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 This paper reviews the fabrication technologies of silicon nanowire 

transistors (SiNWTs) and rapidly development in this area, as this paper 

presents various types of SiNWT structures, development of SiNWT 

properties and different applications until nowadays.  This research provides 

a good comparison among fabrication technologies of SiNWTs depending on 

a new factor DIF, this factor depends on the size of channel and power 

consumption in channel. As a result of this comparison, the best technology 

to use in the future to fabricate silicon nano transistors for future ICs is  

AFM nanolithography. 
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1. INTRODUCTION 

Nowadays, nanowires have many applications in nanoelectronics engineering. The structure of 

nanowires includes rectangular or circular cross-sectional nanostructure with a diameter (or thickness) of tens 

of nanometers or less. There are many types of existing nanowires depending on its materials, such as 

semiconducting, insulating, and metallic nanowires for different applications of electronic devices. These 

types are important for nanoelectronics devices applications. In research of nanoelectronic fields, active 

devices in nano dimension fabricated with semiconducting nanowires [1], the nano-capacitors fabricated 

using an insulating nanowire, and the contacts among nano devices depends on metallic nanowires. 

The electronics industry has been focused on the Si nanowires because of its ability to lead  

the progress of ever-smaller electronic devices, such as capacitors, resistors, diodes, and transistors.  

The characteristics of all of these nanodevices with broad types of new applications will be based on  

the characteristics of the main unit of these nanodevices which is nanowire. Si nanowire transistors (SiNWT) 

will be more usable in the future after making its large amount of investigation of its characteristics by 

researchers. The researchers predicted that the future of electronics devices will highly depends on 

advancement in research of nano dimensional transistors as a roadmap [2-10].   

Electronic engineering has played a significant function in the cognitive development of human 

beings in various fields of sciences and, most importantly, in the manufacturing evolution of integrated 
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circuits (ICs). The latter occurred as a result of the revolution in the minimization of transistors, the basic unit 

of the IC chips, which have emerged in the tens nanometer or less. According to the international technology 

roadmap for semiconductors (ITRS), the number of transistors in ICs quadrupled every three years with  

the size of the transistor shrinking to half [11]. 

Nanowires are still under research and experimental fields in laboratories. A number of early studies 

have shown how nanowires can be used to build the next generation of electronics devices [12]. In order to 

create active electronic devices, an important step is to dope a semiconductor nanowire to create p-type and 

n-type semiconductors [13, 14]. This process has already been performed on individual nanowires. Over  

the last decade, there have been many researches focused on SiNWTs fabrication [15-18] with different 

parameters such as semiconducting materials, insulating materials and various fabrication technologies 

developed to predict the SiNWT performance. 

Nanowires can be prepared for electronic device applications, like SiNWT, by catalyst-assisted 

growth technologies, electron beam lithography (EBL), and atomic force microscope (AFM) nanolithography 

to obtain a smallest dimension for silicon nanowire. The EBL can be prepared SiNWT by “top-down” 

approaches using advanced nano-lithographic technology tools [19] or by the technology of synthesis of 

semiconductor nanowires using “bottom-up” approaches, such as the vapor–liquid–solid (VLS) growth 

technique [20]. These technologies need to evaluate based on the improvements of the characteristics and  

the minimum size of the SiNWT. So, this paper reviews the fabrication technologies of silicon nanowire 

transistors (SiNWTs) and rapidly development in this area, as this paper presents various types of  

SiNWT structures, and also suggests a new factor to evaluate these technologies depending on the better 

characteristics with minimal size. 

 

 

2. FABRICATION TECHNOLOGIES 

SiNWTs could be fabricated by either top–down method using advanced lithography tools like deep 

UV steppers [21, 22] and electron beam lithography [23], or bottom-up methods with catalyst-assisted 

growth [24-26]. 

 

2.1. Catalyst-assisted growth technologies 

The vapor liquid solid (VLS) technique has beed explained firstly by Wagner and Ellis [27].  

The VLS is consedered as the most general method of manufacturing involves the chemical vapor deposition 

(CVD) of a gas including silicon and the following growth of silicon nanowires. Au catalyst and Silane gas 

has been used to growth the Si nanowires at low temperature of 300-600 oC depending on VLS technique. 

This method will depend on the silane gas decomposition at low temperature [28-30]. The metal catalyst 

droplet has been appeared on top end on the Si nanowires as a result of VLS technique [31]. 

