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• COVID-19 pandemic impact lockdown
events in NEUAE greatly reduced the
NO2, AOD and SUHII concentrations.

• All Emirates in NEUAE showed decline
in NO2, AOD and SUHII concentrations
during lockdown period.

• The average NO2, AOD and SUHII con-
centrations were decreased by 23.7%,
3.7% and 19.2%, respectively.

• Validation for results showed a signifi-
cant linear correlations between esti-
mated and measured values.
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The 2019 pandemic of Severe Acute Respiratory Syndrome-Corona Virus Diseases (COVID-19) has posed a sub-
stantial threat to public health and major global economic losses. The Northern Emirates of the United Arab
Emirates (NEUAE) had imposed intense preventive lockdown measures. On the first of April 2020, a lockdown
was implemented. It was assumed, due to lower emissions, that the air quality and Surface Urban Heat Island
Intensity (SUHII) had been strengthened significantly. In this research, three parameters for Nitrogen Dioxide
(NO2), Aerosol Optical Depth (AOD), and SUHII variables were examined through the NEUAE. we evaluated
the percentage of the change in these parameters as revealed by satellite data for 2 cycles in 2019 (March 1st
to June 30th) and 2020 (March 1st to June 30th). The core results showed that during lockdown periods, the
average of NO2, AOD, and SUHII levels declined by 23.7%, 3.7%, and 19.2%, respectively, compared to the same
period in 2019. Validation for results demonstrates a high agreement between the predicted and measured
values. The agreement was as high as R2=0.7, R2=0.6, and R2=0.68 for NO2, AOD, and night LST, respectively,
indicating significant positive linear correlations. The current study concludes that due to declining automobile
and industrial emissions in the NEUAE, the lockdown initiatives substantially lowered NO2, AOD, and SUHII. In
addition, the aerosols did not alter significantly since they are often linked to the natural occurrence of dust
.
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storms throughout this time of the year. The pandemic is likely to influence several policy decisions to introduce
strategies to control air pollution and SUHII. Lockdown experiencesmay theoretically play a key role in the future
as a possible solution for air pollution and SUHII abatement.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

The emergent Coronavirus disease 2019 (COVID-19) is a transmitta-
ble disorder characterized by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) (Islam et al., 2020). By massive human-
to-human transmission, COVID-19 has deeply hit the world and
prompted a spike in the human mortality rate and massive economic
casualties around the world (Bukhari and Jameel, 2020). The number
of cases of Covid-19 globally hit approximately 34 million by the first
of October 2020, while the number of deaths reached 1 million (WHO,
2020a). In late 2019, the first case of COVID-19 was identified in China
and since then has spread very quickly throughout the world (Q. Li
et al., 2020). On 11 March 2020, the World Health Organization
(WHO) announced the novel coronavirus disease as a pandemic
(WHO, 2020b). The WHO COVID-19 dashboard (https://covid19.who.
int/) can be used to find the specifics of global COVID-19 cases. The
first COVID-19 infection was reported in the United Arab Emirates
(UAE) on 29 January 2020, and the first death was recorded on 21
March 2020. Since then, as per the Ministry of Health and Prevention
(https://www.mohap.gov.ae/), there has been an alarming surge in ac-
tive and death cases due to COVID-19.

In people with cardiovascular and respiratory disorders, the mortal-
ity risk of COVID-19 is substantially higher (Archer et al., 2020; Isaifan,
2020; Y. Zhu et al., 2020). Cardiovascular and respiratory disorders are
also closely related to air pollution. Emissions leading to respiratory
health conditions fromprimary pollutants containing particulatematter
(aerosols) and gases such as nitrogen dioxide (NO2) also have adverse
environmental effects like soil and water acidification (Griffin et al.,
2019; Mulenga and Siziya, 2019; Xu et al., 2020). TheWHO (2020c) re-
ports that approximately 4.2million inhabitants dieworldwide per year
from factors primarily related to air pollution, which is currently in-
creased, related to COVID-19 infected patients (Conticini et al., 2020;
Wu et al., 2020). Also, recent worldwide studies on the effect of climate
on the spread of the COVID-19 (Briz-Redón and Serrano-Aroca, 2020),
showed that temperature and humidity are not crucial factors in the
COVID-19 transmission, while precipitation, radiation, and wind speed
have not been investigated in details.

