
ORIGINAL RESEARCH

The adsorption of bromochlorodifluoromethane on pristine
and Ge-doped silicon carbide nanotube: a PBC-DFT, NBO,
and QTAIM study

Mohsen Doust Mohammadi1 & Hewa Y. Abdullah2

Received: 22 July 2020 /Accepted: 16 September 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In the present investigation, the feasibility of detecting the bromochlorodifluoromethane (BCF) gas molecule onto the
outer surface of pristine single-wall silicon carbide nanotube (SiCNT), as well as its germanium-doped structures
(SiCGeNT), was carefully evaluated. For achieving this goal, a density functional theory level of study using the
Perdew, Burke, and Ernzerhof exchange-correlation (PBEPBE) functional together with a 6-311G(d) basis set has been
used. Subsequently, the B3LYP, CAM-B3LYP, ωB97XD, and M06-2X functionals with a 6-311G(d) basis set were
also employed to consider the single-point energies. Natural bond orbital (NBO) and quantum theory of atoms in
molecules (QTAIM) were implemented by using the PBEPBE/6-311G(d) method, and the results were compatible with
the electronic properties. In this regard, the total density of states (TDOSs), the Wiberg bond index (WBI), natural
charge, natural electron configuration, donor-acceptor natural bond orbital interactions, and the second-order perturba-
tion energies are performed to explore the nature of the intermolecular interactions. All of the energy calculations and
population analyses denote that by adsorping of the gas molecule onto the surface of the considered nanostructures, the
intermolecular interactions are of the type of strong physical adsorption. The doped nanotubes have a very high
adsorption energy compared with pristine nanotube. Generally, it was revealed that the sensitivity of the adsorption
will be increased when the gas molecule interacts with decorated nanotubes and decrease the HOMO-LUMO band gap;
therefore, the change of electronic properties can be used to design suitable nanosensors to detect BCF gas.

Keywords Bromochlorodifluoromethane . BCF . Silicon carbide . Nanotube . Density functional theory . Freon 12B1 . Natural
bond orbital

Introduction

The nanomaterials are structurally divided into carbon and
non-carbon materials. Carbon nanotube (CNT), which is
an allotrope of carbon, was first discovered independently
by Iijima et al. [1] and Bethune et al. [2] in 1991 in soot
from carbon discharge in a neon-containing medium
[3–7]. The CNT, according to its (n,m) type, presents

stupendous mechanical [8–10], electromagnetic [11–15],
and chemical [16–19] properties, and it plays a significant
role in various branches of technology. One of the most
applicable binary carbide-derived carbons of CNT with
extensive properties is silicon carbide nanotube (SiCNT)
[20]. There have also been widespread reports on the ap-
plications of SiCNT as active material in electrodes [21,
22], gas storage materials [23, 24], and catalysts [25–27].

In the last two decades, theoretical studies in the den-
sity functional theory (DFT) framework on nanostructures
have attracted the attention of many scientists in the fields
of computational chemistry and solid-state physics
[28–32]. The study of silicon carbide nanotube is no ex-
ception, and many theoretical studies on this nanostruc-
ture have led to interesting proposals for the manufacture
of the industrial devices. Theoretical studies show the
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molecular stability, structure, and properties of SiCNT
[33, 34]. In this regard, Alam et al. proved that the most
stable form of SiCNT is the arrangement in which the Si
atom is surrounded by three carbon atoms [35]. Compared
with the CNT, the SiC nanotube shows high thermal sta-
bility as well as a larger HOMO-LUMO gap (HLG) [36].
Ahmadi et al. show that by dopping the gallium element
to the SiCNT, the semiconductor properties will be im-
proved [37]. Having a wide surface, SiCNT can appear in
the role of an adsorbent and be used in the design of
relevant tools. Mohammadi et al. have had a precise in-
vestigation on the adsorption of noble gases and
bromomethane onto the SiCNT [28, 31]. A biotechnology
study by Chen et al. introduced (8,0) SiCNT for encapsu-
lation of the glycine molecule [38]. Several toxic gases
can be trapped using SiCNT such as CO [39], NO [40],
N2O [41], and CO2 [42]. The widespread use of silicon
carbide nanotubes provides the basis for further study on
such structures.

Bromochlorodifluoromethane (BCF) (also is known as
Freon 12B1or Halon-1211 with chemical formula
(CBrClF2) is classified as a category 2 carcinogen from
the group of chlorofluorocarbons or dihalomethanes. It is
a colorless, odorless, flammable gas with a solid mono-
clinic crystal structure of space group P21 [43].
Bromochlorodifluoromethane was used as the refrigerant.
It is listed in the Montreal Protocol as a substance that
degrades the ozone layer [44]. A rotational study has been
performed by Caminati et al. [45] to investigate the dimer
interactions of BCF molecule, and the results confirm that
the interactions are non-covalent. According to the disso-
ciation energy of dimer complex of CMF molecule report-
ed in [45], we considered it as an isolated single molecule
in this work.

