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Inflammation, immunity and potential target therapy of SARS-COV-2: a total scale 1 

analysis review 2 

 3 

Abstract 4 

Coronavirus disease-19 (COVID-19) is a complex disease that causes illness ranging 5 

from mild to severe respiratory problems. It is caused by a novel coronavirus SARS-6 

CoV-2 (Severe acute respiratory syndrome coronavirus-2) that is an enveloped positive-7 

sense single-stranded RNA (+ssRNA) virus belongs to coronavirus CoV family. It has a 8 

fast-spreading potential worldwide, which leads to high mortality regardless of lows 9 

death rates. Now some vaccines or a specific drug are approved but not available for 10 

every country for disease prevention and/or treatment. Therefore, it is a high demand to 11 

identify the known drugs and test them as a possible therapeutic approach. In this critical 12 

situation, one or more of these drugs may represent the only option to treat or reduce the 13 

severity of the disease, until some specific drugs or vaccines will be developed and/or 14 

approved for everyone in this pandemic. In this updated review, the available repurpose 15 

immunotherapeutic treatment strategies are highlighted, elucidating the crosstalk between 16 

the immune system and SARS-CoV-2. Despite the reasonable data availability, the 17 

effectiveness and safety of these drugs against SARS-CoV-2 needs further studies and 18 

validations aiming for a better clinical outcome.  19 

Keywords: Coronavirus disease-19; Immunotherapeutic drugs; Repurpose; Severe Acute 20 

Respiratory Syndrome Coronavirus 2; Monoclonal antibodies; Vaccine. 21 
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1. Introduction 1 

As of January 26, 2021, a sum of 100,346,160 confirmed cases of the COVID-19 have 2 

been revealed in 210 nations and territories around the world (1), that is due to the virus 3 

named as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) originated 4 

from Wuhan, China in December 2019 (2). Depending on clinical manifestations, the 5 

COVID-19 is grouped into mild, moderate, and severe. In severe cases of COVID-19, the 6 

patients exhibit hyper inflammation and cytokine storms (CS) that drive acute lung injury 7 

(ALI), acute respiratory distress syndrome (ARDS), disseminated intravascular 8 

coagulation (3), multiple organ failure and death (2). 9 

SARS-CoV-2 is a new strain of Coronavirus that’s newly capable of infecting humans 10 

(4). It is a +ssRNA virus, even though the origin is not yet clear. The source could be 11 

from bats as it shares 96% similarity with coronaviruses (CoVs) isolated from bats 12 

RaTG13 complete genome (5). It might be transferred to humans through a missing link 13 

as an intermediate host that could be scaly ant-eater (pangolin) based on an amino acid 14 

chain in the receptor-binding domain (RBD) of CoVs discovered in pangolins or snake  15 

(6). 16 

The SARS-CoV-2’ corresponded CS is characterized by increasing level of inflammatory 17 

cytokines and chemokines (interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α,  18 

interferon-γ-inducible protein (IP10), decreasing level of helper (Th) and cytotoxic T-19 

lymphocytes (CTLs), down-regulating the interferon (IFN)-γ expressing Th cells (7, 8). 20 

This hyperinflammatory state produces oxidative stress that leads to damage to alveolar 21 

and endothelial cells in the lung. The damage of these cells disrupts the pulmonary 22 

barrier and vascular leakage that consequently enhances lung edema and ARDS. 23 
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Chemokines recruit the macrophage and neutrophil into the lung that causes ALI (9). 1 

COVID-19 patients with CS exhibit a high level of IL-6 (10), that have a major role in 2 

coagulation, disseminated intravascular coagulation  (DIC), and multiple organ failure 3 

including heart (11). 4 

Yet, there are some vaccine and medications for preventing or curing the disease. There 5 

is a wide variety of therapeutics that have been explored to treat COVID-19, initially 6 

suggested for other diseases and already established safety profiles and approved by the 7 

food and drug Administration (FDA). Such treatments are referred to by the World 8 

Health Organization (WHO) (12) as repurpose medications (12). Among them, the 9 

antivirals drugs such as favipiravir, umifenovir, remdesivir, lopinavir, and retonavir, the 10 

antimicrobial agents such as chloroquine and hydroxychloroquine, anthelmintics 11 

(ivermectin), antihypertensives (Losartan) (13, 14), and known immunotherapies; are 12 

currently used as a treatment option. There are many ongoing clinical trials regarding the 13 

safety and effectiveness of repurposing immunotherapeutics to mitigate the symptoms of  14 

COVID-19 (15). 15 

The purpose of the current review is to highlight and discuss the immunotherapeutic 16 

options to treat COVID-19, including non-steroidal anti-inflammatory drugs (NSAIDs), 17 

corticosteroids, monoclonal antibodies, IFNs, convalescent plasma, and other treatments 18 

that are known to have immune-modulatory properties. Such immunotherapeutic showed 19 

promising efficacy against other CoVs including severe acute respiratory syndrome-20 

coronavirus-1 (SARS-CoV-1), Middle East respiratory syndrome-CoV (MERS-CoV), 21 

and other viruses that might have the potential for SARS-CoV-2 treatment and 22 
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prophylaxis. This might help scientists and pharmaceutical industries to design an 1 

appropriate immune intervention for COVID-19 therapy.  2 

2.  Methodology 3 

For current study a bibliographic search of more than 420 peer-reviewed papers in 4 

scientific data including PubMed, Scopus, Science Magazine, EMBASE, WHO and 5 

Google Scholar about SARS-CoV-2 was done. But approximately 337 peer-reviewed 6 

papers relevant to SARS-CoV-2 were included as shown in Figure 1A. All scientific data 7 

was reviewed with key words of “SARS-COV-2 structure”, “cell tropism of SARS-CoV-8 

2”, “clinical presentation of COVID-19”, “immune response to COVID-19”, “cytokines 9 

and immunopathogenesis of SARS-CoV-2”, “immunotherapeutic strategies”, 10 

“monoclonal antibodies for COVID-19”, and “treatment strategy COVID-19”. 11 

3. SARS-CoV-2: structure and cell tropism 12 

CoVs are classified under the Coronaviridae family within Nidovirales order; which 13 

comprises other families such as Roniviridae and Arteriviridae. The classification is 14 

based on the conserved genome organization and viral genomic replication mechanisms  15 

(16). CoVs possess enveloped virions and +ssRNA genomes. These viruses are capable 16 

of infecting a wide variety of animal species in addition to human beings  (17). The main 17 

source of CoVs transmission is through close contact with an infected person via 18 

respiratory droplets (18). According to the type of invading virus, other diseases may be 19 

initiated e.g., neurological disease and hepatitis (19).   20 

Based on the comparisons of the whole genome sequence of the CoVs, they can be 21 

divided into alpha-CoVs and beta-CoVs groups which may cause diseases in mammals, 22 
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including the humans (20-22). The third group gamma-CoVs; the fourth group delta-1 

CoVs; include viruses that mainly cause diseases in birds (20, 23). There are some 2 

controversies about whether to classify SARS-CoV-2 into a new group. Despite that 3 

SARS-CoV-2 has numerous distinctive characteristics; however, the genetic variation in 4 

the viral genome is insufficient to include it into a new group. The succeeded 5 

investigations concluded that beta-CoV is the best group that fits SARS-CoV-2 (24). 6 

CoVs have a distinct feature of the coronal structure, regarding the name corona (crown-7 

like) that represents projections covering the envelope when examined under the electron 8 

microscope (25). These spike-shaped particles are virion of roughly spherical or 9 

polymorphism shapes within 80nm-160nm diameters (26). In general, the morphology of 10 

the virion particles of SARS-CoV-2 represents a model of CoVs shape. A lipid bilayer 11 

covers the outer margins of most virions (27). To fill the gap in the understanding of the 12 

origin of SARS-CoV-2, a team of researchers had collaborated after one month of the 13 

epidemic to establish the first genome sequence of the virus by January 10, 2020 (28). 14 

The sequenced genome was determined to be 29,811 base pairs long (29), which made 15 

SARS-CoV-2 one of the largest +ssRNA viruses identified to date. More than ten open 16 

read frames (ORFs) are presented within the SARS-CoV-2 genome, similar to that of 17 

SARS-CoV-1, both viruses have the order and organization of the same genes. Two-18 

thirds of the SARS-CoV-1 genome is occupied by ORF1a/1b, which is the most 19 

imperative ORF and is translated into 16 nonstructural proteins (NSP 1-16). Four 20 

structural proteins (SPs); spike (S) protein, matrix (M) protein, nucleocapsid (N) protein, 21 

and envelope (E) protein are translated from other ORFs in the remaining genome (30). 22 
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The genes in the rest ORFs coded into accessory proteins that are not recognized to have 1 

any function in viral replications (31). 2 

The fusion of the SARS-CoV-2 virus to the host surface membrane is mediated by the 3 

two functional subunits S1 and S2 of the S surface proteins (32). The S1 subunit binds to 4 

the host cellular receptor, and then the S2 subunit fuses with the cellular membrane (33). 5 

The entry point for the SARS-CoV-2 is delivered by a functional receptor 6 

metallopeptidase angiotensin converting-enzyme 2 (ACE2) (34) (35). Tissue tropism of 7 

SARS-CoV-2 is best elucidated by the ACE2 localization in most organs such as the 8 

heart, kidney, vascular endothelial, testis as well as epithelial of the small intestine and 9 

alveolar epithelial cells (36-38).  10 

4. Clinical presentation of COVID-19 11 

The COVID-19 is divided into three stages based on the severity of the disease (39): 12 

stage 1 is a mild stage characterized by an asymptomatic period in which the virus may or 13 

may not be measured; stage 2 is a moderate stage in which the virus is detected followed 14 

by pneumonia; stage 3 is the severe stage with high load of the virus, usually followed by 15 

severe pneumonia, ALI, ARDS and CS (4). The incubation period of the disease varies 16 

among the cases, but it is usually between 2-14 days. The initial symptoms include 17 

cough, fever, dyspnea, and then followed by pneumonia in some cases (40). 18 

The diagnostic procedure is based on positive laboratory tests for the virus, 19 

epidemiological history, clinical manifestation, and CT scan (41, 42). Huang et al., 20 

initially documented the clinical signs and symptoms of COVID-19 (8). They reported 21 

that hospitalized patients have a fever (98%), cough (76%), dyspnea (55%), most of them 22 
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developed dyspnea after eight days of first symptoms, 32% of them have relative 1 

hypoxemia so they needed ICU, but 10% required a mechanical ventilator (8). However, 2 

with the spreading of the virus globally, a range of other symptoms was reported such as 3 

diarrhea, vomiting, loss of appetite and abdominal pain (43). Regarding laboratory 4 

diagnosis, it is usually based on real-time-polymerase chain reaction (RT-PCR) because 5 

of higher accuracy than other methods such as serological tests and enzyme-linked 6 

immunosorbent assay (ELISA) however due to false-negative results, other mentioned 7 

criteria for diagnosis should not be excluded as occurred in the diagnosis of SARS-CoV-8 

1 (44).  9 

Disease management is one of the most challenging approaches faced by the health care systems. 10 

This is attributed to the lack of previous experience and the unavailability of drugs or vaccines, as 11 

COVID-19 is a new and different pandemic. Therefore, clinicians initially relied on 12 

supportive care, trying a variety of known antiviral drugs as repurposing agents that were 13 

used to treat other viruses such as MERS-CoV, SARS-CoV-1, Ebola virus, and others 14 

diseases (45). Varieties of repurposing immunotherapies have been tested for infected 15 

individuals until we have a proper randomized clinical trial (46, 47). 16 

5. Immunology of SARS-CoV-2 17 

Memory T cells initiated by prior microbes can make the immune system strong and 18 

memorize the infection to instantly attack the same pathogen. However, little is known 19 

about the human memory T cells in the SARS-CoV-2 that recognize the same agent. So, 20 

here we discussed the detailed immunological response.to COVID-19 infection. 21 

4.1 Immune response to SARS-CoV-2 22 
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The detailed immune response of the virus is not fully understood yet, but it is believed to 1 

resemble other CoVs (48). After entering the cell employing endocytosis, the pathogen-2 

associated molecules (PAMP) to the virus, stimulate toll-like receptors (TLR3 and TLR9) 3 

on the endosome.  The virus may leave the endosome in the cytoplasm and stimulates 4 

soluble cytoplasmic pattern recognition receptors (PRR) (retinoic acid-inducible gene 1 5 

(RIG-1), melanoma differentiation-associated protein 5 (MDA5) and nucleotide-binding 6 

oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 7 

(NLRP3) (49). After stimulation, the endocytic or cytosolic PRR, IFN regulatory factors 8 

(IRFs), and nuclear factor kappa-light-chain enhancer of activated B cell (NF-кB) will be 9 

phosphorylated and translocated to the nucleus to activate the part of DNA which is 10 

responsible for the production of IFNs (50). Type Ⅰ IFN includes IFN-α and IFN-β 11 

which are secreted by infected cell and act as paracrine bind to their receptor on the 12 

adjacent intact cells to activate Janus kinase-signal transducer and activators of 13 

transcription (JAK-STAT); the activated STAT1 and STAT2 form a complex with IRF9 14 

which again translocate the nucleus to activate interferon-stimulated genes (ISGs) on the 15 

nucleus to yield a huge amount of antiviral proteins (51) (52). Type Ⅰ IFN includes IFN-16 

ʎ also increases the antiviral state of neighboring infected cells through the same 17 

mechanism. Additionally, IFNs activate dendritic cells (DC), which in turn activate 18 

natural killer cells (NK) upon the secretion of IL-12; NK cells can kill and eliminate the 19 

virally infected cells (53). The TLRs recognize invading pathogens and activate the 20 

innate immune system. TLR plays a vital role in releasing pro-IL-1β when binds to 21 

SARS-CoV-2 infecting host. Pro-IL-1β is cleaved by pro-inflammatory protease caspase-22 

1 which is activated by multi-protein complex; inflammasome. Consequently, pro-IL-1β 23 
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is converted into its active mature form. In extension to innate immune response, the 1 

adaptive immune response starts when the virus is processed and presented by infected 2 

cells and APCs to CTL and Th cells, respectively. IL-12 increases the autolytic activity of 3 