The mechanism that has been excessively used in the fabrication of amorphous and nanocrystalline 

silicon thin films is the plasma enhanced chemical vapor deposition (PECVD) mechanism. The production of 

Si nanowires depending on the PECVD technique [32] will be used with metal catalyst covered substrate at 

higher deposition rate [33]. PECVD has been improved to pulsed PECVD (PPECVD) which uses modulated 

plasma to support the deposition process. Parlevliet and Cornish [34, 35] group have shown that PPECVD 

technique could be produced Si nanowires at higher area density more than normal PECVD. The PPECVD 

grows Si nanowires using metal catalysts like Al, Ag, Cu, Au, Sn and In. According to the results of 

Parlevliet and Cornish [34, 35] group, the Ag was the best effective catalysts under conditions of growth 

temperatures, and also Ag catalysts could be produced Si nanowires with substrate coverage of seven to eight 

times greater than the other catalysts.   

 In the vapor liquid solid (VLS) technique, the main function of the metal catalyst is to induce  

the outgrowth of Si nanowires with single crystal. The important condition for Si to be growthed as  

a nanowire by the metal catalyst it must be quite soluble in the chosen metal. Furthermore, the metal catalyst 

must be chosen to impact the electrical characteristics of resulting nanowires [33, 35]. The metal induced 

growth (MIG) method provides nanowires without using a gas silicon source (silane) and Au catalyst. This 

has potential to use the nanowires as a 1-dimensional building block in nanoelectronics. The growth 

temperature of MIG nanowires of 575 oC is still a low temperature, competitive with other groups, without 

requiring silane and Au catalyst at 900-1200 oC [36-39] or using silane gas at 800 oC [40]. 

Doping SiNW can be done by vapor phase doping method after SiNW synthesis, to make n-type 

SiNW, phosphorus-doped into SiNW, and to make p-type SiNW, boron-doped into SiNW. Yi Cui et al. [41] 

reports boron-doped (p-type) SiNWs. A SiNWs single crystal with radius of 5-10 nm has been growth by  

a nanocluster mediated method. Later, the SiNWs were put onto Si substrates toped by 600 nm SiO2 

growthed by thermal oxidation. Yi Cui et al. [41] investigate the characteristics behavior of the SiNWT by 

testing the effect of source and drain contacts annealing and surface passivation on parameters of transistor 
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characteristics. The annealing process and chemical amendment for oxide defects passivation were lead to 

improve the average mobility from 30 to 560 cm2/Vs and improve the average transconductance from 45 to 

800 nS with maximum values of 1350 cm2/Vs and 2000 nS, respectively. Comparison the results of 

transconductance, mobility and other important electrical characteristics of SiNWT with planar MOSFET 

shows essential merit for the SiNWs as structure units. The 5-10 nm radius boron-doped (p-type) SiNWs has 

been used in the study of Yi Cui et al., where the source and drain contacts were made using Ti metal.  

Figure 1 [41] illustrates the output characteristics of SiNWT (drain current (I) vs. source-drain voltage (Vsd)) 

with Ti source and drain contacted with SiNW device after and before annealing. This figure shows that after 

annealing, the I-Vsd characteristics be more symmetrical and linear, 3-fold conductance increasing, and  

the behavior of transport were considered more stable. 

 

 

 
 

Figure 1. The output characteristics of SiNWT after (red) and before (green) thermal annealing [41] 

 

 

J. Goldberger et al. [42] fabricated vertically oriented Si nanowires as shown in Figure 2 [42]. 

Figure 2 (A) shows the image of Si nanowires that grown vertically, and Figure 2 (B) illustrates the image of 

cross-section of Si nanowire coated by SiO2 as an insulator. While Figure 2 (C) explains the high-resolution 

image of a Si nanowire with an inner reduced diameter to ≈ 4.5 nm. These nanowires were grown on 

degenerately boron-doped p-type (ρ < 0.005 Ω cm) Si (111) substrates as described in [43]. The wires were 

synthesized via the vapor-liquid-solid (VLS) growth mechanism in a chemical vapor deposition (CVD) 

reactor using a SiCl4 precursor, a BBr3 dopant source, and metal nanoparticle growth-directing catalysts. 

Figure 2 (A) is a scanning electron microscopy (SEM) image of Si nanowires grown from 50 nm Au colloids. 

Transmission electron microscopy (TEM) analysis confirmed that these nanowires are single crystalline and 

grow along the (111) direction. Si nanowire arrays grown by the above method exhibit narrow diameter 

distributions with standard deviations (typically ≤ 9%) equal to those of the colloid catalysts [42, 43].  