This article discusses the design of such a sensor. This
study investigated the interactions of BCF with SiCNT
and SiCGeNT. After optimizing the structure of silicon
carbide nanotubes by Gaussian software, to study the
chemical stability and conductivity, the elements doping
process on this nanotube have been studied. Because of
the high sensitivity of computation to precisely deter-
mine the energy of molecular orbitals to investigate the
conductivity and probability of physical and chemical
adsorption, different structures need to be optimized
using appropriate computational methods. For this pur-
pose, the PBEPBE functional and 6-311G(d) basis set
were used in this research for computation. The
B3LYP, CAM-B3LYP, ωB97XD, and M06-2X func-
tionals with 6-311G (d) basis set were also used to cal-
culate the single-point energies. Natural bond orbital and
quantum theory of atoms in molecules were studied by
using the PBEPBE/6-311G (d) method, and the results
were used to obtain various physical parameters.

Computational details

The DFT calculations at Perdew, Burke, and Ernzerhof
(PBEPBE) functional [46] together with 6-311G(d)
Pople split-valence triple-zeta basis set with polarization
functions [47] were used for geometry optimization for all
different positions of the BCF/tube complex structures. To
determine the stability of the optimized structures, fre-
quency calculations are also performed using the similar
level of theory to approve that all the stationary points are
in agreement with a minimum point through the potential
energy surface. For further investigation, single-point en-
ergy calculations using different levels of theory were also
applied on the most stable relaxed structures, which were
obtained from geometry optimization at the PBEPBE/6-
311G(d) level. The levels of theory used for the single-
point energy calculations included B3LYP, CAM-
B3LYP, M06-2X, and ωB97XD together with 6-
311G(d) basis set. Natural bond orbital (NBO) and quan-
tum theory of atoms in molecules (QTAIM) were imple-
mented by using the PBEPBE/6-311G(d) method. All of
the calculations including geometry optimization, single-
point energy calculations, and NBO analysis were per-
formed by Gaussian 16 package [48]. It should be noted
that the NBO calculations were performed using the NBO
v 3.0 software which is embedded within Gaussian soft-
ware. In order to perform quantum theory of atoms in
molecule (QTAIM) and density of state (DOS) analyses,
the Multiwfn program [49–51] was employed.

The adsorption energy (Eads) of the investigated BCF onto
the surface of pristine and doped nanotubes can be calculated
as follows:

Eads ¼ Esheet=CFM− Esheet þ ECFMð Þ ð1Þ

where Etube/BCF represents the total energy of the com-
plex structure. Etube and EBCF are the total energy of the
pure nanotube and the pure BCF molecule, respectively.
It is noteworthy that the absorption energy consists of
two parts: the interaction energy (Eint) and the deforma-
tion energy (Edef) that occur in the absorption process.
Therefore, the following equations are used to calculate
these shares:

Eads ¼ Eint þ Edef ð2Þ
Eint ¼ Esheet=CFM−Esheetincomplex−ECFMincomplex ð3Þ
Edef ¼ Esheet

def þ ECFM
def ¼ Esheetincomplex−Epristinesheet

� �
þ ECFMincomplex ¼ EisolatedCFM

� � ð4Þ

where Esheet in complex and ECFM in complex are energies of BCF
molecule and nanotube in the optimized complexes,
respectively.
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Result and discussion

The structural analysis

To optimize the structure of pristine armchair (5,5) single-
walled silicon carbide nanotubes using periodic boundary
condition density functional theory (PBC-DFT) [52–55], we
first consider a unit cell of silicon and carbon atoms (Si20C20)
which is 6.274 Å in length. Unlike the nanosheet, the nano-
tube is expanded in one direction only. We optimized this cell
by 1D PBC-DFT method with PBEPBE functional together
with basis set 6-311G (d). After optimization of the pristine
unite cell, we substituted Ge atom with Si atom then the opti-
mization process has been repeated for doped nanotubes. The
quantitative values of bond lengths are shown in Fig. 1.

The next step was the optimization of BCF/nanotube com-
plexes. In this step, the BCF molecule was placed on the outer
surface of each abovementioned nanotubes with vertical dis-
tance of about 2.1 Å. To find out the optimum distances be-
tween nanotube and BCF molecule, we used the rigid scan for
some cases to estimate the most efficient distance. It should be
noted that the level of theory in both optimization and rigid
scan was PBEPBE/6-311G (d). To better explain the details of
the adsorption process, it will be useful to compare Figs. 1 and
2.

The silicon carbide nanotube is composed of several sym-
metric hexagons that have four different adsorption positions
for the adsorption of any molecule onto the outer surface of
the nanotube as shown in Fig. 3: adsorption position on Si
atom (T1); adsorption position on C atom (T2); and adsorption
position on SiC bond (T3); adsorption position at hexagonal
center (T4). The logical approach is to put the BCF molecule
in each of these positions and measure the amount of

adsorption energy (Eads). It is important to note that the BCF
molecule has different heads (Br, Cl, F), and each of these
heads must be placed on the desired position on the nanotube
to measure the amount of absorption energy. Our experience
shows that negligible differences exist in the amounts of ad-
sorption energies when we place the BCF in any of the possi-
ble adsorption sites. As mentioned in [56], when the differ-
ences in the adsorption energies are “below the range of chem-
ical interest,” placing the gas in different positions on the
nanotubes provides identical results. Nevertheless, we put
the BCF molecule from Br-head onto the desired positions
on the SiC nanotube. The test result showed that there is a
negligible difference among the adsorption energies; there-
fore, the Si atom position was the target position on the SiC
nanotube.