CTL. IL-12 and IFN-γ can shift Th to Th1, which further activate CTL. During CoVs 4 

infection, B lymphocyte is also activated to generate antibody and memory cells (54). 5 

Beside cellular immunity of both arms of the immune response, humoral responses also 6 

play an important aspect to eradicate the virus. Humoral responses include an antibody, 7 

complement, and other soluble factors (55). The evidence for this antibody which formed 8 

in post-MERS-CoV infection can be identified (56).  9 

Although immune response activates against CoVs infection, the CoVs still can induce 10 

infection because they have the mechanism to evade the immune system that may be 11 

scrutinized by decrease secretion of IFN-β via expression of the protein by orf3b and orf8 12 

(57). Decreasing T lymphocyte by the CoVs is another mechanism of immune evasion 13 

which is more common in COVD-19 patients (58). 14 

4.2 Cytokines and Immunopathogensis of SARS-CoV-2 15 

The inflammation which develops during the severe immune response to CoVs like a 16 

double-edged sword that can kill the virus, but it also produces CS which culminates by 17 

lung damage and death (59) via increasing oxidative stress (60). In patients with COVID-18 

19, there is an over-activation of immune responses (61). However, the hyperactive 19 

immune inflammation and systemic damage by SARS CoV-2 is yet to be determined. 20 

The interaction of the virus with PRR also results in the production of a huge amount of 21 

pro-inflammatory cytokines, such as 1L-1β, IL-6, TNF-α (62), and chemokines such as 22 

CCL2 and IP-10 (63). These chemokines are capable of navigating macrophage, 23 
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neutrophil, T-lymphocyte, and NK to the target location of the infection. This induces a 1 

hyper-inflammatory state in severe cases of COVID-19 (59). 2 

The inflammatory signature recorded in the blood of COVID 19 patients showed 3 

induction in the IL-1B, IL-1RA, IL-7, IL-8, IL-9, IL-10, fibroblast growth factor (FGF), 4 

IFN-γ, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte-5 

colony stimulating factor (G-CSF), interferon-γ-inducible protein (IP10), platelet-derived 6 

growth factor (PDGF), monocyte chemo-attractant protein (MCP1), macrophage 7 

inflammatory protein 1 alpha (MIP1A), TNFα, vascular endothelial growth factor 8 

(VEGF) (8, 64). 9 

Cytokine storm (CS) is the network of molecular events occurring due to excessive and 10 

dysregulated immune response to infection (65). It is manifested by excessive 11 

accumulation of inflammatory cells, complements, inflammatory cytokines, and 12 

chemokines (66). It usually occurs in severe cases of COVID-19 that leads to ARDS and 13 

DIC and multiple organ failure. IL-6, TNF-α, and IL-1β play a critical role in driving CS 14 

(67). The level of IL-6 is increased in patients infected by SARS-CoV-2, in which it 15 

makes a major contribution to tissue damage and inflammation. IL-6 contributes to 16 

atherogenesis, it plays a crucial role in the activation of coagulation after the elevation of 17 

thrombin-antithrombin III complexes and the prothrombin activation fragment F1 + (68). 18 

Moreover, coagulation is induced by IL-6 as a consequence of building hepatic of acute-19 

phase proteins comprising of C-reactive protein (CRP), ferritin, and fibrinogen (69). 20 

Elevated concentration of IL-6 cytokine in COVID-19 patients can lead to DIC and 21 

multiple organ failure. D-dimer is one of the mediators of coagulation; Zhou et al. (2020) 22 

uncovered that the increased amount of D-dimer was observed in cases of SARS-CoV-2. 23 
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IL-1β also rises in COVID-19 which mediates lung, inflammation of the tissue, fibrosis, 1 

and fever (64). 2 

TNF is a cell signaling inflammatory cytokine; it acts as an inflammation amplifier in 3 

every acute inflammatory situation (70). Blood and tissue samples of COVID-19 patients 4 

observed the presence of TNF molecules (71). The expression of adhesion molecules of 5 

lung capillary endothelial cells is increased by a pro-inflammatory TNF-α cytokine. 6 

Hence, the affinity of the neutrophil to adhere to the capillary endothelial cells is 7 

increased (72). The activated neutrophils secrets more chemokines; IL-8 that work with 8 

anaphylatoxin (C5a, C4a, and C3a) to provoke neutrophil recruitment to the capillary 9 

endothelial cells and then to migrate into the adjacent tissue (73).  10 

The C-C motif ligand 2 (CCL2) is another chemokine released due to fusion of SARS-11 

CoV-2 with ACE2 receptor (74). The CCL2 plays an important role in the migration of 12 

monocytes, memory T cells, and basophils and positioning them in tissues to participate 13 

in the inflammatory process (75). ARDS is an acute inflammatory lung injury that occurs 14 

in severe cases of COVID-19, which is characterized by pulmonary edema, hypoxia and 15 

opacification of the lungs upon CT scan (76). It usually develops after one week of the 16 

disease in some cases due to elevation of inflammatory cytokines, especially in elderly 17 

people (77). Elderly people, those with comorbidities, infected by SARS-CoV-2 tend to 18 

be more susceptible to initiate ARDS, which is in line with the death rates detected in 19 

older cases when compared with younger individuals (78). Among inflammatory 20 

cytokines, VEGF and TNF-α play a central role in driving ARDS (79). In addition, the 21 

level of VEGF is elevated in COVID-19 patients. In a study conducted by Kaner et al. 22 

(80), they stated that VEGF was overexpressed in the lungs, which can play a vital role in 23 
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the increase of pulmonary vascular permeability in the primitive stages of ARDS (80). 1 

TNF-α is raised in COVID-19 and it has also a role in pulmonary edema by up-regulating 2 

adhesion molecules and disrupting endothelial barrier in the blood vessels (81). 3 

ACE2 is expressed in a wide variety of organs such as lungs, gut, kidney, cardiovascular 4 

and central nervous systems, as well as adipose tissues (82). Imai, Kuba (83) described 5 

the imperative role of ACE2 in the regulation of innate immunity. They have observed a 6 

more serious pulmonary inflammation in mice with deletion mutations of ACE2 7 

prompted by acid aspiration compared with wild-type mice. These results can provide a 8 

notion that the inflammation could be more severe by the lowered ACE2 expression. The 9 

S protein in the SARS-CoV-2 envelope binds to the ACE2 surface protein to induce viral 10 

entry into the host cell and the virus also depends on TMPRSS2 as protease to cell entry  11 

(32). The latest investigations recognized ACE2 as a doorway “receptor” for the novel 12 

SARS-CoV-2 virus, hence, significantly associating inflammation and cardiovascular 13 

disorder (84). When SARS-CoV-2 binds to ACE2 receptor, the virus is endocytosed by 14 

the host cell and proteolytic cleavage process is activated; thus, the ACE2 losses its 15 

protective function (85). The ACE2 system provides a cascade of protection against 16 

pulmonary diseases, heart failure and diabetes mellitus (35). 17 

Another detrimental effect of SARS-CoV-2 is the dysfunction of endoplasmic reticulum 18 

(ER), causing an ER stress response (86). The impaired folding of proteins in the lumen 19 

of ER has resulted in the aggregation of misfolded proteins; hence trigger the unfolded 20 

protein response (81), which maintains the homeostasis of endoplasmic reticulum 21 

organelles (87). Assuming that the ER stress is persisted and it is irreparable, the 22 

unfolded protein response (UPR) will trigger the apoptosis process  (88). The induction 23 
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of ER stress response is activated in case of viral infections. The UPR acts as a defense 1 

mechanism against the virus and the protein synthesis is attenuated to minimize the 2 

burden on the ER (89). The level of protein entering the ER can fluctuate significantly 3 

under various physiological states and natural conditions. At the point when protein 4 

production enhances the folding and unfolding of stored proteins in the ER and lead to 5 

ER stress. Excessive lipid damage and pro-inflammatory chemokines lead to ER stress. 6 

To sustain homeostasis, cells are responsible for defensive signaling pathways known as 7 

UPR. UPR signaling pathways activate three vital stress transducers such as PKR-like ER 8 

protein kinase (PERK), enacting transcriptional factor-6 (ATF6), or inositol-requiring 9 

protein-1 (IRE1). Triggering of these sensors communicates the sign across the ER layer 10 

to the cytosol and the nucleus, however lower the function of these can lead to 11 

pathogenesis of SARS-CoV-2 (89). 12 

The interaction between CoV and the host, induces the ER stress response and UPR 13 

activation. Different signaling processes are modulated through activation of the three 14 

branches of UPR; mitogen-activated protein kinase activation, apoptosis, autophagy, and 15 

innate immune response (90). Nabirotchkin, Peluffo (91) also reported that ER stress and 16 

UPR may participate in the pathogenesis of the novel SARS-CoV-2 virus, and concluded 17 

that the utilization of drug repositioning could be a good strategy to treat patients with 18 

COVID-19. 19 

6. Immunotherapeutic strategies 20 

Here, we focus on promising immunotherapies that increase immunity against SARS-21 

CoV-2 or decrease inflammatory cascades since sometimes excessive inflammatory 22 

response occurs against the virus that leads to CS syndrome that eventually results in 23 
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coagulation abnormalities, as well as, respiratory, and multiple organ failure (92, 93). An 1 

immune-modulating therapy also called an anti-inflammatory agent which is used in 2 

hyper-inflammatory conditions. Generally, the prediction of healing from CS is 3 

unfavorable, hence identification and utilization of such repurpose medication may have 4 

a significant effect and probably reduce mortality (57, 94). The application of 5 

immunotherapeutic drugs that mostly act as an anti-inflammatory agent is challenging 6 

and the side effects of the drugs should be taken into accounts: first, anti-inflammatory 7 

agents decrease immunity that delays clearance of the virus and increase the chances of 8 

patient to secondary bacterial infection (95). Second, most immunotherapeutic drugs have 9 

a single or specific target, as they inhibit only one cytokine, which makes the 10 

inflammation difficult to control since inflammation is the result of multiple cytokines 11 

(96, 97). Third, some immunotherapeutics are not selective such as JAK inhibitors which 12 

may also reduce TNF-α level (98); the latter is very crucial in the removal of viruses (97, 13 

99). Last but not the least, some immunotherapeutic should be used in combination with 14 

other drugs that counteract their side effects. For instance, corticosteroids increase the 15 

chance of bacterial infection by damaging the T lymphocytes (100) therefore, they should 16 

be used with antimicrobials; e.g., thymosin (101). The application of anti-inflammatory 17 

agents, besides their side effects, could survive the critical case of COVID-19 patients 18 

especially one or two weeks after onset of the disease due to CS (97, 102). Therefore, the 19 

application of anti-inflammatory agents provides a narrow window for those that their 20 

survival window is finite and will probably lead to the achievement of a more positive 21 

outcome (97). 22 

 23 
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5.1 NSAIDs 1 

NSAIDs are anti-inflammatory agents that function as inhibitors of cyclooxygenase COX 2 

enzyme which are responsible for the production of inflammatory prostaglandins (Figure 3 

1B). At the onset of the COVID-19 outbreak, there was contradictory information 4 

concerning the safety and effectiveness of NSAIDs (103).  5 

The safety profile of NSAIDs was not good during SARS-CoV-1 infection because of 6 

two opposed actions. First,  NSAIDs down-regulate ACE2 in the respiratory system that 7 

reduces pulmonary function (104). Second, NSAIDs up-regulate ACE2 especially in 8 

diabetic patients and patients that take ACE2 receptor inhibitors (such as losartan) (105), 9 

therefore, the over-expression of ACE2 receptors might facilitate the entry of SARS-10 

CoV-2 and increases the chance of infection. 11 

Some COVID-19 patients took acetaminophen or ibuprofen to reduce fever and pain, which are 12 

the manifestations of the disease. The impact of ibuprofen on human was shown in (Table 1). 13 

Michael Day established that the infected people should not take ibuprofen to reduce fever 14 

instead take acetaminophen because that ibuprofen might be an aggravating factor for the disease 15 

(106). As of 17th March, 2020, NHS medical practitioners in the UK announced CAS 16 

alert regarding using NSAIDs after worsening the symptoms of four COVID-19 cases as 17 

patients were taking these drugs without underlying other health problems (106). 18 

Since May 2019, a review of ibuprofen and ketoprofen has been ongoing with signals 19 

that varicella infection and certain bacterial infections could be aggravated by these drugs 20 

(107). The Swedish health agency is against using NSAIDs randomly to treat COVID-19 21 

symptoms, it explains that the anti-inflammatory and antipyretic effects can mask 22 

symptoms of a deterioration in the disease picture in infection (108). A study has shown 23 
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that ibuprofen in vitro inhibits peripheral blood mononuclear cells and IgM and IgG 1 

synthesis (109). 2 

Indomethacin is another NSAID that is used for the treatment of gout and rheumatoid 3 

arthritis (110). The in vitro studies verified the efficacy of the drug in inhibiting the 4 

replication of the virus and reducing the damage caused by canine CoVs. It is also proven 5 

that the in vivo application of indomethacin in an infected dog is effective at a dose of 6 

1mg/kg to combat against SARS-CoV-1 (110). 7 

The ongoing clinical trials regarding consuming ibuprofen in COVID-19 patients in the 8 

UK and Argentina are NCT04334629 and NCT04382768, respectively. While, 9 

NCT04383899 is the clinical trial to know the side effects of ibuprofen in patients with 10 