As a good example for fabrication of SiNWT with top gate structure we can take [44], and Table 1 shows  

the fabrication summary of all layers of this SiNWT. Finally, the resulting SiNWT was annealed in ambient 

forming gas (5% H2 in N2) at 380 oC for 15 minutes by using a rapid thermal annealing tool. This step is 

critical for achieving better electrical performance due to the following two reasons: 

− The forming gas annealing can greatly reduce the nanowire device interface states, which can seriously 

deteriorate the device performance, such as the transistor subthreshold slope. 

− To improve Al contact with nanowire.  

 

 

 
 

Figure 2. (A) Si nanowires that grown vertically, (B) cross-section of Si nanowire coated by SiO2,  

(C) Si nanowire with an inner reduced diameter to ≈ 4.5 nm [42] 
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Table 1. The fabrication summary of all layers of SiNWT  
Layer Dimensions Conditions 

Nanowire 20nm diameter 

20 μm ~ 30 μm in length 

420 oC, under 500 mTorr SiH4 via a (VLS) 

mechanism 

Oxide 1 nm ~ 2 nm Thermally oxidized at 700oC for 30 minutes 

Source and drain electrodes A layer of Al with spacing 3 μm Deposited by thermal evaporation 

Gate electrode HfO2 (~ 25 nm) Atomic layer deposition at 250 oC 

Al top gate electrode Deposited by thermal evaporation 

 

 

The Al in the source/drain regions forms Schottky barrier contacts to the SiNWs. Figure 3 (a) shows 

the output characteristics of fabricated SiNWT with top gate structure. Figure 3 (b) display the scanning 

electron microscopic images of the fabricated SiN WT and the top gate is very clear in this image as 

explained in [44]. Improving the electrical characteristics of SiNWTs by minimizing contact resistance 

values has been studied by C. Celle et al. [45]. This will tend to enhance carrier injection by reducing  

the contact resistance values as a result of high doping at both ends of the Si nanowires. It is well recognized 

that for highly doped Si nanowires transistor, at transconductance measurement, the contact resistance will be 

neglected, while it makes an essential improvement for Si nanowire transistor with light doping. According 

to the study reported by C. Celle et al. [45], the VLS technique has been used in the synthesis of SiNWs.  

The SiNWs has been doped at the ends of nanowires only directly during the synthesis by adding 1% PH3 in 

hydrogen. The ratio of P:Si has been set to 2*10−2 for the doped ends of the NWs [46, 47]. Figure 4 shows  

the structure and image of a flexible Si nanowire transistor, where the axial doping of Si nanowires is in  

the form of n++-i-n++. 

 

 

 

 

 

Figure 3. (a) Output characteristics of SiNWT,  

(b) the images of (top gate) SiNWT with 1 μm gate-source/drain [44] 

 

 

 
 

Figure 4. The structure and image of a flexible Si nanowire transistor,  

the axial doping of Si nanowires with form n++-i-n++ [45] 
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2.2. EBL technology 

H. W. Yoon et al. [48] have been developed a new fabrication technology for SiNW FET for  

bio-sensing applications. Figure 5 (a) displays the structure of simple back-gate configuration SiNWT on 

silicon-on-insulator (SOI) substrate. This design is directed the fabrication process to be low cost. There are 

no source and drain doping, and also this design has no top metal contact to the back gate. The important key 

for this transistor is the manufacturing of Si nanowires. The fabrication processes of the Si nanowires have 

been conducted using two electron beam lithography (EBL). Nano dimensiontrenches in polymethyl 

methacrylate has been patterned using EBL, followed by liftoff process using Cr and then etching of Si by 

ICP plasma. Another alternative EBL procedure has been developed using hydrogen silsesquioxane (HSQ) 

resists. This EBL fabrication method produces SiNWTs with 12-50 nm diameters, 30-70 nm high, and 10 μm 

length Si nanowires on Silicon-on-insulator substrates, while the SiO2 layer was about 140 nm. Figure 5 (b) 

illustrates the drain to gate current ratio (Id/Ig) with gate voltage (Vg) characteristics of a fabricated SiNWT at 

Vds bias of 6 V. For such SiNWTs that fabricated using EBL, the ON/OFF current ratio is of about 1000 and 

reasonable small gate leakage current is observed, while the conductance of the SiNWTs is about 10 nS.   