Next, we extend the unit cell to five units and terminated
with hydrogen atoms (Fig. 4); the nanotube length for
Si100C100H20 increased to 31.804 Å, then single-point energy
calculations using different functional such as PBEPBE,
ωB97XD, and M06-2X and 6-311G (d) basis set were done.
The calculated values indicate a strong interactions between
nanotubes and BCF molecule. Since the PBEPBE functional
does not account for the long-range scattering contribution, it
is expected that in poor interactions, this functional will not
give a good estimate of the amount of energy. For this reason,
methods have been developed for long-range and dispersion
effects. In this work, we used PBEPBE andωB97XD to con-
sider long-range and dispersion effects. The well-known
M06-2X functional is used to better comparison. The results
show that the energies obtained from the PBEPBE and other
functionals are consistent with the accuracy of the calcula-
tions. On the other hand, as expected, the ωB97XD method
shows more energy values than the others, due to the disper-
sion contribution consideration. Also, by doping the Ge ele-
ment on the SiC nanotube, significant changes in the results
are achieved. Table 1 shows that Ge doping increase the ab-
sorption energy and enhanced the chemical absorption.
Table 2 also shows the bond length and the nearest intermo-
lecular distances (re (Å)) between BCF molecule and SICNT
and SiCGeNT.

Energetics properties

The chemical electron potential (μ) describes the tendency of
electrons to escape from a particular species at the ground
state. This quantity is equal to the absolute negative electro-
negativity obtained from the definition provided by Mulliken,
as follows:

μ ¼ −χM ð5Þ

Parr and his colleagues [57] used the DFT to show that at a
constant external potential, the potential energy of an electron

(a) (b)
Fig. 1 The values of bond length for (a) SiCNT and (b) SiCGeNT. The
optimization process has been done using PBEPBE/6-311G (d) level of
theory
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is related to the first derivative of energy relative to the number
of electrons, as follows:

μ ¼ ∂E
∂N

� �
υ rð Þ

¼ −
1

2
IP þ EAð Þ ð6Þ

where IP and EA are the ionization affinity and electron affin-
ity, respectively [58]. Based on the Koopman approximation
(see the Hartree–Fock theory) and Janak’s approximation [59]

(in the DFT theory), the ionization and electron affinity po-
tentials are equal to the negative value of the highest occupied
molecular orbital (HOMO) energy (εHOMO = − IP) and nega-
tive value of the lowest unoccupied molecular orbital
(LUMO) (εLUMO = − EA). Therefore, the chemical potential
in Janak’s approximation is defined as:

μ ¼ ∂E
∂N

� �
υ r

rð Þ
≅

εLUMO þ εHOMOð Þ
2

ð7Þ

where εHOMO and εLUMO are the energies of the HOMO and
the LUMO, respectively.N is the number of electrons, E is the
total electronic energy of the system, and υ(r) is the external
potential.

Comparison of the variation in electron chemical potentials
to that in the number of electrons at a constant external poten-
tial is called chemical hardness, which is expressed as:

η ¼ ∂μ
∂N

� �
¼ 1

2

∂2E
∂N

� �
ð8Þ

Parr et al. [60]] used the electron energy curve as well as the
finite difference approximation to express hardness as fol-
lows:

η ¼ 1

2
IP−EAð Þ ð9Þ

Moreover, using Janak and Koopman’s approximations,
the hardness equation is transformed as follows:

ΔEmin ¼ −
μ2

2η
ð10Þ

Chemical hardness is the energy gap between the HOMO
and the LUMO. Therefore, molecules with high energies are

(a) (c)(b)

Fig. 2 The most stable form of
(a) isolated BCF and the adsorbed
BCF molecule onto the outer
surface of (b) SiCNT and (c)
SiCGeNT. All clusters have been
optimized using the PBEPBE
functional and 6-311G(d) basis
set

Fig. 3 All possible target positions for the adsorption of any arbitrary
molecules onto the surface of SICNT. Top of boron atom (T1), top of
nitrogen atom (T2), between boron and nitrogen atoms (T3), and top of the
hexagonal ring (T4)

Struct Chem



considered as hard molecules, while those with low energies
are called soft molecules. Since the softness of a molecule is
the opposite of its hardness, the equation for molecule softness
is denoted as follows [61]:

S ¼ 1

η
ð11Þ

Inspired by Maynard’s work, Parr et al. [62] introduced
electrophilicity as the steady-state energy in which an atom
or a molecule at ground state gains by receiving additional
electron charges from the environment. The energy changes
that lead to such a charge transfer are expressed as follows:

ΔE ¼ μΔN þ 1

2
η ΔNð Þ2 ð12Þ

When the system receives electron charges from the envi-
ronment sufficient to equate its potential to that of the envi-
ronment, the system is saturated with electrons and can be
expressed as follows:

dΔE
dΔN

¼ 0 ð13Þ

The electron load received from the environment is maxi-
mized, and the total energy of the system is eventually mini-
mized. Thus:

ΔNmax ¼ −
μ
η

ð14Þ

ΔEmin ¼ −
μ2

2η
ð15Þ

Since η > 0, ΔE < 0 always, and the charge transfer is en-
ergetically desirable. Accordingly, Parr et al. proposed the
following equation to denote the electrophilicity of electro-
philic species.

ω ¼ μ2

2η
ð16Þ

In fact, the electrophilicity index is the capacity of a species
to accept an arbitrary number of electrons from the environ-
ment. In this regard, Nourizadeh and Maihami [63] used elec-
trophilicity in the Diels–Alder reaction and stated that “atoms
appear to be arranged in a natural tendency to reach the lowest
electrophilicity.” This expression is called the minimum elec-
trophilicity principle (MEP).