COVID-19 among French people. 11 

For decades, one of the most important problems in using NSAIDs is the panic that 12 

spread in the community due to their side effects including hypertension, renal problems, 13 

and gastrointestinal problems (111). Keeping in mind these reasons, there are few 14 

completed and ongoing trials concerning the use of NSAIDs in COVID-19 patients. If 15 

practitioners and researchers find the lowest safe effective dose of NSAIDs by their study 16 

to reduce the symptomatic treatment of COVID-19, it will be a good solution at that 17 

moment since there are no drugs and vaccines to overcome the disease. The justifications 18 

of not using NSAIDs are not too strong since the upregulation of ACE2 occurs during the 19 

chronic use of the drugs which make the person vulnerable to the disease.  When the 20 

person is infected with the disease, the upregulation of the ACE2 receptor either will not 21 

happen strongly during the acute onset of the infection or will not affect the severity of 22 

the disease (112). Another justification is that the antipyretic property of the NSAIDs 23 
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reduces killing the virus by the body because clinicians believe that fever is the weapon 1 

to reduce replication of the virus (113). If this justification is true, it must be fulfilled over 2 

other antipyretic agents including acetaminophen. Finally, the evidence of the 3 

upregulation of ACE2 by the drug are originated from the animal models, they may not 4 

transferable to the human (114).  5 

5.2 Corticosteroids 6 

Corticosteroids are potent immunomodulators that suppress the immune system, so they 7 

are used to treat various diseases and inflammatory conditions. It is administered at a low 8 

dose to treat some cancer and auto-immune diseases in which inflammation is 9 

predominated (115). One should be cautious of prescribing corticosteroids for such 10 

individuals as they can be like a double-edged sword; this is for several advantages and 11 

disadvantages. This group of medication could be used in a CS and the hyper-12 

inflammatory state as it could have both an immunosuppressant effect and an anti-13 

inflammatory effect (116) (60). The above property could combat CS phenomenon in 14 

patients infected with COVID-19, such as ALI, ARDS, and coagulopathy status (3) (57). 15 

The lethal effect of severe COVID-19 pneumonia is related to the pathological 16 

inflammatory reaction characterized by the destruction of deep airway and alveoli (117). 17 

Thymosin has been clinically used in patients with COVID-19 in adjunct to 18 

corticosteroids to reverse the side effects of corticosteroids (8). 19 

However, some data from China demonstrates that in those patients with severe 20 

pneumonia, early introduction of a short course of low dose methylprednisolone could 21 

improve both clinical and radiological outcome (118). It has been documented that the 22 
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use of dexamethasone as supportive care for moderate and severe COVID-19 patients 1 

leads to a decrease in the duration of mechanical ventilator and mortality rate (Table 1) 2 

(119-120). 3 

On the other hand, corticosteroid therapy has serious clinical complications.  The most 4 

common adverse effects caused by corticosteroid are a secondary bacterial and fungal 5 

infection (121) (122). Hence, to overcome secondary infection in severe COVID-19 6 

patients, clinicians should immediately add full-dose antibacterial drugs (118). 7 

The use of corticosteroids are still controversial, however, Wang, Jiang (118). noticed no 8 

significant effect of glucocorticoid treatment on the outcome of approximately half of the 9 

infected patients with new CoVs. Also, Russell, Millar (123) studied the effect of steroids 10 

on COVID related lung damages and concluded no clinical evidence to support such 11 

therapy. In another study completed in China, where steroid treatment was observed to 12 

increase clinical symptoms, biomarkers, and radiological findings in young individuals 13 

(124). For the above reasons, the WHO is against the routine use of corticosteroids to 14 

treat pneumonia and ARDS in COVID-19 patients (12). However, in their last living 15 

guidance, WHO strongly recommends systemic (intravenous or oral) corticosteroid 16 

therapy (e.g. 6 mg of dexamethasone orally or intravenously daily or 50 mg of 17 

hydrocortisone intravenously every 8 hours) for 7 to 10 days in patients with severe and 18 

critical COVID-19 (1). Broadly speaking, according to the guidelines, corticosteroids are 19 

not given to the COVID-19 case without ARDS but its utilization for COVID-19 with 20 

ARDS is still used since the dose and the time of administration are not known (125). It 21 

needs time to adjust the dose in order not to delay viral clearance and not predisposing to 22 

secondary bacterial infection. Corticosteroids also need many clinical trials to know other 23 
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side effects including lymphocyte damage (126). Therefore, we highlight the 1 

attentiveness of using the drug while more research should be implemented to ensure the 2 

efficacy and safety of corticosteroid.  3 

5.2 Monoclonal antibodies  4 

5.3.1 IL-6 blockade  5 

The IL-6 production is a response to both infection and tissue injury, which promptly 6 

contributes to the host defense via inducing acute phase proteins, hematopoiesis, and 7 

inflammation (63). Despite that IL6 expression is controlled by various mechanisms 8 

comprising the post-transcriptional and transcriptional process. Often its concentration is 9 

debilitating and contributes to multiple autoimmune disorders and inflammatory 10 

conditions (127). Based on its position, there are two types of IL-6 receptors (IL-6R): 11 

membrane-bound (mIL-6R) and a soluble form (sIL-6R), the latter binds to IL-6 to form 12 

a complex which binds to gp130 on the cell membrane to complete the signal 13 

transduction system and respond to infection via an inflammatory response (128). 14 

Further,  the SARS-CoV-2 infection observations found an increase in inflammatory 15 

cytokines (129). Hence, the blockage of IL-6 could have a significant impact on reducing 16 

inflammation in COVID-19 patients.  17 

Globally, the intensive care beds are limited and with the COVID-19 outbreak, such units 18 

will become overwhelmed with severe ARDS cases (130). To date, neither a vaccine nor 19 

specific antiviral therapy is available to combat novel CoV, therefore the administration 20 

of cytokine inhibitor especially IL-6  which has a role in hyper-inflammation could 21 

mitigate the severity of the disease (131) (132).  22 
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In addition to the immunological characteristics of COVID-19 patients in critical care, 1 

units have suggested hyper-activation of the humoral immune pathway, including IL-6 as 2 

a critical mediator for respiratory failure, shock, and multi-organ damage (133). This 3 

cytokine release syndrome that culminates in the release of a huge amount of pro-4 

inflammatory cytokines must be under the tight control of immunological homeostasis 5 

and sometimes it is the target for immunotherapeutic (134). During the ALI, macrophage 6 

activating syndrome and ARDS result from CS that occurs when pro-inflammatory 7 

cytokines mainly IL-6 are released in huge amount so blockage of IL-6 is therapeutically 8 

important to reduce CS in COVID-19 patients (135). 9 

Towards a drug, Tocilizumab (TCZ) is an example of mAb that acts as an IL-6 inhibitor 10 

that binds to both mIL-6R and sIL-6R (Figure 1C), it is used to treat RA to reduce 11 

inflammation. It has been approved to treat cytokine release syndrome followed chimeric 12 

antigen receptor -T (CAR-T) cell immunotherapy therapy in the United States since 2017 13 

(97). 14 

Xu & Han (136) reported in his retrospective study among 21 patients that administration 15 

of TCZ in severe cases of COVID-19 in the dose of 400 mg with a combination of 16 

antiviral therapy resulted in improvement of both the fever and oxygenation (75%) 17 

remarkably within few days. Apart from that, both the biochemical profile (peripheral 18 

lymphocytes 52%) and radiological opacifications (90.5%) improved. This research 19 

showed promised results that the application of this mAb might be beneficial in severe 20 

cases of COVID-19 (Table 1).  21 

Lately, many clinical trials have registered to know the efficacy and safety of TCZ to 22 

relieve CS and pneumonia in severe cases of COVD-19. There are clinical trials 23 
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(ChiCTR2000029765), (ChiCTR2000030796), (ChiCTR2000030442) and 1 

(ChiCTR2000030894) that address the use of TCZ  alone or in combination with other 2 

drugs to treat COVID-19 (97). 3 

Sarilumab (Kevzara) is also another inhibitor of IL-6 that interferes with IL-6 signaling 4 

by binding to both mIL-6R and sIL-6R (Figure 1C), it is used for the treatment of RA. 5 

The “NCT04315298” is the identifier for the clinical trial which has been launched in the 6 

United States to know the safety profile of Sarilumab in COVID-19 cases. 7 

Siltuximab (Sylvant) is another IL-6 antagonist that also binds to both types of IL-6R 8 

(Figure 1C), it is approved since 2014 by FDA to treat multicentric Castleman's disease 9 

which is a rare disorder characterized by hyper-inflammation (137). Gritti, Raimondi 10 

(138) found that siltuximab administration leads to a reduction of both CRPs via 11 

inhibition of IL-6 in COVID-19 patients (Table 1).  12 

IL-6 blockade agents, that act as immune-modulators, besides their advantage for 13 

decreasing inflammation in CS of COVID-19, delay viral clearance; this problem can be 14 

tackled by combination with antiviral drugs. They also increase vulnerability to a 15 

secondary bacterial infection which can be prevented by their administration with 16 

antibiotics. It is also important to address the number for scaling severity of disease and 17 

determine the number (the time) when these immune-modulatory agents can be applied. 18 

This can be achieved by the measurement of CRP and IL-6 in COVID-19 patients. 19 

 20 

5.3.2 Leronlimab (Pro 140) 21 
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Leronlimab is another mAb that is based on IgG4 to treat various diseases including 1 

AIDS, metastatic cancer, and nonalcoholic steatohepatitis (NASH) which exhibits 2 

inflammation. It is chemokine receptor 5 (CCR5) antagonism (Figure 1C), CCR5 is a 3 

chemokine that recruits leukocyte to the site of inflammation (139), it is reported that the 4 

deletion of CCR5 protects against inflammation  (140). The FDA has authorized and 5 

approved the starting of a new stage 2 trial to analyze the benefits and purposes of 6 

leronlimab in the treatment of patients which are dealing with weak to average 7 

respiratory complications who have been diagnosed with COVID-19 (141). CytoDyn, 8 

The developer of Leronlimab “CytoDyn”, informed in a media publication that in their 9 

trial of treatment with leronlimab; after 3 days of treatment 8 patients with COVID19 10 

who were severely sick, presented development in various significant immunologic 11 

biomarkers, comprising of cytokines, IL-6, and an aim in approaching the normalization 12 

of the CD4/CD8 proportionality (139) (Table 1). 13 

Glass and Lane (142) showed that the blockage of CCR5 restores the INF-γ and 14 

CD+4/CD+ ratio during SARS-CoV-1 infection (142). CCL5 is a chemokine that binds 15 

to the CCR5 receptor thereby it drives inflammation. The blockage of this CCL5-CCR5 16 

axis by leronlimab has a role in mitigating the disease. Leronlimab 's safety profile is not 17 

clear yet since CCR5 that expresses on CTL has a role in driving it to the affected area 18 

and increasing the antiviral activity. It was expected that leronlimab besides anti-19 

inflammatory effects, delayed viral clearance, however, a recent study revealed that the 20 

application of corticosteroids did not affect viral clearance time and length of hospital 21 

stay in mild COVIDⅠ19 cases (80).  22 

5.3.3 Bevacizumab (Avastin) 23 
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Pulmonary edema is the foremost harm, causing characteristics of ALI/ARDS which are 1 

the main complications of SARS-CoV-2 infection (143). The results of the postmortem 2 

autopsy form COVID-19 cases recorded that there was pulmonary edema that was more 3 

serious and more noticeable than the SARS infection. Therefore, pulmonary CT scanning 4 

and pathological data can likewise conclude that inflammatory exudation which causes 5 

pulmonary edema is the main distinguishable factor of COVID-19 (117). Nonetheless, 6 

special pharmacotherapy is still needed. VEGF is the strongest and most effective 7 

inducing aspect to enhance vascular permeability and induces angiogenesis. It is released 8 

in cases of hypoxia. Bevacizumab is a VEGF antagonist widely being used for the 9 

treatment of various cancers (144). Bevacizumab works by blocking VEGF and thus 10 

preventing it to bind with its receptor (Figure 1C), consequently the formation of new 11 

vasculature and vascular permeability is rendered. Therefore, the application of 12 

Bevacizumab may be a favorable medicine for serious and extreme COVID-19 cases. 13 

“NCT04305106” is the clinical trial, titled as, “application of Bevacizumab in severe 14 

cases of COVID-19 patients”. 15 

“NCT04305106” and “NCT04275414” are the clinical trial titles application of 16 

Bevacizumab in severe cases of COVID-19 patients. 17 

All things considered; bevacizumab is important to reduce pulmonary edema that 18 

accompanies SARS-CoV-2 infection. Its effective dose and safety profile should be 19 

revealed in the clinical trials since the drug has a long half.  20 

 21 
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5.3.4 Adalimumab (Humira) 1 

It is anti-TNF-α mAb that prevents TNF-α from inducing its inflammatory response 2 

which is used for the treatment of RA, irritable bowel diseases, and ankylosing 3 

spondylitis (145). The TNF-α inhibitors reduce capillary leakage by reducing the 4 

expression of the adhesion molecule and VEGF (146). It also reduces inflammatory 5 

cytokine (IL-1 and IL-6) in RA (147).  The TNF-α has a role in many inflammatory 6 

driven diseases including COVID-19 (115). Diao, Wang (148) demonstrated high levels 7 

of TNF-α were seen in patients diagnosed with COVID-19. Russell, Moss (115) 8 

established that TNF-α inhibition in COVID-19 cases is safe. Therefore, the application 9 

of Adalimumab enrolls in two clinical trials: “ChiCTR2000030089” and 10 

“ChiCTR2000030580”. Recent studies suggested that COVID-19 patients taking 11 

Adalimumab or other anti-TNF for other diseases are less likely to be admitted in 12 

hospital. 13 

Altogether, TNF-α inhibitors may improve severe symptoms of COVID-19 because they 14 

decrease other potent inflammatory cytokines that are responsible for CS beside TNF-α. 15 

It is better to be given directly after hospitalization before CS begins. Because of its 16 

strong anti-inflammatory effects, further clinical trials should be done to assure its safety 17 

profile; it may prone the patients to secondary bacterial infection since bacterial 18 

superinfection is common during viral infections. 19 

 20 

 21 
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IFN-γ is an inflammatory cytokine and possesses many biological activities (149). It can 1 

enhance the major histocompatibility complex (MHC) expression, activate macrophage 2 

function, stimulate chemokine production; its products can be up-regulated by the 3 

chemokines IP-10, which is found to be significantly increased in severe cases of SARS. 4 

The IP-10 levels are extremely high and it seems to be a more reliable marker for viral 5 

infection, which have documented in SARS-CoV-1 (150). Huang, Su (151) noted that 6 

