance of the applied models when the number of input 

variables increased which implied that, Ep depends on many factors for its prediction. The models 

demonstrated higher accuracy in Erbil station than Salahaddin station. The AI models performed better 

than MLR model, which most probably could be attributed to their ability to deal with nonlinear aspect 

of the system. ANN was found to have better performance for most of the developed models in both 

stations. Moreover, the results of this study implied that when the variables are properly utilized, the 

applied models in the study stations could achieve a successful modeling of ET0. Thus, further studies 

should incorporate more stations and models different from those used in this study, to determine their 

performances. 
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