The values of maximum occupied molecular orbital
(HOMO) and lowest occupied atomic orbital (LUMO), and
their differences (HLG), chemical potential (μ), chemical
hardness (η), and electrophilicity (ω) are reported in Table 3.
From the results of this table, it can be seen that by adsorption
of BCF molecule onto the outer surface of nanotubes, the
distance between HOMO and LUMO levels is reduced rela-
tive to the pure nanotube, which is caused by the molecular
energy absorption matched from this position. By doping the
elements Al and Ga, it is observed that HLG changed. The
decrease in HLG results in an increase in the electrical con-
ductivity and thus an increase in the metal property of all the
nanotubes compared with pure SiCNT. It is also noteworthy
that the observed changes in HLG after doped Ge is mainly
due to lower LUMO energy levels. In order to study these
changes in the electron structure of the studied cases more
closely, the density of state spectra (DOS) will be analyzed

Table 2 The bond lengths and the nearest intermolecular distances (re
(Å)) between BCF molecule and SiCNT and SiCGeNT. All calculations
were performed using PBC-DFT PBEPBE/6-311G(d) level of theory.

The dashed line (....) shows the intermolecular interactions between atoms
of BCF and nanotube, and the em dash (—) shows the bonds between
atoms in one molecule

Systems Br....Ge Br....C Br....Si C—Ge Si—C C—Br C—Cl C—F

CBrClF2 - - - - - 1.966 1.789 1.341

SiCNT - - - - 1.800 - - -

SiCGeNT - - - 1.854 1.792 - - -

CBrClF2/SiCNT - 3.772 3.156 - 1.799 1.987 1.784 1.340

CBrClF2/SiCGeNT 2.925 3.734 4.022 1.858 1.788 1.991 1.781 1.345

Table 1 The adsorption energy
(Eads) for SiCNT and SiCGeNT
with BCF molecule. All values
are in (eV)

System PBEPBE B3LYP CAM-
B3LYP

M06-
2X

ωB97XD

CBrClF2_SiCNT − 2.063 − 1.286 − 1.697 − 2.687 − 2.960
CBrClF2_

SiCGeNT
− 3.462 − 2.562 − 3.009 − 3.930 − 4.160
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in the next section. For a more detailed study of the electron
structure changes, the density of state spectra (DOS) are ex-
tracted and illustrated in Fig. 5.

From the DOS spectra, it is clear that DOS spectra for
all absorption are in agreement with the values of the
energy parameters reported in Table 3. The lowest
amount of adsorption energy is related to the pristine
nanotube, and the highest amount of adsorption energy
is for the adsorption of BCF onto the Ge-doped SiC
nanotube; the most changes are also observed in the
DOS spectrum relative to this nanotube. In other words,
the electron structure changes show a direct relationship
with the absorption energies. Given the amount of ab-
sorption energy, high amount of binding energy, and the
structure of DOS spectra obtained in all of these cases, it
can be claimed that the adsorption of BCF molecule onto
SiC and SiCGe nanotubes is a strong physical adsorption
type.

NBO analysis

The natural bond orbital (NBO) analysis has been developed
based on many-electron molecular wave function in terms of
localized electron-pair bonding units and uses first-order re-
duced density matrix of the wave function [64, 65]. In the
NBO approach, a given wave function should be transformed
into a localized form in which NBO are considered as local
block eigenfunctions of the density matrix. NBO analysis is
applicable in both closed-shell and open-shell systems which
are calculated from atom-centered basis functions [66]. The
mechanism of the energetic analysis of NBO interactions is
based on the one-electron effective energy operator (Fock or
Kohn-Sham matrix) that arises from the host electronic struc-
ture system (ESS). Second-order perturbation theory is one of
the highest usedmethods for estimating energy effects. For the
case of HF or DFT methods, the interactions between NBOs
are considered to analyze the wave function energetically,
with the explanation that the Kohn-Sham matrix elements
are implemented in the DFT platform [67–77].

We used the PBEPBE/6-311g(d) level of theory to perform
the NBO calculations. The concept of bonded orbitals can be
used to understand the distribution of electrons in atomic and
molecular orbitals. Atomic charges and molecular bonds can
be used to obtain these orbitals. In this method, an electron
density matrix is used to both define the shapes of the atomic
orbitals in the molecular environment and obtain molecular
bonds (electron density between atoms). NBO is defined as
the following equation for σ bonding between atoms A and B.

σAB ¼ CAhA þ CBhB ð18Þ

(a)

(b)

Fig. 4 The expanded (a) silicon
carbide and (b) Ge-doped silicon
carbide nanotubes terminated
with hydrogen atoms

Table 3 Values of HOMO energy (ɛH), LUMO energy (ɛL), HOMO
and LUMO energy gap (HLG), chemical potential (μ), chemical hardness
(η), and electrophilicity (ω). All values are in (eV) andwere obtained from
completed nanotube PBEPBE/6-311G (d) level of theory

Systems εH εL HLG μ η ω

SiCNT − 4.818 − 2.723 2.095 − 3.770 1.048 7.447

SiCGeNT − 4.805 − 2.735 2.070 − 3.770 1.035 7.355

CBrClF2/SiCNT − 4.746 − 2.789 1.957 − 3.768 0.978 6.944

CBrClF2/SiCGeNT − 4.679 − 2.964 1.715 − 3.821 0.858 6.262
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where hA and hB are natural hybrids on the A and B atoms. In
the covalent limit,CA =CB, and at the ionic limit,CA > >CB (if
the electronegativity of A is greater than B). Each bonding
NBOmust be paired with a corresponding anti-bonding NBO.