 

 

 
(a) 

 

 
(b) 

 

Figure 5. (a) SiNWTs on SOI substrate cross-section structure and (b) SiNWT drain to gate current ratio 

(Id/Ig) with gate voltage (Vg) characteristics of a fabricated SiNWT at Vds bias of 6 V [48] 

 

 

2.3.  AFM technology 

J. Martinez et al. [49] discusses the SiNWT with using another technology of atomic force 

microscope (AFM) nanolithography to obtain a smallest dimension (4 nm) for silicon nanowire. They 

investigate the fabrication of 4 nm channel width SiNWTs with AFM nanolithography depending on  

the local oxidation of a SOI surface with a range of resistivity (ρ) of 10-20 Ω cm. The atomic force 

microscope has been used to make a narrow mask of SiO2 on top of a SOI substrate. The long and narrow 

sector of SiO2 that represents mask has been fabricated by giving pulses of voltage between the probe of 

AFM and the surface of silicon. The pulses of voltage encourage the forming of water and later the anodic 

oxidation of the Si surface. The following step is etching of the unmasked silicon by either wet or dry 

chemical etching processes. After etching, the local oxide mask has been removed by HF, and then the metal 

contacts (platinum or gold) for source and drain of SiNWs has been formed by electron beam lithography. 
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Table 2 presents all main steps of atomic force microscope (AFM) nanolithography processes of SiNWT.  

Figure 6 (A) shows the fabrication steps of 4 nm channel width SiNWT using AFM nanolithography and  

Figure 6 (B) illustrates the output characteristics of the SiNWT with 4nm width of channel that fabricated by 

AFM nanolithography.   

 

 

 
 (A) 

  

 
(B) 

 

Figure 6. (A) The 4nm SiNWT fabrication steps using AFM, 

(B) The output characteristics of the SiNWT with 4 nm width of channel [49] (continue) 

 

 

Table 2. The main steps of atomic force microscope (AFM) nanolithography processes of SiNWT  
Layer Dimensions Conditions 

Nanowire 4 nm width, 55 nm high, 10 μm in length AFM nanolithography followed by wet etching to 

form nanowire and side gate 

Oxide 140 nm side gate gap  
Source and drain electrodes A layer of gold  

 

 

3. COMPARISION AND RESULTS 

As a result of many different factors among all technologies to fabricate the nanowire transistors, it 

is note that the difficulties to choose an accurate tool to measure and evaluate the best preference among all 

these nanowire transistors, we note that there is a difference in manufacturing technology, there is also  

a difference in the cross-section of nanowires. Since the main purpose of fabrication NWT with different 

technologies and scaling down nanowire transistors is the possibility of putting it into an electronic circuit in 

IC with the consumption of less value of power, and this tow principles has been chosen to develop a new 

measurement preference factor. This factor will show the ability of putting a transistor in ICs, this factor will 

call device integration factor (DIF). 
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Device integration factor (unit less) is proportional inversely with power dissipated in the channel 

(Wch) and channel area (Ach): 
 

DIF ∝  
1

Wch ∗ Ach

 (1) 

DIF =  
k

Wch ∗ Ach

 (2) 

 

Power Wch chosen to be at VD=VG=1 V as a reference voltage for all SiNWTs, and the power consumption in 

channel will be the current flow in channel ID multiply by voltage across it VD, then:  
 

DIF =  
k

ID ∗ VD ∗ Ach

 (3) 

 

We assumed that K constant will be calculated at DIF = 1 and at the following parameters: ID = 1 μA,  

VD = 1 V, D = 1 nm and L = 1 μm, then k will be: K=1*10-21 watt m2. 

DIF calculated for three transistors fabricated with three types of technology, first transistor had 

chosen from reference [44]. This device fabricated using VLS technology as mentioned in section 2.1, 

according to (3) the DIF for this device is 0.138. Second sample taken from reference [48], this transistor 

fabricated using EBL as mentioned in section 2.3, DIF for this devise is 0.833. The last sample fabricated 

using AFM lithography and DIF factor is 1.923 for this transistor from [49]. Table 3 concludes these results 

the last two columns are the important columns to make a comparison among these three technologies to 

fabricate SiNWTs, the best technology has an ability to fabricate SiNWT with an ability to be a part of an IC 

is AFM technology. 
 
 

Table 3. Results comparison of SiNW fabrication technologies  
SiNW fabrication technology Structure features Important improvement DIF factor 

(VLS) mechanism 

Down-up [44] 

Top gate structure Low temperature chemical vapor deposition 

(420oC) 

0.138 

(EBL) 

top-down [48] 

Back-gate 

structure 

1-low cost fabrication process  

2-the (ON/OFF) current ratio is about 1000 

0.833 

(AFM)  
top-down [49] 

Side-gate structure Smallest dimension (4nm) for silicon nanowire 1.923 

 

 

4. CONCLUSION  

This study is designed to review the most technologies that used to fabricate SiNWTs and make  

a comparison among these technologies, a new factor was invented to make this comparison depending  

on minimum size of device and minimum consumption power and this factor called DIF. The results  

show that the best technology to use in the future to fabricate silicon nano transistors for future ICs is  

AFM nanolithography. 
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