IFN-γ related CS was found in SARS-CoV-1 infection  which might be involved in 7 

pulmonary damage of SARS patients (151). 8 

Emapalumab is humanized mAb with IFN-γ antagonistic property (Figure 1C), it is 9 

approved in the United States for treatment of primary hemophagocytic 10 

lymphohistiocytosis (HLH) if the disease doesn’t respond to its primary treatment (152). 11 

It is effective for that disease which is its hyper-inflammation overwhelmed by activation 12 

of T cell and macrophage. However, there is no evidence for the contribution of IFN-γ in 13 

CS of COVID-19 (153). It is proven that emapalumab decreases CXCL9 which is the 14 

chemokine that polarizes Th1 (154). In addition, CXCL9 upregulates RORγt that polarizes 15 

toward Th17 (154) which is believed to play a detrimental role in COVID-19 (156). 16 

“NCT04324021” is an ongoing clinical trial on using a combination of emapalumab with 17 

anakinra to treat CS in COVID-19 patients. 18 

5.3.6 Complement (C) inhibitors 19 

The complement, especially C5 and C3, has a detrimental role in driving inflammation in 20 

COVID-19. The C5a is elevated in COVID-19 patients based on research done in China, 21 

so clinical trials with antibodies that inhibit C5a are conducted (5). One explanation for 22 

the contribution of C5a in SRAS-CoV-2 mediated inflammation is for its chemotaxis 23 
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effect that recruits macrophages and neutrophils to the site of infection. Thrombotic 1 

microangiopathy is caused by various reasons in COVID-19, and one of the scenarios is 2 

SARS-CoV-2 mediated complement activation. The SARS-CoV-1 murine model with a 3 

lack of C3 showed decreased severity of the disease and organ damage (157). MERS-4 

CoV murine model with C5a inhibition showed decreased levels of cytokine, viral load, 5 

and lung damage (158). Today, antagonists of C5 and C5a are approved by the FDA for 6 

the treatment of complement related disorders. C5a antagonists have a better safety 7 

profile than C5 because it does not inhibit membrane attack complex (MAC) formation 8 

and hence does not weaken the immune system's ability to kill the virus. 9 

Eculizumab (Soliris) and ravulizumab (Ultomiris) are mAbs approved to bind to 10 

complement factor C5 and prevent the formation of MAC (Figure 1C). They affect the 11 

complement system, which may help to minimize organ damage in severe patients. These 12 

drugs were first FDA listed for paroxysmal nocturnal hemoglobinuria, which is the rare 13 

disease of the blood and later for hemolytic uremic syndrome and myasthenia gravis 14 

(159) (160). “NCT04288713” is a clinical trial underpinned the use of eculizumab in 15 

SRAS-CoV-2 related CS. 16 

Another drug engineered to suppress C5a biological activity is IFX-1 which is also a 17 

monoclonal anti-human complement factor C5a antibody designed to inhibit the 18 

biological activity of C5a (Figure 1C). The drug is not thought to affect MAC formation 19 

(C5b-9). It can regulate the tissue and organ damage associated with the inflammatory 20 

response through a C5a selective blockade. IFX-1 is under consideration to treat 21 

inflammatory conditions (161). The clinical trial for therapeutical application of INFX-22 

1in severe COVID-19 cases have been registered as "NCT04333420”. 23 
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In COVID-19, activation of C3 is responsible for inflammation as part of an innate 1 

immune response contributing to coagulopathy and organ failure (162). Hence, in critical 2 

cases of COVID-19, C3 inhibition can provide an opportunity to inhibit complement-3 

mediated inflammatory reactions. Compastatin Cp40 / AMY 101 is a potent selective C3 4 

inhibitor used in complement-induced disorders such as ARDS (163), which is one of the 5 

COVID-19 cases' fatal complications (Table 1). 6 

Additional questions must be answered before using C5a, C5, and C3 inhibitors such as 7 

what is the time window for drug intervention? What are the indicators for increasing 8 

complement during SARS-CoV-2 infection? It is clear that there is not a routine indicator 9 

for complement activation; we must depend on alternative routine indicators that mirror  10 

increased complements such as CRP, ferritin, and IL-6. 11 

5.3.7 Nivolumab (Opdivo) 12 

Zhang, Zhao (97) found that functional exhaustion of antiviral lymphocytes occurred in 13 

COVID-19 patients. This depresses of functional activity of T or NK cells are due to 14 

immune checkpoints such as programmed death receptor-1 (PD-1). Chiappelli, 15 

Khakshooy (164) reported that PD-1 over-expressed in COVID-19 patients, therefore, 16 

checkpoint inhibitors like anti-PD-1 would be helpful. 17 

Nivolumab (Opdivo) is a fully human monoclonal PD-1 antibody that functions as a 18 

negative regulatory checkpoint molecule in immunosuppression (165) (Figure 1C). 19 

“NCT04333914" is a clinical trial in COVID-19 patients that combined this drug with 20 

chloroquine analog (GNS561) and tocilizumab. 21 
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In short, PD-1 inhibitors are important to abrogate the exhaustion of CTL which is 1 

responsible for killing the virus. At the same time, they may produce immune hyper-2 

activation that may exacerbate lung damage in COVID-19 patients. However, Immune 3 

hyper-activation is not a common side effect of PD-1 inhibitors but clinical consideration 4 

should be taken during administration of them. Side effects of these drugs may synergize 5 

with the pathogenesis of SARS-CoV-2 in immune hyper-activation and CS leads to fatal 6 

outcomes.  7 

5.4 Interferons (IFNs) 8 

IFNs are a group of cytokines with antiviral properties by inducing the intact neighboring 9 

cells to release molecules that interfere with viral replication. They increase the autolytic 10 

activity of NK and macrophage against the virus. There are three families of IFNs: type 11 

Ⅰ (IFN-α and IFN-β), type Ⅰ (IFN-γ), and type Ⅰ (IFN-λ) (166). Type Ⅰ IFNs have the 12 

main role in the eradication of CoVs (SARS-CoV-1 and MERS-CoV) (167). So, they are 13 

used as a treatment to combat CoVs and hepatitis B virus (HBV) specially IFN-α but it 14 

produces many systematic side effects such as depression of bone marrow, production 15 

flu-like symptoms, increasing suicidal ideas. Currently, there are many attempts to 16 

replace IFN-α with safer IFN-λ which has fewer side effects. IFN-λ or IFN-γ has less 17 

antiviral activity if compared to type1 IFNs, so they are used synergistically with low 18 

doses with IFN-α to increase antiviral activity and decrease side effects of them (168). 19 

The CoVs have strategies to evade the immune system, one of these strategies is to 20 

reduce type1 IFNs to dampen the immune system and spread easily from one cell to 21 

another (167). 22 
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Larkin, Jin (169) underpinned that a combination of IFN-α and IFN-γ in vitro provided 1 

strong synergistic antiviral activities at much lower dosages of IFN than normally 2 

required. Lowering the dose of IFNs in combination therapy offers the advantage of the 3 

reduction in undesired side effects for the patients. Nagata, Iwata (170) have described 4 

the destructive effect of CS in adult mice after SARS-CoV-1 infection, while IV 5 

injections of TNF-α were not beneficial, intraperitoneal IFN-γ injection showed a 6 

protective effect. Cinatl, Morgenstern (171) reported the in vitro superiority of IFN-β 7 

over -α and -γ while suggesting the effectiveness of IFN-γ over IFN-α in Vero cell 8 

cultures of SARS-CoV-1 infection. Scagnolari, Vicenzi (172) also reported the 9 

synergistic effects of IFN-γ and -β on Vero cells infected with SARS-CoV. Another study 10 

established that IFN-α and IFN-γ co-administration caused hyper-activated IRF-1 and 11 

STAT1, which lastly resulted in a more vigorous antiviral activity replication of viruses 12 

(173). 13 

Although IFNs are available as medicinal products, some adverse effects should be 14 

considered for their direct indication. Moreover, the protocol for their indication 15 

including proper timing and dosing should be confirmed (174). 16 

Shen and Yang (175) believe that the treatment of COVID-19 patients with IFN-α and 17 

IFN-β show promised results since SARS-CoV-2 is more sensitive to these IFN as 18 

compared to SARS-CoV-1. To confirm this idea, infected patients were sprayed with 19 

IFN-α2b and found to infected patients, he saw that the infection rate with SARS-CoV-2 20 

would be decreased. Another study reported that this type of treatment can also be 21 

utilized for prophylaxis of the disease  (176). Sheahan, Sims (177) reported that a 22 
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combination of type 1 IFN with potential repurposes antiviral drugs such as 1 

lopinavir/ritonavir, remdesivir, and ribavirin could yield better efficacy (Table 1). 2 

The administration of IFN-α2b in five mU twice daily in inhalable form is the guideline 3 

used by the physician in China (178) (5).  There are many clinical trials regarding the use 4 

of IFN in COVID-19 either alone or in combination.  Zhou et al conducted a research on 5 

77 COVID-19 patients in China for 11 days (median times), they used IFN-α2b 5 mU 6 

twice daily in respirable form with and without umifenovir 200 mg three times daily for 7 

the patients, and revealed that this treatment is effective for reducing viral load and 8 

inflammatory markers (CRP and IL-6) (179). 9 

“ChiCTR2000029387” is the clinical trial that is designed to use IFN-α2b in combination 10 

lopinavir/ritonavir (178) (5) “NCT04276688” is another clinical trial for subcutaneous 11 

application of IFN-β1b in combination with lopinavir/ritonavir and ribavirin for COVID-12 

19 patients. “NCT04331899” is a clinical trial that claims to use III IFN (Peginterferon) 13 

in mild cases in the United States. "NCT04315948" is the trial that compares a 14 

combination of IFN-β1b and lopinavir/ritonavir with other repurposed drugs (180). 15 

Generally, the physicians are waiting for the results of clinical trials to know the exact 16 

dose, time of administration, and the side effects of IFNs. It is also essential to determine 17 

in which phase, IFN must be given since IFN administration has flaws, such as the 18 

pulmonary lesions which are also more predominantly in the second phase.  Therefore, 19 

IFN treatment in this phase may produce interferonopathies and exacerbate pulmonary 20 

lesions. Conversely, the pulmonary lesions are less significant in the early stage, so its 21 

administration may be effective in this stage but it does not mean that IFN is not used in 22 
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the third phase (hyperinflammatory state), all of these uncertainties must be proved in the 1 

clinical trials. 2 

5.5 Convalescent plasma 3 

There is an old, yet new, the strategy of immune therapy to prevent or cure viral and 4 

bacterial infections (181). It includes the collection and utilization of antibodies from the 5 

plasma of recovered patients who have developed humoral immunity against the same 6 

disease’ causative pathogen. The antibodies-based immune therapy offers a proximate 7 

immunity to the patients. At present, it is a more beneficial approach to target SARS-8 

COV-2 than the prophylaxis vaccination, since it doesn't require a long time to prepare 9 

and validate before treating the patients. Unlike the distinct targeted mAb therapy, the 10 

convalescent plasma contains neutralizing antibodies that prevent the viral duplication 11 

and/or virus-human cell bindings. Apart from the neutralization effect, the antibodies 12 

may induce antibody-dependent cell-mediated cytotoxicity (via NK cells), complement 13 

induced cytotoxicity and phagocytosis (182) 14 

During the last two decades, plasma containing antibodies have been used to treat 15 

different pandemics such as SARS, MERS, and Ebola virus. Despite that, the approach 16 

wasn't so effective and promising with the Ebola virus (183). the strategy was more 17 

pronounced with SARS and MERS, as observed via a significant reduction in death rates 18 

when compared to the non-treated group (184). Some papers and trials have been testing 19 

the effect of convalescent plasma on COVID-19 patients. The effect was prominent, and 20 

the safety of the treatment was reported, however, the sample size included in the study 21 

was relatively small (Table 1). Yet, there are no specific regulations to collect and use the 22 
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convalescent plasma from recovered COVID-19 patients worldwide; however, the FDA 1 

organization issued few recommendations for regulated investigational purposes. The 2 

donor should be a COVID 19 confirmed and recovered patient, who has been 14 days of 3 

disease-free confirmed via a serological or molecular test. Additionally, the antibody titer 4 

test should be performed before the donation, where the neutralizing antibody titer of 5 

1/160 is required (185). Like other treatment strategies, the convalescent plasma has 6 

some risks; such as the one which is related to the blood transfer that may get an 7 

accidental infectious disease or the one which is attributed to serum sickness. Other risks 8 

may be justified by the concept of antibody-dependent enhancement of infection, 9 

especially if the donor plasma has a lower titer of neutralizing antibodies (186). In such a 10 

case, the treatment would induce an adverse effect and enhance the infection severity 11 

(187). 12 

To highlight, the absence of scientific proves and the unavailability of standardized 13 

protocols for the correct doses and therapeutic management, plus the diversity in the 14 

nature of infection among different people, make this mode of immune therapy for 15 

COVID 19 limited relatively.  16 

5.6 JAK inhibitors 17 

Janus kinases (JAKs) consist of a family of intracellular tyrosine kinase (TYK) enzymes 18 

that phosphorylate and alter the activity of tyrosine hydroxyl residues in their target 19 

proteins. JAKs compromise four family groups of enzymes: JAK1, JAK2, JAK3, and 20 

TYK2. JAK3 is mainly present in hematopoietic cells, while kinases JAK1, JAK2, and 21 

TYK2 are ubiquitous. Numerous cytokines, such as ILs and IFNs, and hormones such as 22 
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erythropoietin, thrombopoietin, and growth hormone trigger JAKs. Binding a cytokine to 1 

its receptor causes activation of JAKs associated with that receptor and eventually results 2 

in phosphorylation of STATs, that is, activation of STATs. Phosphorylated STAT dimers 3 

translocate to the nucleus, where they regulate the expression of hundreds of proteins 4 

involved in the immune response and contributing to inflammation (188). JAK inhibitors 5 

are used for treating many diseases: RA, irritable bowel diseases, and many skin 6 

disorders.  7 

5.6.1 Baricitinib 8 

Baricitinib (Olumiant) is JAK inhibitor that works by inhibiting JAK1 and JAK2 9 

enzymes (Figure 1C). It has been proposed as a potential candidate for COVID-19 10 

therapy, taking in to account its relative safety and high affinities. A therapeutic dosage 11 

of either 2 mg or 4 mg once daily was enough to achieve inhibition plasma concentration. 12 