σ*
AB ¼ CAhA−CBhB ð19Þ

Binding orbital analysis is used to evaluate the effects of
non-stationary effects, such as anomeric effect, rotation barri-
er, and hydrogen bonding. In NBO analysis, molecular energy
is divided into two parts: total energy (for non-stationary en-
ters) and Lewis molecule energy (where super-conjugation
does not occur, and the electrons are strongly bound in single
bonds and pairs). The occupied NBO describe the covalent
effects in the molecule, while the non-occupied NBO are used
to describe non-covalent effects. The most important non-
occupied NBO are anti-bond orbitals [64, 76, 77].

Various types of bond order analyses are developed to take
into account the bond property such as Mulliken bond order
analysis [78], Mayer bond order analysis [79, 80], multi-
center bond order analysis [81, 82], Wiberg bond order anal-
ysis [83], and fuzzy bond order [84, 85]. Due to the different
assumptions, caution should be exercised when using the
abovementioned methods, and the term “Caveat emptor” in
this case is a practical example to describe such a situation.
Basis set containing diffuse functions as case in point leads to
unreliable result for Mulliken or Mayer analyses [49].
According to the literature [86], the Wiberg bond order, in
comparison with the Mayer method, has much less sensitivity
to the basis set. The Wiberg bond index (WBI) is the sum of

squares of off-diagonal density matrix elements between
atoms and is denoted as follows:

WBI ¼ ∑
k
P2
jk ¼ 2Pjj−P2

jk ð20Þ

where Pjk represents the density matrix elements (i.e., the
contribution of interactions between basis functions j and k),
and Pjj is the charge density in the atomic orbital. In the WBI,
there is no difference between net bonding or anti-bonding
type of elements of the density matrix.

NBO analysis was used to calculate the bond order using
the Wiberg method [83] for a more detailed examination of
the types of interactions. After studying the adsorption energy
of the complexes, we examine the bond length and bond order
of the gases and the nanotubes before and after the adsorption.
The Wiberg bond order for these clusters is reported in
Table 4. According to this table, the bond of the halogen
atoms in BCF molecules oriented to the Si in SiCNT and Ge
in SiCGeNT. The results of the WBI analysis agree with the
adsorption energies reported in Table 1. They reveal that these
nanotubes show a strong interaction with the gas molecules
and can be considered a suitable sensor for such gases.

One of the results of the natural population analysis obtain-
ed from NBO calculation is a natural electron configuration
which shows the effective valence electron configuration for
any atoms in the studied structure. The results of the NBO
calculations shed light on the natural electron configuration
and partial natural charge, which are useful in the study of the
character of the bond between the BCF and the nanotubes.

(a)

E
F
=-3.771

(b)

E
F
=-3.776

E
F
=-3.770

(c)

E
F
=-3.821

(d)

Fig. 5 The density of state (DOS)
diagrams for the (a) SiCNT, (b)
BCF/SiCNT, (c) SiCGeNT, and
(d) BCF/SiCGeNT. The data
were obtained from completed
nanotube and PBEPBE/6-311G
(d) level of theory. The values of
Fermi energy (EF) are shown
using dashed line

Struct Chem



The NBO approach was implemented for all atoms in the
pristine and cluster systems to reveal the quantities listed in
Table 5. Charge transfer quantity between BCF molecule and
nanotubes can also be a criteria to study the interaction of
nanotube and BCF, such that the stronger the interaction the
more the charge transfer between BCF and the nanotube.
Table 5 shows that there is a significant charge transfer be-
tween two species during adsorption process that would
happen.

In addition, by implementing the natural electron configu-
ration, the type of the interaction between nanotubes and BCF
molecule will be described. From Table 5, it can be obvious
that valance configuration of isolated BCF molecule and
nanotubes as well as valance configuration of nanotube/BCF
clusters have been increased. Therefore, the interaction of
BCF with all nanotubes can be classified as a strong physical
adsorption process.

The second-order perturbative is an estimation of donor-
acceptor interactions in the NBO basis. NBO analysis ex-
presses the complex quantum-mechanical wave function into
a more palpable Lewis-dot-like formalism. Lewis-type NBO
are called filled or “donor” orbitals (σ), and non-Lewis-type
NBO are called vacant or “acceptor” orbitals (σ*). For each
donor NBO (i) and acceptor NBO (j), the stabilization energy
E(2) is calculated as follows [74]:

E 2ð Þ ¼ ΔE2
ij ¼ −qi

Fi; j
� �2
ε j−εi
� � ð21Þ

where εi and εj are diagonal elements which show the orbital
energies, qi denotes the donor orbital occupancy (q = 2 for
closed-shell systems and q = 1 for open-shell systems), and
the off-diagonal NBO Fock matrix element is demonstrated
by F(i,j), and ΔE2

ij is the stabilization energy.