Urban Heat Island (UHI) is among the most noticeable and fre-
quently reported urbanization climatological consequences, by which
urban and suburban regions are hotter than surrounding areas (rural/
nonurban) (Hu and Brunsell, 2013; Miles and Esau, 2017). The negative
influence of UHI is extensively described in the literature. For example,
UHI causes rises in energy demand (Alghamdi andMoore, 2015), which
implicitly leads to global climate change (Alghamdi and Moore, 2015),
environmental degradation (Lin et al., 2017), air pollution (L. Zhu
et al., 2020), impact to human comfort and health (Schwarz et al.,
2011), and a degradation of ecosystem function (Keeratikasikorn and
Bonafoni, 2018). All of these also play a significant role in the rise in
the rate of COVID-19 cases (H. Li et al., 2020; Mukherjee and Debnath,
2020) and leads to heat-related deaths (Cui and De Foy, 2012; Lowe,
2016). UHI is measured based on air temperature, while satellite-
derived Land Surface Temperature (LST) data is used to estimate the
surface UHI (SUHI). Moreover, the calculation of SUHI Intensity
(SUHII) requires observations from paired LST locations in both urban
and rural/nonurban areas (Cui et al., 2019). LST is described as the sur-
face temperature of the Earth's skin, playing an important role in the in-
terchange of heat and energy among land surfaces and the atmosphere
to assess changes in the environment (Moradi et al., 2018).
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Distinct mitigation initiatives such as social distancing, cluster and
whole lockdowns, comprehensive travel bans, mass quarantines, etc.
have been introduced globally to mitigate the COVID-19 pandemic
risk. Such risk mitigation initiatives have had a significant effect on
socio-political ties and economic development at local and global levels
(Ranjan et al., 2020a). Nevertheless, due to the reduction of
anthropogenic-based pollutants, such precautionary strategies to pre-
vent COVID-19 transmission have significantly enhanced air quality.
The most critical challenge in the 21st century is the degradation of air
quality worldwide due to the different sorts of anthropogenic interven-
tions (Mehdipour and Memarianfard, 2017; Motesaddi et al., 2017). At
such a moment, lockdown episodes enforced for the COVID-19 pan-
demic mitigation resulted in anti-environmental activities to cease as a
byproduct. As a result, the level of air quality in the various continents
of the Earth significantly improved since the COVID-19 pandemic
began. Tobías et al. (2020) recorded a 45%, 51%, 31%, and 19% decline
in the level of PM10, NO2, SO2, and CO, respectively, over Barcelona in
Spain within the lockdown span of a month. Isaifan (2020) recorded a
substantial decrease in NO2 and carbon emissions (30% and 25%, respec-
tively) in China,which correlated to industrial lockdowns. Karuppasamy
et al. (2020) documented a 55% contraction in NO2 in India during the
lockdown. A recent analysis in the Middle East has also shown a de-
crease in the number of air pollutants in Morocco of 75%, 49%, and 96%
for PM10, SO2, and NO2, respectively (Otmani et al., 2020). Moreover,
in Iran, Nemati et al. (2020) recorded noticeable reductions in air pollu-
tion during the pandemic. Likewise, during the COVID-19 pandemic,
many other recent studies show a significant decline in the level of air
pollutants such as NO2, SO2, PM10, PM2.5, CO, etc. globally (Archer
et al., 2020; Collivignarelli et al., 2020; Dantas et al., 2020; Islam et al.,
2020; Kaplan and Avdan, 2020; Kerimray et al., 2020; Nakada and
Urban, 2020; Ranjan et al., 2020a; Wang and Su, 2020). However,
while studies generally showed a reduction in the primary pollutants,
some studies showed no reduction in air pollution. For example, Q. Li
et al. (2020), L. Li et al. (2020) and H. Li et al. (2020) investigated the
air quality changes during the COVID-19 lockdown over 41 cities in
the Yangtze River Delta Region. The results showed a decrease in some
of the main pollutants, but still reported high PM2.5 and increasing
trend during the lockdown by over 20%. These contradictory results em-
phasize the need for continued detailed investigations on the topic.

The aforementioned studies concentrate primarily on evaluating the
level of air pollutants during the pandemic scenario of COVID-19. Al-
though a considerable correlation between air pollutants and LST was
identified in some research (Alseroury, 2015; Feizizadeh and Blaschke,
2013; Hashim and Sultan, 2010; Kahya et al., 2016; Weng and Yang,
2006), the SUHII variability during the pandemic scenario has not yet
been investigated. Like other nations, the UAE forced the shutdown of in-
dustries, public transit, airlines, vehicles, and other anthropogenic opera-
tions in all Emirates from the 1st April to the end of June 2020 tomitigate
COVID-19 spread. Additionally, the UAE imposed a curfew daily between
8pmand6 am for residents (https://www.wam.ae). A full or partial lock-
down is hypothesized to lead to improved air quality and reduce the
SUHII since the lockdown is associated with many anthropogenic activi-
ties that directly impact the level of emissions. To our knowledge, no
studies have examined the impacts of COVID-19 lockdowns on air qual-
ity and SUHII throughout the UAE. This current study was undertaken to
investigate the potential impacts of COVID-19 lockdown operations on
NO2, Aerosol Optical Depth (AOD), and SUHII in the Northern Emirates
of the UAE (NEUAE). This study also aims to validate satellite data over
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Fig. 1. Location map of the study area: (a) study area and major factories, (b) elevations and spatial distribution of meteorological and air quality stations, and (c) urban areas, and reference.
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the study area using ground station records. Concentrating on the
NEUAE, thiswork directly addresses the impact of lockdowns on air qual-
ity and SUHII, and is a resource for the science community and environ-
mental protection policymakers, as well as resource in the development
of an action plan to improve air quality and SUHII.