The biggest concern about JAK inhibitors, however, is that it can inhibit several 13 

inflammatory cytokines like INF-α, which plays an important role in curbing virus 14 

activity. To validate their effectiveness further clinical trials and studies are done (189) 15 

(Table 1). Another mechanism of baricitinib is inhibition of an adaptor protein complex 16 

(AP2)-associated protein kinase (AAK) which has the main role in clathrin-mediated 17 

endocytosis of the virus. AAK1 inhibitors can block the virus passage into cells and can 18 

help to avoid virus infections (190) (Figure 1C).  19 

The other major viral input factor is endocytosis. Baricitinib is commercially available 20 

for RA and in clinical development for irritable bowel disease as a JAK1, JAK2, and 21 

TYK2 inhibitor and can inhibit endocytosis. This effect does not occur with the less 22 

selective JAK inhibitor, Tofacitinib (Richardson, 2020). 23 
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5.6.2 Ruxolitinib (Jakafi) 1 

Ruxolitinib, another JAK1 and JAK2  inhibitor, is used as therapeutics for many 2 

inflammatory conditions: autoimmune diseases (191) and graft versus host disease 3 

(GVHD), which are resistant to corticosteroid therapy (192). Its ability to activate 4 

regulatory T lymphocyte (Treg) can be considered as another mechanism for its 5 

immunosuppress activity (3). Its side effects can be explained by inhibition of JAK 6 

enzyme in the NK cell in which the cell does not respond to IL-12, IL-2 and IL-15 7 

activation and maturation that consequently results in decreasing TNF-α and INF-γ which 8 

affects the maturation of DC and polarization Th1 negatively (193); the whole process can 9 

be scrutinized by decreasing the antiviral activity of NK and CTL and delay viral 10 

clearance in COVID-19 patients. These side effects were well underpinned in 11 

myeloproliferative neoplasm (MPN) patients during taking ruxolitinib (194). 12 

“ChiCTR2000029580" is the clinical trial that addresses the use of ruxolitinib in 13 

combination with stem cells to treat SARS-CoV-2 infection. NCT04331665 is another 14 

clinical trial that tests ruxolitinib for the treatment of COVID-19 to know its efficacy and 15 

safety. Table 1 provides further results from research on the use of this drug in COVID-16 

19 patients. 17 

5.6.3 Tofacitinib (Xeljanz) 18 

It is also JAK inhibitor that when given orally, it is an inhibitor of JAK1 and JAK3 in a 19 

small dose (5 mg) and inhibitor of JAK2 in a larger dose (10 mg or above), but does not 20 

affect the AAK2 and clathrin-mediated endocytosis (195). So, it has fewer side effects if 21 

compared to other biological agents that are termed biological disease-modifying anti-22 
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rheumatic drugs (bDMARDs) that subject patients to other infections (196). It is 1 

approved by the FDA and  the European Medicine Agency (EMA) for treatment of RA 2 

with or without methotrexate for those who don’t tolerate other bDMARDs (197, 198), it 3 

is also used for the treatment of irritable bowel disease (199). 4 

The detailed mechanism of anti-inflammatory properties are due to its capacity to bind to 5 

adenosine triphosphate (ATP) binding site of JAKs which makes them irresponsive to 6 

multiple cytokines: IL21, IL-4, and IFN-γ (200) and IL-6 have a major role in enhancing 7 

inflammation in COVID-19 patients (201).  8 

5.6.4 Jakotinib 9 

Jakotinib dihydrochloride monohydrate is also a potent JAK1 and JAK2 inhibitor that is 10 

in the clinical trials for the treatment of myelofibrosis, alopecia areata, and pulmonary 11 

fibrosis, amyotrophic lateral sclerosis (14) (202). (ChiCTR2000030170) is the clinical 12 

trial for using jakotinib hydrochloride to treat severe cases of COVID-19. 13 

In general, the side effects of JAK inhibitors should not be overlooked. They may 14 

aggravate coagulopathy which is found in some COVID-19 cases as FDA warns the 15 

experts who use JAK inhibitors. They might re-activate some latent viruses such as the 16 

herpes zoster virus. Likewise, they could decrease the response of some antiviral 17 

cytokines (such as IFN) or some immune-boosting cytokines (IL-2 and IL-7). 18 

On balance, the inhibitors of a selective single cytokine such as tocilizumab and anakinra 19 

may not be effective to treat CS, since it is the result of multiple cytokines. It is 20 

hypothesized to use multiple cytokine inhibitors especially JAK and TYK inhibitors 21 

because they can attenuate many inflammatory cytokines that are responsible for the 22 
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formation of CS. JAK inhibitors which work on JAK1 and JAK2 are important 1 

therapeutically to treat COVID-19. Those inhibitors reduce IL-6 which is the main 2 

contributor to CS. However, the utilization of JAK and TYK inhibitors are not free from 3 

drawbacks, since JAK and TYK are shared by other cytokines (IL-2, IL-12, and IFN-γ), 4 

so blocking them by inhibitors; they may decrease the antiviral activity of CTL and NK 5 

cell. JAK inhibitors produce anemia because it is also signal transductors of 6 

erythropoietin hormone. JAK inhibitors are contraindicated in pregnancy, breastfeeding, 7 

and those who are in high blood clot risk. 8 

5.7 Anakinra (Kineret) 9 

Infection of the upper and lower respiratory tract with SARS-COV-2 can cause a mild or 10 

extremely severe respiratory syndrome with the release of inflammatory cytokines such 11 

as IL-1. Binding of SARS-COV-2 to the TLR induces the releases of pro-IL-1 which is 12 

cleaved by caspase-1, accompanied by activation of inflammasome and production of 13 

active mature IL-1 development which is a mediator of lung inflammation, fever, and 14 

fibrosis. It has been shown that the suppression of pro-inflammatory members of the IL-1 15 

family has a therapeutic impact in many inflammatory diseases, including viral infections 16 

(129). 17 

Repression of IL-1 has been shown to help many inflammatory diseases, including RA 18 

(105). It is well known that overexpression of IL-1 is considered to be characteristic of 19 

SARS-CoV infection, likely by activation of the transcription factor nuclear factor, 20 

activator protein 1, and activating factor 2.  21 
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The approved anakinra which treats CAPS (cryopyrin-associated periodic syndrome), 1 

RA, and still's a disease, represses the IL-1 biological activity by binding to the IL-1 type 2 

1 receptor (Figure 1C), expressed in a wide range of tissues and organs (209). Another 3 

target for ankinara is neutrophil extracellular traps (NETs), which are formed to destroy 4 

the virus by active neutrophils. NETs are considered one of the risk factors in COVID-19 5 

mediated CS to induce coagulopathy (210). Anakinra has two characteristics that make it 6 

the drug of choice for tackling COVID-19 related CS: first, it rarely produces 7 

opportunistic bacterial infection; second, it has a short half-life (3 hrs) this allows for the 8 

prompt stoppage and clearing from the blood (211-213). NCT04324021 emphasizes the 9 

utilization of the anakinra with emapalumab in COVID-19. Table 1 indicates more 10 

findings of studies on the use of this medication in COVID-19 patients. 11 

To sum up, the IL-1 has a critical role in causing ARDS and CS which secondary to 12 

SARS-CoV-2 infection, so its inhibition by anakinra may yield a promising result. 13 

However, the safety profile is proven by some researchers but because of the small 14 

sample size we cannot guarantee its safety; the conduction of a study with a large sample 15 

size is recommended 16 

5.8 Other miscellaneous agents 17 

5.8.1 Thymosin 18 

There are several immune modulators and drugs which can be tested and used to treat 19 

COVID 19. Among them is thymosin, which is a polypeptide hormone secreted by 20 

thymus cells, it has different forms, among them the α1 and β4 are chemically 21 

synthesized. It plays a vital role in immune stimulation and homeostasis and has been 22 
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used in the treatment of different immunodeficiency diseases and cancer (214). 1 

Thymosin' broad action as an immunomodulator (via direct interaction with TLRs on 2 

DCs), activating different subsets of T-cells (CTL, Th, and Treg), inducing NK cell 3 

activity and many others (215) (Figure 1C). Among the different immune actions, 4 

thymosin reduces effectively the proinflammatory CS phenomenon, suggesting it as a 5 

promising therapeutic candidate for targeting SARS-COV-19. The immunological picture 6 

of COVID-19 patients may determine the relevance of such treatment, whether they are 7 

lymphocytopenic and have massive inflammatory responses (Table 1).  8 

On the other hand, methylprednisolone has been widely used during the current 9 

COVIDⅠ19 epidemic and the side effect of corticoidⅠinduced death of thymocytes 10 

should be considered (216). So, it is suggested to use thymosin α1 before 11 

methylprednisolone administration (217). 12 

Yet, no studies have been reported for the uses of thymosin to treat COVID 19, therefore 13 

we would like to highlight the importance of investigating its therapeutic action against 14 

COVID-19. 15 

5.8.2 Fingolimod    16 

Other immune modulators, such as a sphingosine-1-phosphate receptor (S1PR) inhibitor 17 

(fingolimod), have been already on a single clinical trial (NCT04280588) in China 18 

without any reported results yet. The fingolimod (used to treat multiple sclerosis) is an 19 

immune modulator that prevents the lymphocyte from migrating outside the lymph node 20 

(Figure 1C). Such treatment can be combined with other treatments and should specify a 21 

specific type of patient who suffers from some immunological diseases (218). 22 
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Modulation of S1PR by fingolimod abrogates asthma by depresses bronchial contraction, 1 

changing DC function, and down-regulating the expression of cytokines (IL-6 and IL-8) 2 

(219, 220).  3 

By and large, fingolimod may improve the pulmonary edema in ARDS of COVID-19 4 

cases which are produced by chemotaxis of inflammatory cells including lymphocyte. Its 5 

safety must be confirmed by clinical trials since fingolimod approved by FDA to treat 6 

relapsing-remitting multiple sclerosis (RRMS), it produces severe lymphopenia. 7 

5.8.3 Pirfenidone    8 

Pirfenidone (Esbriet), is an anti-inflammatory and anti-pulmonary fibrotic drug that 9 

targets IL-1β and IL-4 and has an anti-oxidant effect. The efficacy of such a drug should 10 

be evaluated against COVID-19, this is because most of the patients suffer from lung 11 

fibrosis as well as its anti-oxidant effect can be useful for reducing the recorded 12 

coagulation effect of the virus. Currently, there is a running clinical trial (NCT04282902) 13 

in China, where the drug is used in combination with other drugs aiming at reducing the 14 

rate of infection among different patients (221). 15 

To a great extent, applications of anti-fibrotic treatments are essential to mitigate 16 

pulmonary fibrosis which is secondary to SRAS-CoV-2 infection. When it is used, it will 17 

reduce pulmonary fibrosis in SARS-CoV-2 survivors, so it helps the recovery of the lung 18 

after viral infection. 19 

5.8.4 CD24Fc 20 

CD 24 extracellular domain-IgG1 Fc domain recombinant fusion protein (CD24Fc) is 21 

composed of heat-stable mucins like CD24 and Fc portion of IgG1 which are linked 22 
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commercially. The former is a receptor on hematopoietic cell (B, T lymphocyte and 1 

macrophage, DC) and non-hematopoietic cell (neuronal cell), has a role in hematopoietic 2 

and neuronal differentiation; it is also an immune check inhibitor has a role in cancer 3 

and autoimmune disease (222). Its anti-inflammatory effects belong to two actions: first, 4 

it prevents binding DAMP to PRR (e.g TLR), and second, by interacting with sigelcs 5 

G/10 forms a complex that blocks the signal transduction pathway of TLR (223). By 6 

these two functions, the CD24Fc can prevent the formation of NF-KB and pro-7 

inflammatory cytokines compromising IL-6 and IL-1(223) (Figure 1B). 8 

CD24Fc, an immune checkpoint inhibitor, is commercially prepared and it is in clinical 9 

trials to treat many disorders such as RA, multiple sclerosis, and GVHD. Phase Ⅰ of 10 

clinical trials of CD24Fc was recently started to be given to leukemia patients after bone 11 

marrow transplantation to prevent GVHD. NCT04317040 is the clinical trial for using 12 

CD24Fc as supportive care to treat COVD-19 patients. 13 

5.8.5 Tranilast 14 

Tranilast, a tryptophan like molecule, acts as anti-histamine and anti-inflammatory effects 15 

through many mechanisms (224): it blocks the release of histamine from mast cells (225), 16 

it blocks the formation of inflammatory prostaglandins via inhibiting COX2 in fibroblasts 17 

and macrophages (226, 227) and it decreases the release of IL-6 from endothelial cells 18 

(228). It is a potent inhibitor of NLRP3 which is an inflammasome that drives 19 

inflammation in many disorders including bronchial asthma (229) (Figure 1B). Tranilast 20 

represses fibrosis by inhibition of fibroblast activity (230) and collagen formation via 21 

reducing the  activity of TGF-β (231). It has been proved that it mitigates the pulmonary 22 

fibrosis in experimental animals (232). 23 
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Because of anti-inflammatory and anti-fibrotic properties, it is believed to be useful to 1 

tackle the COVID-19, for this purpose clinical trial “ChiCTR2000030002” claims to use 2 

tranilast in SARS-CoV2 driven inflammation. 3 

5.8.6 Cytokine based therapy 4 

Cytokines are a group of glycoproteins that control many physiological hemostasis in the 5 

body comprising inflammation, hematopoiesis, and tissue remodeling and repair, but 6 

those which connect function between two arms of the immune system (non-specific and 7 

specific) are the most importance (50). 8 

Interleukin-2 (IL-2) plays a central role among cytokines since it has pleiotropic roles 9 

including the proliferation of T lymphocyte, enhances the production of the memory cell, 10 

and controls the polarity of Th to Th1 (50). Its anti-inflammatory propriety is due to the 11 

expansion and stabilization of Treg cell that induces immunological tolerance which is 12 

very important in decreasing the inflammation in post-viral infection (233) (Figure 1C). 13 