Table 5 Natural electron
configurations and natural
charges (esu) for the isolated
BCF, pristine, and Ge-doped
SiCNT nanotubes and their com-
plex structures. All values calcu-
lated by the PBEPBE/6-311G(d)
level of theory

Systems atom Natural charge Natural electron configuration

SiCNT Si 1.87 [core]3S(0.70)3p(1.41)3d(0.03)

C − 1.87 [core]2S(1.35)2p(4.51)

SiCGeNT Si 1.87 [core]3S(0.70)3p(1.41)3d(0.03)

C − 1.87 [core]2S(1.35)2p(4.51)

Ge 1.72 [core]4S(0.86)4p(1.42)4d(0.01)

CBClF2/SiCNT Si 1.87 [core]3S(0.70)3p(1.41)3d(0.03)

C − 1.87 [core]2S(1.35)2p(4.52)

Br 0.10 [core]4S(1.89)4p(4.99)4d(0.01)5p(0.01)

Cl 0.02 [core]3S(1.87)3p(5.09)3d(0.01)4p(0.01)

F − 0.29 [core]2S(1.84)2p(5.45)3d(0.01)

C 0.55 [core]2S(0.99)2p(2.38)3S(0.01)3p(0.05)3d(0.02)

CBrClF2/SiCGeNT Si 1.87 [core]3S(0.69)3p(1.41)3d(0.03)

C − 1.87 [core]2S(1.35)2p(4.52)

Ge 1.68 [core]4S(0.87)4p(1.44)4d(0.01)5p(0.01)

Br 0.14 [core]4S(1.89)4p(4.95)4d(0.01)5p(0.01)

Cl 0.03 [core]3S(1.86)3p(5.09)3d(0.01)4p(0.01)

F − 0.28 [core]2S(1.84)2p(5.45)3d(0.01)

C 0.55 [core]2S(1.00)2p(2.38)3S(0.01)3p(0.05)3d(0.02)

Table 4 TheWiberg bond index (WBI) obtained for atomic bonds and intermolecular interactions between BCF molecule and SiCNT and SiCGeNT.
All calculations were performed using PBEPBE/6-311G(d) level of theory

Systems Br....Ge Br....C Br....Si C—Ge Si—C C—Br C—Cl C—F

CBrClF2 - - - - - 0.986 1.031 0.923

SiCNT - - - - 0.968 - - -

SiCGeNT - - - 0.936 0.974 - - -

CBrClF2/SiCNT - 0.021 0.120 - 0.968 0.936 1.036 0.927

CBrClF2/SiCGeNT 0.191 0.029 0.009 0.876 0.970 0.926 1.045 0.934
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The results of electron donor-acceptor electron configura-
tion of pristine SiCNT and Ge-doped SiCNT are reported in
Table 6. It is noteworthy that in this table, the most important
interactions in terms of the electron transfer stability energy
are reported. The existence of such interactions with the re-
markable stability energies in this table shows that the doped
atom has been incorporated into the nanotube structure by the
chemical interaction, and the stability structure has been
achieved. In other words, the inserted atom behaves as a dop-
ing atom. The data in Table 6 show that the most important
interaction for the pristine nanotube related to electron transfer
from the BD (Si—C) bond as the electron donor to the
BD*(C—Br) as the receptor. This is in agreement with the
results of the absorption energy as well as with the other re-
sults which have been examined. In the study of the doped
complex, it is observed that the Ge electron pair is a donor
(Lewis base) and the Br-bonded electron pair is the group of
the electron-acceptor molecule (Lewis acid). The highest
electron-acceptor stabilization energy in all cases is due to
the same interaction, which indicates a strong adsorption of
the molecule onto the SiCGe nanotube compared with the
pristine NT.

QTAIM analysis

QTAIM is a powerful tool for topology analysis containing
the type and structure of bonds and intermolecular interac-
tions. QTAIM method is proposed by Bader et al. [87–92].
According to this theory, the critical point of the electron
density, which can be a minimum point, a maximum point,
or a saddle point, can fall into one of the following four cate-
gories: (1) atomic critical point (ACP), which denotes the
geometrical position of an atom or nucleus (other than hydro-
gen), and geometrically represents a local maximum point of
electron density in all three directions of space; (2) bond crit-
ical point (BCP), which indicates a critical point related to a
bond or physical or chemical interaction (in reality, this point

represents a saddle point with two directions of maximum
electron density and one direction of minimum electron den-
sity); (3) ring critical point (RCP) [93, 94], which denotes a
ring or set of atoms forming a ring (geometrically, it is a saddle
point with the minimum electron density in one direction and
in the other two directions); and (4) cage critical point (CCP),
which is observed when multiple rings form a cage (geomet-
rically, this point is a local minimum point in all three direc-
tions of space). Poincaré–Hopf relationship should be satisfied
to verify if all CP may have been found as follows [95, 96]:

n ACPð Þ−n BCPð Þ þ n RCPð Þ−n CCPð Þ ¼ 1 ð22Þ

The eigenvalues of Hessian matrix, λ1 and λ2, are negative
and | λ1 | < | λ2 | for the BCP. λ1 and λ2 are perpendicular to
the bonding path, and λ3 is a positive value along the bonding
path. For the QTAIM analysis, it is necessary to know the
electron density ρ(r) and Laplacian electron density ∇2 ρ(r).
The ρ(r) and ∇2ρ(r) play an important role in the segmentation
and identification of different types of chemical interactions.
A BCP with negative values of ∇2ρ(r) and large values of ρ(r)
(of orders exceeding 10–1 a.u.) is defined as a shared
(covalent) intermolecular interaction. Also, when ∇2ρ(r) is
positive, the interactions can be classified as of the non-
substrate close-shell type (which include ionic and van der
Waals interactions) [97]. The elliptical bond (ɛ) [98] and the
virial theorem [99] are two other important factors in the clas-
sification of bonds. An elliptical bond represents the electron
density preferentially accumulated on a plate containing the
bond and is defined as follows:

ε ¼ λ1

λ2
−1 where λ1j j > λ2j j ð23Þ

Large values of ɛ indicate an unstable structure and vice
versa. Also, based on the virial theorem, the following rela-
tionship exists between the electron kinetic energy density
G(r) [100], the electron potential energy density V(r) [101],
and ∇2ρ(r):

1

4
∇2ρ rð Þ ¼ 2G rð Þ þ V rð Þ ð24Þ

The balance betweenG(r) and V(r) reflects the nature of the
interaction, and therefore, the ratio of G/|V| can be used as an
appropriate index in link classification. If this ratio is less than
0.5, the nature of the interaction will be purely covalent, and if
the ratio is greater than 1, the interaction may be considered as
completely non-covalent. Note that for covalent bonds (i.e.,
∇2ρ(r) < 0 and G/|V| < 0.5), the nature of the bond changes
from van der Waals interactions to strong covalent interac-
tions. It becomes covalent. It can also play a decisive role in
controlling the amount of ionic interaction for close-shell in-
teractions (i.e., ∇2ρ(r) > 0 and G/|V| > 1), as they become
stronger ionically (and weakly electrostatic) by reducing

Table 6 The donor-acceptor NBO interactions and second-order per-
turbation energies (E(2)) for the BCF clusters with SiCNT and SiCGeNT.
All values obtained from completed nanotubes at the PBEPBE/6-311G
(d) level of theory

Systems Donor NBO (i) Acceptor NBO (j) E2 (kcal/mol)

CBrClF2/SiCNT BD (Si—C) RY*(Br) 0.14

BD (Ge—C) RY*(Br) 0.44

BD (Si—C) BD*(C—F) 0.06

BD (Si—C) BD*(C—Cl) 0.05

BD (Ge—C) BD*(C—Br) 0.81

CBrClF2/SiCGeNT BD (Si—C) BD*(C—Br) 1.01

BD (Si—C) RY*(Br) 0.15
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interactions. Therefore, the QTAIM topology analysis togeth-
er with WBI analysis and adsorption results exposes an im-
portant trend: by increasing the ionic character of atomic
bonds in the nanotubes, the tendencies of the gases to adsorb
are also increased.

Considerable results can be obtained from reviewing
Table 7. It is observed that in all adsorption sites, Laplacian
of electron energy density has a positive value; i.e., the bond is
non-covalent. In the study of doped systems, we found that for
the all clusters, the energy density and the energy density of
Laplacian are high indicating that there is a strong bond be-
tween the nanotubes and the BCF molecule, and the elliptical
bond is close to 0, which means that the interaction is strong.
As stated above, the ratio G/|V | more than 1 means non-
covalent bonding; in the case of Ge-doped clusters, these
amounts are less than 1. In other words, the results of
QTAIM analysis also confirm the strong adsorption of the
BCF molecule on the SiCGeNT which is illustrated in Fig. 6.

The reduced density gradient (RDG) function as well as
signλ2(r)ρ(r) is used to evaluate the weak interactions. These
functions are categorized in the context of non-covalent inter-
action methods which is a powerful way to analyze the types
of intermolecular interactions. The RGD is defined as follows
[102, 103]:

RDGs ¼ 1

2 3π2ð Þ13ρ rð Þð Þ
4
3

ð25Þ

The strength of the interaction has a positive correla-
tion with electron density ρ(r) and the second largest ei-
genvalue of the Hessian matrix (λ2). Thus, the real space
function signλ2(r)ρ(r) (the products of the signs of λ2 and
ρ) can be defined. The scatter graph of the sign of the
λ2(r)ρ(r) function (X-axis) and RDG (Y-axis) reveals the
interaction type between gases and nanotubes. The RDG
values range from medium to very large around the nuclei
and edges of the molecules, whereas weak interactions
(zero to medium) are observed around the chemical
bonds. Also, for each specific value of RDG (seen as a
horizontal line on the graph), the regions of the graph can
be classified into three types, namely, signλ2(r)ρ(r) < 0
(strong attraction), signλ2(r)ρ(r) ≈ 0 (weak van der Waals
interaction), and signλ2(r)ρ(r) > 0 (strong repulsion (steric
effect in ring)) [102, 103].