Its antiviral activity belongs to its ability to expand viricidal immune cells (CTL and NK) 14 

(234) and stimulate the formation of a memory cell for CTL (235). One of the major 15 

obstacles that we face in the administration of IL-2 is short half-life and it is degraded 16 

shortly after being administrated so it must be given with monoclonal antibody (JES6-1) 17 

which attaches to IL-2 in the body and thus its destruction is prevented (233). If it is 18 

given at a low dose, it can control persistent viral infection (236) via the formation of the 19 

memory cell of CTL (237). In chronically infected mice, administrated IL-2 can increase 20 

expression of CD 44 and CD 127 in CTL memory cell; it can eradicate the virus (238).” 21 
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ChiCTR2000030167” is the ongoing clinical trial that aims to use IL-2 to strengthen CTL 1 

against SARS-CoV2 and control inflammation. 2 

GM-CSF is a hematopoietic growth factor that stimulates the production of macrophages 3 

at low doses then followed by granulocytes by increasing the dose. It is also an immune-4 

modulator (239). The therapeutic recombinant rh-GM-CSF can be given to the disease in 5 

which the leukopenia is common to prevent secondary bacterial infection (240). It 6 

stimulates the ability of macrophages to kill parasites (241). “ChiCTR2000030007“ titles 7 

the clinical trial aims to reverse leukopenia which sometimes occurs in post-SARS-CoV2 8 

infection.  9 

Viral macrophage-inflammatory protein (vMIP), a virus-based protein, is produced by 10 

HHV8 as an evading mechanism to protect itself from T cell inflammatory driving 11 

killing. Therapeutically, we can get benefit from it to control inflammation because it is a 12 

strong chemokine antagonism by inhibiting CXCR4 receptor (242) (Table 1) (Figure 1C). 13 

ChiCTR2000029636 is the identifier of a clinical trial that is going to be given in the 14 

inhalator form to COVID-19 to know its safety and efficacy. 15 

5.8.7 Adoptive cell therapy 16 

NK cell is one of the adoptive based cell therapies, which are given to COVID-19 17 

patients. It is manufactured by Cellularity Company from the human placenta.  The FDA 18 

permitted investigational new drug (IND) therapy  to use allogeneic NK cell named 19 

CYNK-001 in COVID-19 patients since NK cell can combat SARS-CoV2 by many 20 

ways; it can kill the virus directly by granzyme and apoptosis receptor (244), stimulates 21 

the activation of macrophage, triggers to shift polarity of Th to Th1 (245) thereby it can 22 

activate CTL that kills the virus. CYNK-001 can also induce the formation of the long-23 
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lasting memory cell and humoral response (243). National Research Project for SARS 1 

(246) found the number of NK cells lower in SARS patients compared to control, so it is 2 

believed that the administration of CYNK-001 could be a beneficial treatment in COVID-3 

19 patients. NCT04280224, ChiCTR2000030329, and NCT04324996 are examples of 4 

clinical trials on the administration of NK cell which are started or going to begin soon.  5 

T cell immunotherapy is another cell-based therapy to fight SARS-CoV2, the virus that 6 

leads to COVID-19, it is manufactured by AlloVir conjointly with Baylor college of 7 

medicine to fight SARS-CoV1, MERS-CoV, and SARS-CoV2. This kind of therapy may 8 

find the key to treat COVID-19 since T cell deficiency are more common in these viral 9 

infections (247). 10 

Pluristem (PLX) is an allogeneic mesenchymal-like stem cell that decreases CS by 11 

activation of Treg and M2 macrophages which decrease inflammation that accompanies 12 

COVID-19; PLX is now used by researchers in Israel for treatment of COVID-19 13 

patients (248) (Table 1) (Figure 1C).   14 

5.8.8 Thalidomide  15 

It is a glutamic acid derivative that was previously used as anti-histamine and sedative 16 

agent in many allergic conditions, nausea, and vomiting during pregnancy (NVP) in 17 

pregnant women since it caused many limb deformities in newborn infants, and was 18 

withdrawn from the market (249). Importantly, now it is introduced to the market to other 19 

indications compromising anti-cancer and anti-inflammatory agents because it is a good 20 

inhibitor of many pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α (250) 21 

(Table 1) (Figure 1B). 22 
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It has previously been documented that the utilization of this drug combined with some 1 

antiviral drugs showed an excellent result to treat a severe case of H1N1 (251). It is also 2 

found that uses of this drug with corticosteroids (e.g. dexamethasone) were very 3 

beneficial to decrease NK/T cell in  ECSIT V140A positive lymphoma (252). The 4 

immunomodulatory properties of thalidomide make it a suitable repurpose drug to use in 5 

COVD-19 patients, but it should not be used to treat female COVID-19 patients who are 6 

pregnant because of its teratogenic effects. There are two clinical trials regarding the 7 

utilize of thalidomide which is registered as NCT04273581 and NCT04273529. 8 

5.8.9 Levamisole 9 

One of the immune-modulator agents that act as an immune-stimulator in some 10 

conditions and immune-suppressor in other conditions depending on time and dose of 11 

administration, so it must be given with precautions (253). It works on cellular immunity 12 

especially Th cell. It is proven that if it is administrated with ascorbic acid, it can reverse 13 

the Th to normal level in the treatment of measles (254). For this reason, levamisole will 14 

be one of the candidate therapeutics to treat COVID-19 since lymphocytopenia is more 15 

common in this disease (255). It binds and deactivates papain-like protease (PLpr) which 16 

determines the virulence of SARS-CoV-1 (256). The bioinformatics proved that any drug 17 

that inhibits PLpr, it can inhibit also SARS-CoV-2 replication (257). 18 

In concert, levamisole can boost the immune system to fight against the virus indirectly at 19 

one side; it may inhibit the SARS-CoV-2 replication via binding to PLpr at the other side. 20 

NCT04331470, NCT04383717, and NCT04360122 are the ongoing clinical trials to 21 

determine the efficacy of levamisole with other drugs to combat SARS-CoV-2 infection. 22 

Jo
urn

al 
Pre-

pro
of



45 

 

5.8.10 Cyclosporine A 1 

This drug is mainly used in solid organ transplantation and some autoimmune diseases 2 

(258). It binds to cyclophilin A which is used as a receptor for nucleoprotein (NP) of 3 

SARS-CoV for virus assembly and release of a new virus (259). By this mechanism, it 4 

inhibits the spread of the virus from one cell to another and inhibits viral replication in 5 

SARS-CoV By inhibition of cyclophilin A (Figure 1B), it can mediate immune-6 

suppressive property through the prevention of the formation of IL-2 (261). It can also act 7 

as an inhibitor of cyclophilin D, through this mechanism it protects mitochondria from 8 

damage by inhibition of MPTP pore and restoring unfolded protein response (81) (262, 9 

263). It may beneficial for the treatment of COVID-19 (253, 264). 10 

On the whole, cyclosporine A besides decreasing CS can rescue pneumocyte and 11 

cardiocyte from death via inhibition of MPTP pore and restoring UPR. We suggest 12 

strongly that utilization of this drug in the randomized preclinical trials to know its safety 13 

in COVID-19 patients since it has severe side effects when it is used in organ 14 

transplantation such as nephrotoxicity and bacterial infection. We also recommend low 15 

doses and in combination with antibiotics to overcome severe immunosuppressive 16 

properties and secondary bacterial infection that usually accompanies its usage. There are 17 

serious drug interactions between cyclosporine A and some antivirals (265). For this 18 

reason, we suggest not to use protease inhibitor antivirals such as lopinavir and ritonavir 19 

in clinical trials to overcome delay viral clearance as side effects of cyclosporine A. 20 

NCT04412758, NCT04392531, 2020-002123-11 (HIUS-4-2020) and 2020-001262-11 21 

(FJD-COVID19-20-01) are identifiers for clinical trials that use cyclosporine A as 22 

symptomatic treatment of SARS-CoV-2 infection. 23 
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5.8.11 Melatonin 1 

It is a hormone, secreted by the pineal gland in the brain, with anti-inflammatory, 2 

antioxidant, and immune regulator properties. Inflammation causes acute lung injury and 3 

ARDS in COVID-19 patients (255); the inflammation is the product of engaging of virus 4 

products to TLR4 that leads to IL-6 that has a central role in driving inflammation, 5 

melatonin prevents binding virus products to TLR4 thereby control inflammation (266) 6 

(Figure 1B). Inflammation enhances the production of oxidative stress that causes ALI; 7 

melatonin by decreasing free radical can control this damage (267) (Figure 1C). Because 8 

of these properties, melatonin can be regarded as a potential supportive care treatment in 9 

COVID-19 (266). 10 

Melatonin has antiviral properties against some viruses such as the Ebola virus that 11 

reduce the severity of infection (268) but its effect on SARS-CoV-2 must be proved by 12 

the study. SARS-CoV-2 binds to ACE2 receptors on endothelium and cardiocyte causing 13 

cardiomyocyte damage, heart fibrosis, and endothelial dysfunction. Those cardiovascular 14 

complications caused by phosphorylation of STAT3 and JAK2 and increasing oxidative 15 

stress.  It is believed that these abnormalities can be reversed by melatonin administration 16 

(269). We suggest using a high dose of melatonin especially to elderly patients who have 17 

poor prognostic factors to the COVID-19. It is inexpensive, safe, and easily available. 18 

Therefore, it must be used for prophylaxis or treatment of COVID-19 cases either alone 19 

or in combination with other treatments.  20 

 21 
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5.8.12 BP1-002 1 

BP1-002 is a CTLA-4 inhibitor which is an immune checkpoint thereby it can activate Th 2 

and CTL; the latter can kill the virus (Figure 1C). It also acts as an adjuvant so that it can 3 

be given with the vaccine for enhancing the production of B lymphocyte memory cells 4 

against future viral infection (270). It is manufactured by Beyondspring Company in the 5 

USA and it is previously used for the treatment of colorectal cancer (271).  6 

This treatment may provide benefits for COVID-19 patients since the CTLA-4 inhibitor 7 

enhances the virus-killing ability of CTL. BP1-002 is not free form side effects because it 8 

can also drive T lymphocyte hyper-activation and exacerbate inflammatory mediated 9 

lung damage. 10 

5.8.13 Brilacicin 11 

Brilacicin is defensin like molecule, defensin, in turn, can acts as antiviral, blocks virus 12 

entry, and stimulates APC to the site of infection (272). It also binds to viral protein and 13 

thus prevents binding to their receptor in human cells. It is effective for blocking some 14 

virus including the influenza virus (273) but it is not tested on any CoVs, it may work by 15 

binding to spike protein of SARS-CoV2 (Table 1) (Figure 1B); it may also be used as an 16 

adjuvant with a vaccine for prophylaxis of COVID-19 but it beyond the scope of this 17 

review. However, the use of Brilacicin for the cure of COVID-19 is only a hypothesis as 18 

there are no clinical trials which prove an association of this drug with the disease. 19 

 20 
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5.8.14 Opaganib and RHB-107 1 

Opaganib (Yeliva) and RHB-107 (upamostat) are selective sphingosine kinase (SK)-2 2 

inhibitor and trypsin-like serine protease (S1 family) inhibitor respectively (34). 3 

Opaganib prevents the formation of SIP eventually it acts as an anti-inflammatory agent 4 

(Table 1) (Figure 1B). RHB-107 blocks the attachment of the virus to the cell 5 

consequently it works as an antiviral agent (274) (Figure 1B). They are used for many 6 

inflammatory-related conditions such as cancer and some gastrointestinal problems (275). 7 

In most of the cases the lung damage in COVID-19 is not due to the virus but it is related 8 

to a hyper-inflammatory response to the virus; because of the anti-inflammatory 9 

properties of Opaganib and antiviral properties of RHB-107, COVID-19 patients may get 10 

benefit from them. However, the use of Brilacicin, Opaganib and RHB-107 for the cure 11 

of COVID-19 is only a hypothesis as there are no clinical trials which prove an 12 

association of these drugs with the disease. 13 

5.8.15 Auranofin 14 

It is a gold salt; it was approved by the FDA since 1985 for the treatment of RA. It has 15 

anti-inflammatory properties due to its ability to inhibit phosphorylation of JAK-1 and 16 

STAT-3 which act as signal transduction of IL-6 (276) and via inhibition of COX enzyme 17 

that mediates the formation of inflammatory prostaglandin (277) (Figure 1B). It has anti-18 

cancer and antiviral activity because of the capability of increasing oxidative stress 19 

through inhibition of thioredoxin reductase, induction ER stress, and activation of UPR 20 

thereby it kills cancer cell and viral infect cell (278, 279). (280) proved in his study that 21 

auranofin is very effective in decreasing the viral load of SARS-CoV-2 in Huh7 tissue 22 
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culture cell by 70% and 85% after 24 and 48 hours auranofin treatment, respectively. 1 

They also uncovered in their study that inflammatory cytokines (IL-6, TNF-α, and IL-1β) 2 

and NF-КB would also decrease in tissue culture after 24 and 48 hours of auranofin 3 

treatment (Table 1).  4 

Therefore, auranofin will provide “the light at the end of the tunnel” for treatment of ALI 5 

and inflammation in COVID-19 patients because it has anti-inflammatory, and antiviral 6 

properties. 7 

5.8.16 Imatinib (Gleevec) 8 

Imatinib, a TYK inhibitor of the JAK-TYK axis, is a medication based on inhibition of 9 

ABL kinase to the treatment of chronic myeloid leukemia (CML) and gastrointestinal 10 

stromal cancer. It affects cell migration by controlling actin polymerization. When 11 

translocation occurs between chromosome 9 and 22, ABL form chromosome 22 unites 12 

with BCR on chromosome forms BCR-ABL complex that has TYK activity leads to 13 

proliferation and migration of the cell in CML. Imatinib by blocking TYK activity is used 14 

for the treatment of this type of cancer (203) and eradication of CoVs since it also 15 

prevents the fusion of the envelope of the CoVs to the endosomal membrane (204). (205).  16 

The anti-coronal activity of Imanitib against MERS-CoV and SARS-CoV has been 17 

demonstrated. Imatinib has antiviral activity against coxsackievirus (206), vaccinia virus 18 

(207), and Ebola virus (208). One case report of COVID-19 patient was recorded to use 19 

imatinib (Table 1). 20 

 21 
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Conclusion 1 

In conclusion, finding new vaccines and developing them to target the viruses is a 2 

hierarchic approach and also needs more time.  However, it can be thought of as a 3 

backward approach by repurposing medications to control lung injury and commonly 4 

used immunotherapeutic drugs in controlling viral multiplication. If this approach is 5 

found to be convenient, then it can make a vast contribution to global viral security equity 6 

and global health.  In this review, all the potential interventions for COVIDⅠ19 infection 7 

have been summarized according to previous immunotherapeutic treatments of SARS, 8 

MERS, and other diseases.  It has been found that the immunotherapeutic treatments are 9 

very significant to regulate host immune response against RNA viral infection. It is also 10 

revealed that clinical trials that have launched to investigate potential immunotherapeutic 11 

treatments for COVID-19 are also highlighted.  12 
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Table I. Selected targets and products being actively investigated for SARS-Cov-2 

Immunotherapy Mechanism Number 
of patients 

Proposed benefits 
or Results 

References 

NSAIDs (e.g. 
ibuprofen) 

COX inhibitor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 
 

First, NSAIDs 
down-regulate 
ACE2 in the 
respiratory system 
that reduces 
pulmonary 
function. Second, 
NSAIDs up-
regulate ACE2 
especially in 
diabetic patients 
and patients that 
take ACE2 receptor 
inhibitors (such as 
losartan), the over-
expression of 
ACE2 receptors 
might facilitate the 
entry of SARS-
CoV-2 and 
increases the 
chance of infection. 
 
It showed 
worsening the 
symptoms of  
SARS-CoV-2 
infection. This case 
has been shown in 
4 children in 
France. 
 

(104) 

(105) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(281) 

Corticosteroids 
 
 
 
1-

phosholipase A2 
inhibitor 

 
 
 
 
 

Methylprednisolone 
could improve both 
clinical and 
radiological 
outcome. 

(118). 
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methylprednisolone) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2- dexamethasone 

 
 

46 
 
 
 
 
 
 
 
 

101 
 
 
 
 
 
 
 
 

56 from 85 
 
 
 
 

18 from 34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Methyprednisolone 
suppresses the 
immune system by 
decreasing the 
production of anti-
inflammatory and 
pro-inflammatory 
cytokines.  
  
Hindering of 
cytokine release 
syndrome in 
patients which is 
the main severe 
pathophysiology of 
COVID-19. 
 
 
Improves the 
outcomes as it has a 
great role in 
decreasing CRP 
level.  
 
MP has role is 
removing high 
fever, improving 
oxygenation, 
making breathing 
better and stops the 
progression of 
infection.  
 
 
 
the use of 
dexamethasone as 
supportive care for 
moderate and 

 

(282) 

 

 

 

 

 

(283) 

 

 

 

 

(284) 

 

 

 

(285) 

 

 

 

 

 

 

(119) 
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350 
 
 

severe COVID-19 
patients lead to 
decrease duration 
of mechanical 
ventilator and 
mortality rate 
 
It decreases organ 
failure problems in 
the patients after 
careful usage. 
 
 

 

 

 

 

 

(286) 

Tocilizumab (TCZ IL-6 inhibitor  
21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15 
 
 
 
 
 
 

It caused 
improvement of 
both the fever and 
oxygenation (75%) 
in COVID-19 
patients.                                                                                                               
Apart from that, 
both the 
biochemical profile 
(peripheral 
lymphocytes 52%) 
and radiological 
opacifications 
(90.5%) are 
improved. 
 
 
 
 
It decreases 
cytokine storm such 
as IL-6 storm. It is 
very effective in 
critically ill 
patients. It is 
regarded as 
antagonist for IL-6 

 

(136) 

 

 

 

 

 

 

 

 

 

 

(287) 
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1 
 
 
 
 
 
 

100 
 
 

receptor that 
decreases mortality 
rate. 
 
Tocilizumab treated 
a man 60 years old 
patient of COVID-
19 case with 
multiple myeloma. 
 
It has role in 
returning CRP, 
Ferritin and 
Fibrinogen to 
normal level 

 

 

 

(288) 

 

 

 

(289) 

Sarilumab IL-6 inhibitor 8 of 15 
patients 

Improvement in 
oxygenation with 
decreasing in the 
inflammatory 
response. 

(290) 

Siltuximab IL-6 inhibitor  
 

21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

33 of 188 

Siltuximab in 700-
1200 mg resulted in 
improvement of 
clinical conditions 
in 33% patients 
through reduction 
of CRP, worsening 
the condition in 
24% of patients, 
and there were no 
change in the 
clinical conditions 
of the others. 

 

It decreased the 
mortality rate in a 
significant way in 
the patients who 

 

(138) 
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took Siltuximab. As 
it has role in 
lowering the 
hyperinflammation 
associated 
cytokines. 

 
Leronlimab chemokine receptor 

5 (CCR5) 
antagonism 

11 
 
 
 
 

It decreases the 

viral load, IL-6 and 

CCL5. There is no 

space on CCR5 on 

macrophage to be 

occupied by CCL5. 

  

(292) 

Bevacizumab VEGF antagonism  
 
 
 

  

Adalimumab Anti-TNF-α., may 
decrease adhesion 
molecule and 
migration of 
leukocyte  
 

 
1 
 
 
 
 
 
 
 
 
 
 
 
 
2 
 

It is used in a 30 
year male with 
Crohn’s disease 
with COVID-19, in 
which fever and 
chest pain have 
been disappeared 
after 24 hours. 
After 5 days, he 
was asymptomatic. 
 
 
It has role in quick 
recovery from 
COVID-19 
symptoms. Even in 
the patients with 
psoriasis. 

 

(293) 

 

 

 

 

 

 

 

(294) 

Emapalumab IFN-γ antagonistic 
property.  
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Anakinra Inhibitor of 
inflammasome and 
IL-1β 

29 
 
 
 
 
 
 
 
 
 
 
 

9 (-1) 
 
 
 
 
 
 
 
 
 

52 
anakinra 

group with 
44 without 
anakinra 

 
 
 
 
 
 
 
 
 
 

1-High dose of it 
resulted in 
decreasing CRP 
and improving of 
respiratory function 
in 72% of patients, 
the rate of survival 
among patients 
were 90%. 
 
2- Moderate dose 
of it brought about 
decrease in CRP in 
5 patients out of 8 
patients at day 11, 
stopping in extra 
pulmonary lesion at 
day 8. the rate of 
survival among 
patients were 100% 
3-it decreased the 
use of mechanical 
ventilation among 
anakinra group and 
the death rate 
without producing 
any serious side 
effects 
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8 
 
 
 
 
 
 
 
 
 

11 of 14 
 
 
 
 
 
 
5 
 
 
 
 
 
 
 
 
1 
 
 
 

It decreased the 
need for 
vasopressors, 
lowered HScore, 
and improved 
respiratory function 
in those sever 
patients. 
 
 
It decreased MV, 
patients discharged 
home soon. 
 
 
 
After using of high 
dose of it, it 
showed very rapid 
improvement in 
respiration with a 
very fast clearance 
of inflammation. 
 
 
A 33-year old man 
with pericarditis 
has been treated 
after infected with 
COVID-19 by 
using IL-1 
antagonist 
(anakinra) 
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(299) 

 

 

 

(300) 

 

 

 

 

 

 

(301) 

Eculizumab Inhibitor of 
complement factor 
C5 and prevents 
MAC formation. 

4 
 
 
 
 
 
 

Eculizumab 
induced a drop in 
inflammatory 
markers. Mean C 
Reactive Protein 
levels dropped from 
14.6 mg/dl to 3.5 

(302) 
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1 out of 4 
 

mg/dl and the mean 
duration of the 
disease was 12.8 
days. 
 
Prevent patients to 
increase CRP, 
LDH, 
hospitalization, not 
need oxygen 
supploementation 

 

 

 

 

(303) 

Ravulizumab 
(Ultomiris) 

Inhibitor of 
complement factor 
C5 and prevents 
MAC formation. 

 
 
 

1 out of 4 
 

 

Prevent patients to 

increase CRP, 

LDH, 

hospitlaization 

 

 

 

(303) 

IFX-1 Inhibits the 
biological activity 
of C5a 

 
 

 

 

 

AMY-101 Inhibitors of C3  
 
1 

Normalalization of 

CRP, LDH; 

decrease oxygen 

requirement and 

improvement of 

leukocytosis and 

lymphocytopenia 

 

(304) 

Nivolumab Inhibitors of PD-1    

Interferon Decreases the 
SARS-CoV-2 
activity through the 

 
 

77 

1-Vero E6 cell 
showed decrease in 
viral titer after 24 
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phosphorylation of 
STAT1 

 
 
 
 
 
 
 

20 
 
 
 
 
 
 
 
 
 
5 
 
 
 
 
 
 
 
 
 

20 
 
 
 
 
 
 
 
 

2944 
 
 
 

and 48 hours of 
IFN-α treatment by 
3 logs and 4 logs, 
respectively. 
 
2- It is effective for 

reducing viral load 

and inflammatory 

markers (CRP and 

IL-6). 

 
 
 
Fever decreased in 
all patients just in 7 
days, all other 
symptoms are 
declined gradually, 
and viral load 
deceased to zero 
after 10 days. 
 
Oxygen demand 
and symptoms are 
improved, with the 
decreased of 
hospitalization 
period. 
 
 
All patients were 
feeling good, fever 
has been decreased, 
and there is no any 
death report after 
discharge. 
 
 
 

 

 

 

 

(179) 
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(307) 

 

 

 

 

 

(308) 
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42 
 
 
 
 
 
 
 
 
 
 

60 
 
 
 
 
 
 

50 
 
 
 
 
 
 
 
 
 
 
 

814 
 
 

 
 
Interferon alpha 
nasal drops showed 
an protective effect 
for most susceptible 
people. 
 
 
 
 
Mortality rate 
decreased 
significantly, and 
discharging has 
been increased. 
 
 
Improvement in 
oxygenation and 
increasing the 
discharge from 
hospital. 
Decreasing in the 
viral load. 
 
 
 
 
 
Higher recovery 
rate in those who 
received IFN-alpha 
2b. 

 

 

 

(309) 

 

 

 

 

 

 

(310) 

 

 

 

 

(311) 

 

 

 

 

 

 

(312) 
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Convalescent 
plasma 

Eradicates the virus 
through inhibition 
of viral attachment 
and replication. 

 
 
6 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 
 
 
 
 
5 
 
 
 
 
 
 
 
 
 
4 
 
 

 
All patients did not 
admit to ICU. Some 
patients showed 
clearance of virus 
for throat swab 
while some others 
showed 
improvement in 
radiological 
examination. 
 
 
 
 
 
Improvement in the 
symptoms in severe 
cases. 
 
 
Viral load 
decreased, fever 
decreased within 3 
days after 
transfusion, oxygen 
level increased. 
 
 
All patients 
recovered from the 
infection including 
one pregnant 
woman. This 

 

(313) 

 

 

 

 

 

 

 

 

(314) 

 

 

(315) 

 

 

 

 

 

(316) 
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2 
 
 
 
 
 
 
 
 
 
 
 
 
 
6 
 
 
 
 
 
 
 
 

80 
 
 
 
 
 
 

method has role in 
boosting the 
immune system of 
newly infected 
patients. 
 
 
Increasing in the 
survival rate of 
sever cased 
patients, in which 
both patients 
present sever 
pneumonia and 
ARDS. This 
method doesn’t 
have any adverse 
effect. 
 
 
 
Decreasing in the 
symptoms, 
radiological 
improvements and 
elimination of virus 
without any adverse 
effect. 
 
 
 
Great improvement 
has been seen in 
patient’s symptoms 
who received the 
convalescent 
plasma before day 
14. 
 
 

 

 

 

 

 

 

(317) 

 

 

 

 

 

 

 

 

(313) 
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6 
 
 
 
 
 
 
7 
 
 
 
 
 
6 
 
 
 
 
 
 
4 
 
 
 
 
 
 

52 of 103 
 
 
 
 
 
 

25 
 

COVID-19 
Negative results 
achieved after 3 
days of infusioin. 
 
 
 
Neutralization of 
viremia after CP 
transfusion. 
 
 
 
Not requirement for 
mechanical 
ventilation. Early 
discharge from 
hospital. 
 
 
It’s regarded as a 
potential therapy 
for severe cases 
without any adverse 
effect. 
 
 
Decrease in the 
severity of the 
disease, faster 
discharge. 
 
 
 
It is regarded as a 
safe method for 
treating this 
disease. 9 of the 
patients cured just 
after one week. 
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Baricitinib JAK  and AAK 
inhibitors 
 
 

 
 
 

20 out of 
76 (56 are 
control) 

 
 
 
 
 
 
 
 
 
 
 
 

1 out of 4 
 
 
 
 
 

12 and 12 
standard 
control 

 
 
 
 
 
 

15 
 

It inhibits 
endocytosis of virus 
and inflammation 
mediated SARS-
CoV-2 infection 
Reduce mortrality 
rate (5%), reduce 
oxygen need, and 
CRP  while 
increase P/F ratio 
 
 
 
 
 
 
 
Her IFN-γ, TNF-α 
and IL are lower 
than the others 
 
 
 
Symptoms, CRP, 
procalcitonin spO2 
and PaO2/Fi O2 are 
improved 
 
 
 
 
Most of the pateints 
showed 
improvement in 
presenting 

(190) 

 

(325) 
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(327) 
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22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

113 
patients 
and 78 
controls 

symptoms, 
inflammatory 
markers,  and 
oxgen requirement 
 
 
Supplemental 
oxygen 
requirement, ferittin 
and CRP levels are 
reduced in most of 
the patients. 
 