Using the isosurface RDG = 0.5 as a reference, it can
be concluded that after adsorption of the gas onto the
outer surfaces of the nanotubes, spots appeared around
the region characterized by signλ2(r)ρ(r) ≈ 0. The interac-
tion of gas with SiC nanotubes is in the range of strong
van der Waals interactions in nature. Significant changes
in the overall features of the pristine nanotube graph (Fig.
7) after the adsorption of gases were observed in the re-
gion characterized as signλ2(r)ρ(r) < 0 (i.e., strong attrac-
tion), implying that the nanotube/gas interactions were
strong. Hence, this analysis also confirms the results of

Table 7 The AIM topological parameters, including electron density
(ρ(r)), Laplacian of electron density (∇2ρ(r)), the kinetic electron density
G(r), potential electron density V(r), eigenvalues of Hessian matrix (λ),

and bond ellipticity index (ε) at BCP of the BCF clusters with SiCNT and
SiCGeNT.All values have been calculated using the PBEPBE/6-311G(d)
level of theory from NBO analysis

Systems Bond ρ ∇2r G(r) V(r) G(r)/
V(r)

λ1 λ2 λ3 ε

CBrClF2 C—Br 0.1493 − 0.1266 0.0552 − 0.1421 0.3886 − 0.1898 0.2564 − 0.1931 0.0172

C—Cl 0.1895 − 0.2221 0.0651 − 0.1858 0.3505 − 0.2986 0.3836 − 0.3071 0.0286

C—F 0.2808 − 0.2899 0.3422 − 0.7569 0.4521 − 0.5630 0.8794 − 0.6064 0.0771

SiCNT Si—C 0.1230 0.3720 0.1620 − 0.231 0.7010 − 0.168 0.6790 − 0.139 0.2110

SiCGeNT Si—C 0.1233 0.3721 0.1620 − 0.2309 0.7014 − 0.1682 0.6791 − 0.1388 0.2121

Ge—C 0.1391 0.1714 0.1250 − 0.2072 0.6034 − 0.1495 0.4817 − 0.1607 0.0748

CBrClF2/SiCNT Br....C 0.0041 0.0161 0.0032 − 0.0024 1.3492 − 0.0026 0.0207 − 0.0020 0.3089

Br....Si 0.0165 0.0288 0.0073 − 0.0075 0.9806 − 0.0091 0.0450 − 0.0071 0.2734

Cl....Si 0.0028 0.0075 0.0014 − 0.0009 1.5279 − 0.0013 0.0094 − 0.0006 1.2996

C—Br 0.1442 − 0.1163 0.0517 − 0.1324 0.3902 − 0.1847 0.2569 − 0.1885 0.0207

C—Cl 0.1918 − 0.2283 0.0663 − 0.1896 0.3495 − 0.3113 0.3852 − 0.3021 0.0302

C—F 0.2817 − 0.2804 0.3468 − 0.7636 0.4541 − 0.5655 0.8945 − 0.6095 0.0779

CBrClF2/SiCGeNT Br....Si 0.0052 0.0202 0.0041 − 0.0030 1.3304 − 0.0035 0.0260 − 0.0023 0.5597

Br....Ge 0.0266 0.0501 0.0141 − 0.0156 0.9011 − 0.0158 0.0831 − 0.0172 0.0874

F....Si 0.0043 0.0155 0.0030 − 0.0022 1.3895 − 0.0027 0.0199 − 0.0018 0.5131

C—Br 0.1434 − 0.1128 0.0516 − 0.1314 0.3927 − 0.1845 0.2577 − 0.1861 0.0087

C—Cl 0.1927 − 0.2322 0.0667 − 0.1915 0.3484 − 0.3031 0.3836 − 0.3127 0.0317

C—F 0.2777 − 0.3026 0.3321 − 0.7398 0.4489 − 0.5500 0.8407 − 0.5932 0.0785
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the single-point energy calculations and NBO analysis,
namely, that the interactions of BCF with SiCNT and
SiCGeNT were strong.

Conclusion

I n t h i s s t u d y , t h e i n t e r a c t i o n s b e t w e e n
bromochlorodifluoromethane molecule and pristine and Ge-

(a)

(b)

Fig. 6 AIM molecular graphs for
(a) BCF/SiCNT and (b) BCF/
SiCGeNT systems. Orange dots
represent the boundary critical
points (BCP)

SiCGeNT

SiCNT

BCF/

SiCGeNT

BCF/

SiCNT

(a)

(b)

Fig. 7 Plots for the reduced
density gradient (RDG) vs.
sign(λ2)ρ(r) values of the (a)
pristine and (b) Ge-doped silicon
carbide nanotubes. The data were
obtained from completed nano-
tube and PBEPBE/6-311G (d)
level of theory. The left side dia-
grams are isolated nanotubes and
the right side diagrams are BCF/
nanotube clusters
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doped silicon carbide nanotubes were investigated using den-
sity functional theory framework. To this end, the structure of
the nanotubes and BCF molecule was optimized using PBC-
DFT method at the theoretical level of PBEPBE/6-311G (d).
Right after optimization calculation, the B3LYP, CAM-
B3LYP, M06-2X, and ωB97XD functionals and same basis
set were also used to consider the contribution of long-range
interactions and dispersion effect for single-point energy cal-
culation. QTAIM and NBO analyses were also implemented
to consider the character of intermolecular interactions. The
results of all analyses are in agreement and show that (1)
among the different positions studied for pristine silicon car-
bide nanotube, the T2 position has the highest absorption en-
ergy; (2) by inserting germanium as an impurity in silicon
carbide nanotube, the symmetrical structure of the nanotubes
is changed and the electronic properties and consequently the
chemical properties of the nanotubes are changed accordingly;
(3) the Ge-doped SiCNT has a very high adsorption energy
compared with SiCNT, and is expected to be strong physical
adsorption in this case and appears to be a suitable sensor
characteristic option. Finally, we conclude that between the
studied absorbent, the SiCGeNT is a more favorable candidate
for utilization as gas sensor devices to detect the BCF
molecule.
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