 
 
 
 
 
 
 
 
Fatality rate is 
decreasesd, most of 
the clinical, 
laboratory (IL-6 
and CRP) and 
respiratory 
functions are 
improved. 

 

 

 

 

(329) 

 

 

 

 

 

 

 

 

 

 

(330) 

Ruxolitinib Inhibitor of JAK, 
and activate Treg  
 

14 
 
 
 
 
 
 
 
 

20 out of 
41 

It reduces (COVID-
19 inflammation 
score) by ¾ in most 
of patients. 
 
 
 
 
Improved in CT of 
lung.reduced 
mortrality rate. 

(331) 
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1 

Levele of 7 
cytokines (IL-6, 
NGF-β, MIP-α, 
MIP-β, VEGF, IL-
12 (P40) and 
macrophage 
migration 
inhibitory factors 
and CRP were 
decreased 
 
 
 
 
IL-6, CRP 
decreased while IL-
2R increased. 

 

 

 

 

 

 

 

 

 

(333) 

Tofacitinib Inhibitor of JAK1 
and JAK3 

   

Jaktinib JAK1 and JAK2 
inhibitor 

   

Imatinib TYK inhibitor 1 (Case 
report) 

Pulmonary 
opacities were 
disappeared. Her 
clinical signs 
improved. 

(334) 

Thymosin Activates different 
subsets of T-cells 
(CTL, Th, and 
Treg) and NK cell 
activity, and 
reverses the side 
effects of 
corticosteroids 

76 severe 
cases 

 
 
 
 
 

In vitro 
 
 
 
 

11 out of 
25 

It increased 
survival rate by 
restoration of 
lymphocytopenia 
and reversion of 
exhausted T cell. It 
also normalized the 
CD+4/ CD+8 ratio. 
 
 
 
It increased number 
of T cells. It did not 
change  CD+4/ 

(190) 
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CD+8 ratio,  it 
protect T cell from 
excessive 
activation. It 
decreased 
granzyme B. 
Number of 
lymphocytes were 
raised in critical 
patients after 
treatment 
 
 

(136) 

 

 

 

 

Fingolimod S1PR inhibitor     

Pirfenidone Targets IL-1β, IL-4 
and anti-oxidant 
effect and reduce 
pulmonary fibrosis 
in post SARS-
CoV-2 infection 

   

CD24FC Prevents the 
formation of NF-
KB and reduces IL-
6 and IL-1 

   

Tranilast Inflammasome 
inhibitor blocks the 
formation of 
inflammatory 
prostaglandins via 
inhibiting COX2 in 
fibroblast and 
macrophage and 
decreases the 
release of IL-6 
from endothelial 
cells. 

   

IL-2 Anti-inflammatory 
and anti-viral 
properties 
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Rhu-GM-CSF 
(sargramostim) 

Act as an immune-
modulator that 
activate alveolar 
macrophage to 
remove debris 

    

vMIP Strong chemokine 
antagonism 

In vitro It increased CTL, 
inhibited 
chemokine receptor 
and related signal 
pathway 

(335) 

NK cell Anti-viral property    

 

T cell 
immunotherapy 

Reverses T-cell 
deficiency 

   

Pluristem (PLX) Anti-inflammatory 
characteristics, and 
activate Treg and 
M2 macrophages 

7 (only 6 
patients 

completed 
1 week of 
treatments) 

The survival rates 
were 100% among 
Israeli patients. 
66% of patients 
were showing 
improvement of 
respiratory 
parameters.   

(336) 

Thalidomide Immunomodulatory 
properties 

1 (case 
report) 

It decreased 
cytokines including 
IL-6, IL-10, and 
IFN-γ. It raised the 
absolute 
lymphocyte count. 
 

(337) 

Levamisole Reverse the Th to 
normal level to 
treat 
lymphocytopenia, 
and decreases 
inflammation 

 
 

 

Cyclosporine A Cyclophilin A,  
MPTP pore  and D 
inhibitors 
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Melatonin Prevents binding 
virus products to 
TLR4, and 
ameliorates free 
radical driven lung 
damage 

   

BPI-002  CTLA-4 inhibitor    

Brilacidin Antiviral property 
that bind to spike 
protein of SARS-
CoV-2 

   

Opaganib (Yeliva: 
ABC294640) 

Sphingosine kinase 
(SK) inhibitor 

7 (2 
patients 

were 
excluded) 

It decreased the 
level of CRP (non-
significantly) but it 
increased the level 
of lymphocytes. 

(338) 

RHB-107 
(Upomastat, WX-
671) 

Trypsin-like serine 
protease (S1 
family) inhibitor 

   

Auranofin Inhibits 
phosphorylation of 
JAK-1 and STAT-
3, and inhibits 
COX 

 Inflammatory 
cytokines (IL-6, 
TNF-α and IL-1β) 
and NF-КB would 
also decreased in 
tissue culture after 
24 and 48 hours of 
auranofin 
treatment. 
It is very effective 
in decrease viral 
load of SARS-
CoV-2 in Huh7 
tissue culture cell 
by 70% after 24 
hours of auranofin 
treatment and 85% 
after 48 auranofin 
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Figure 1A: Flow diaghram of included studies. The flow chart depicts the number of citation and resources materials that have been 
screened, excluded and/or included in the review 
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Figure 1B: Immune response, immunopathology, and mechanism of action of immunotherapeutics for SARS-CoV-2 infection 
(intracellular). Inhibitory effects represented by red lines, while activating effects represented by green lines. Created with 
BioRender.com 

The spike protein surrounding SARS-CoV-2 engages in angiotensin-converting enzyme 2 (ACE2) and permits virus entry. Inhibitors 

like brilacicin (37) and antibodies in the convalescent plasma (15) prevent the binding of the virus to its receptor. TMPRSS2 may help 

the virus to enter the cell which can be inhibited by RHB-107 (39) therapy. After binding of the virus to its receptor, it enters the 

endosome. It needs AAK1 for endocytosis as a regulator (it is inhibited Baricitinib (16)). After membrane fusion with the endosomal 

membrane, it releases naked RNA into the cytosol. Inside the cytoplasm, it translates its RNA-dependent RNA polymerase (RdRp) to 

replicate its RNA and it undertakes gene expression. After the synthesis of protein and viral RNA, they accumulate inside the ER and 

Golgi apparatus. they leave ERGIC by exocytosis. it needs cyclophilin A to virion assembly which may be inhibited by Cyclosporine 

A (34). Consequently, the new virions are formed and released to infect another cell.  

The endocytosis of the virus is initiated by the engagement of SARS-CoV-2 and ACE2 on the surface of the infected cell through S 

protein and TMPRSS2. The virus releases its genome into the cytosol. Naked RNA is recognized by cytosolic receptors such as RIG-

1, MDA-5, or NLRP3. RIG-1 and MDA-5 activate IRFs that enter the nucleus. Once NLRP3 activated by naked RNA, eventually it 

causes activation of inflammasome which in turn leads to activation of caspase-1 (CA-1), inflammasome is inhibited by tranilast (25) 

while CA-1 is inhibited by thalidomide (32). CA-1 drives the activation of IL-1B which is a potent inflammatory cytokine. When 

dsRNA is formed during RNA replication of the virus, the immune response is elicited by activation of TLR-3 within the endosome, 

IRF, and NF-Κb which results in the production of inflammatory cytokines and interferons (IFNs). IFNs generation has an essential 

role in releasing antiviral proteins to defend healthy cells and it is augmented by interferon therapies (14). TLR‐4 on the cell 

membrane surface might recognize PAMP and DAMP of the virus and stimulate proinflammatory cytokines via the MyD88‐

dependent signaling pathway and NF‐κB activation. Melatonin (35) is believed to prevent these interactions while NF‐κB is 

inactivated by CD24FC (24) treatment. TLR7/TLR9 is activated upon sensing PAMP of SRAS-CoV-2 (i.e ssRNA), similar to the 
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TLR4 signaling system, it can activate the MyD88‐dependent signaling pathway and NF‐κB. The other transcriptional activations of 

NF‐κB beside inflammatory cytokines and chemokines are ceramidase and phospholipase A2 (PLA2) enzymes. The former catalyzes 

ceramide in the cell membrane into sphingosine which further catabolized by shingokinase (SK) into chemotactic sphingosine 1 

phosphate (S1P). Inhibitors like Opaganib (38) can inhibit the SK enzyme, it prevents the formation of S1P that egresses the T 

lymphocyte from the lymph node to the site of inflammation. Regarding PLA2, it degrades phospholipid (PL) in the cell membrane to 

form arachidonic acid (AA) that in turn catabolized by cyclo-oxygenase 2 (COX2) enzyme into inflammatory prostaglandin (PG). 

PLA2 is inhibited by corticosteroids (2) and while and COX2 is inhibited by NSAIDs (1) and auranofin (40). 

Interactions of the virus to the cell results in the generation large amount of cytokines (TNF-α, IL-1, IL-6) and chemokines (IL-8 and 

CXCL2) from the infected cell. The former is inhibited by levamisole (33) to mitigate cytokine storm (CS) and acute lung injury that 

may occur in COVID-19 patients. While the chemokines recruit the lymphocyte and leukocyte to the site of inflammation.  
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Figure 1C: Immune response, immunopathology, and mechanism of action of immunotherapeutics for SARS-CoV-2 infection 

(extracellular). Inhibitory effects represented by red lines, while activating effects represented by green lines. Created with 

BioRender.com 

The dendritic cells (DCs), The professional antigen-presenting cells, present viral protein to Th cell then different subsets of Th (Th1, 

Th2, Treg, Th17) is polarized depending on the cytokines. COVID-19 Patients had elevated levels of IL1B, IFN-γ, IP10, and MCP-1 

signifying hyper-activation of Th1  cell reactions. The activated T cells egress from the lymph node to the site of infection through the 

interaction of S1P to S1PR which can be blocked by Fingolimod (22). 

IFN-γ causes activation of macrophage through binding to its receptor on it; tyrosine kinase (TYK) is the signal transduction of IFNR. 

Macrophage activation can be inhibited by prevent binding IFN-γ to its receptor by emapalumab (9) or blocking TYK via imatinib 

(20). 

When Th2 is polarized, different types of cytokine (IL4, IL5, IL10, and IL-13) will be generated, primarily help B cells to produce 

antibodies which in turn trigger classical activation of complement 3  (C3) and (C5) which culminate in membrane attack complex 

(MAC) formation and damage of the viral infected cell. C3 is inhibited by AMY-101 (42). C5 and MAC are inhibited by eculizumab 

(11) and ravulizumab (12). C3a, C4a, and C5a are also formed which act as anaphylatoxin that attracts neutrophil and macrophage to 

the site of inflammation and increases oxidative stress that induces acute lung damage (ALI). The oxidative stress is mitigated by the 

administration of pirfenidone (23) and tranilast (25) and also by the administration of C5a antagonists such as IFX-1 (41). Neutrophil 

and Monocyte (macrophage) are synthesized and attracted to the site of inflammation by GM-CSF which is augmented by GM-CSF 

(27). Another factor to prevent migration of monocyte from the bloodstream to the site of infection is to block its chemokine receptors 

such as CCR5 and CXCR4 by leronlimab (6) and vMIP (28), respectively. 

The production of the polarized Th17 cells during SARS-CoV-2 infection has been associated with elevated levels of IL-6 and could 

also be influenced by transforming growth factor-β (TGFβ). Th17 cells are associated with driving harmful inflammation in the case 
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of SARS-CoV-2 infection. The IL-17 is released by Th17 acting as a chemotactic protein that drives monocyte and neutrophil to the 

site of infection.  

TGF-β and IL-2 play a vital role in the production of induced Treg cells; Treg can mitigate hyper-inflammatory response once 

activated. Treg can be supported by the administration of IL-2 (26), thymosin (21), or pluristem (31) therapy. SARS-CoV-2 is 

eliminated directly by the activation of CTL and NK cells. Both of them are influenced by IL-2 which secretes by naïve T helper cell 

(Th0) which in turn augmented by T-cell immunotherapy (30). CTL and NK cells are boosted by the administration of IL-2 (26) 

therapy. Once the SARS-CoV-2 virus is introduced into the tissue cells,  such as respiratory epithelial cells,  viral peptides are 

presented via class  I  major histocompatibility complex  (MHC)  proteins to  CTL. 

Inflammatory cytokines (IL-6, IL-1, and TNF-α), that secrete by activated DCs and viral infected cells, have an essential role in acute 

phase response and cytokine storm (CS) during SARS-CoV-2 infection. They affect on brain stem to produce fever. They induce the 

liver to produce acute phase reactants (CRP, ferritin, and fibrinogen). The latter two contribute to coagulopathy and septic shock. 

We can depress the action of IL-6 either by preventing its binding to its receptor (through tocilizumab (3), sarilumab (4) or siltuximab 

(5) treatments or inhibiting its signal transduction system by Janus kinase (JAK) inhibitors such as baricitinib (16), ruxolitinib (17), 

tofacitinib (18) or jakotinib (19). TNF-α besides its role in the acute-phase response can bind to its receptor on the blood vessel to 

increase adhesion molecules and enhances the extravasation of neutrophil that causes ALI.  It also works with VEGF to induce 

pulmonary edema by disrupting the endothelial barrier of lung blood vessels. TNF-α and VEGF are inhibited by preventing binding to 

their receptor by adalimumab (8) and bevacizumab (7), respectively. Regarding IL-1, it can be inhibited by preventing its ligation to 

the receptor by Kineret (10). 

Lymphocyte exhaustion and lymphopenia are common in SARS-CoV-2 infection which can be reversed by the administration of 

programmed cell death- protein1 (PD1/PD-L1) inhibitors nivolumab (13), or cytotoxic T-cell-associated protein 4 (CTLA4) inhibitors 

BP1-002 (36) could have an important role in the prevention of lymphopenia or restore lymphocyte counts in severe cases of COVID-

19 patients. 
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Highlights 
 

� Effective and novel therapies against COVID-19 are urgently needed. 

� SARS-CoV-2 invade the immune and nervous system. 

� Cytokines could be promising therapeutic target for the SARS-CoV-2 severe cases 
therapy. 
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