2. Data and methods

2.1. Study area

The United Arab Emirates (UAE) consists of seven federation
Emirates (States): Abu Dhabi (ADH), and six northern Emirates, includ-
ing Ras Al Khaymah (RAK), Dubai (DUB), Umm Al Qaywayn (UMQ),
Sharjah (SHJ), Fujayrah (FUJ), and Ajman (AJM) (Fig. 1a). The Northern
Emirates of the UAE (NEUAE) were chosen as a study area located ap-
proximately between latitudes 26° 365 to 26° 335 N and longitudes
54° 530 to 56° 240 E. Topography of the study area is mostly flat, with
a mountain chain reaching an altitude of ~1800 m in the northeastern
and eastern parts (Fig. 1b). The NEUAE is typically an arid region with
a humid environment, located in theArabian Peninsula's Eastern corner.
It borders the Arabian Gulf to the north and the Gulf of Oman to the east
(Fig. 1). The annual average air temperature is about 28 °C. It is much
hotter (up to 45 °C) in the summer season (June to August) and colder
(down to 10 °C) in the winter season (December to February) (https://
www.ncm.ae/en/climate-reports-yearly.html?id=26). In the hot
months, dust storms generally occur (Barbulescu and Nazzal, 2020).
Over 80% of the yearly rainfall occurs in the winter season (FAO, 2008).

Around 71% of the UAE population is based in the NEUAE. Around
50% of the population resides in DUB, followed by 31% in SHJ, and only
1% resides in UMQ, as per the Federal Competitiveness and Statistics
Authority (https://fcsa.gov.ae/ar-ae/Pages/home.aspx). Besides that, as
documented by the United Nations (2019), more than 86.5% of the
3

NEUAEpeople live in urban areas situated on the coastline (Fig. 1c). Fur-
thermore, over the past two centuries, fast and pervasive economic and
political change has caused increased population explosion, accelerated
urbanization, higher energy consumption, and increased vehicular and
industrial emissions (Alawadi et al., 2018). This all adds to a net increase
in all anthropogenic activities.

2.2. Data

Between March to June 2019 and 2020, two different air pollutants
NO2 and AOD, and night LST data were collected for the NEUAE. The
averagemonthlyNO2 andAODdatawere acquired fromGoogle Earth En-
gine (GEE). NO2 is measured by the Sentinel-5p TROPOMI (Tropospheric
Monitoring Instrument)mission of Copernicus ESA.While AOD andnight
LST were obtained by MODIS MAIAC (MCD19A2) and MODIS Aqua
(MYD11A2), respectively. Due to the finite temporal scope of Sentinel-
5p data, it is worth noting that the baseline was 2019. A summary of
the datasets used in this study is shown in Table 1.

2.2.1. TROPOMI/Sentinel-5p data (NO2)
TROPOMI was launched on 13th October 2017 as a passive

hyperspectral nadir-viewing imager aboard the Sentinel-5 Precursor
satellite, which is also recognized as Sentinel-5P (Veefkind et al.,
2012). Sentinel-5P is a near-polar orbiting sun-synchronous satellite
positioned at an altitude of 817 km in an ascending node with an equa-
tor crossing time at 13:30 (local time) offering daily worldwide cover-
age. Furthermore, since July 2018, TROPOMI delivered calibrated data
from its nadir-viewing spectrometer that measures reflected sunlight
in the ultraviolet, visible, near-infrared, and shortwave infrared with
seven bands, where the fourth band spectral range is 405–500 nm,
which could be used for NO2 monitoring (Venter et al., 2020). Recent
works have shown that measurements of TROPOMI are quite well

https://www.ncm.ae/en/climate-reports-yearly.html?id=26
https://www.ncm.ae/en/climate-reports-yearly.html?id=26
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Table 1
Summary of the datasets used in this study.

Data source Parameter Spatial resolution Temporal resolution Data access link

Sentinel5p TROPOMI NO2 3.5 × 5 km Daily
MODIS MAIAC AOD 1 × 1 km Daily https://lpdaac.usgs.gov/
MODIS/ AQUA Night LST 1 × 1 km 8-day https://lpdaac.usgs.gov/
SRTM DEM 30 × 30 m – https://earthexplorer.usgs.gov/
NCM NO2 &PM2.5 – Monthly –
DM Tamin – Monthly –
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associated with actual ground measures of NO2 (Griffin et al., 2019;
Lorente et al., 2019). TROPOMI products included in this research are
L3 offline version products. Band four's spectral and spatial resolutions
are 0.55 nm and 5.5 × 3.5 km, respectively, and the signal to noise
ratio is also massively enhanced (Cheng et al., 2019).

2.2.2. MODIS data (AOD and LST)
In a near-polar solar-synchronous circular orbit, the Moderate

Resolution Imaging Spectroradiometer (MODIS) was launched onboard
NASA's Aqua and Terra satellites. Local crossing times are approximately
01:30 and 13:30 for the Aqua satellite and 10:30 and 22:30 for the
Terra satellite. MODIS has a 2330 km (cross-track) swath and provides
near-global coverage daily. MODIS is an imaging radiometer with 36
wavebands, covering the wavelength spectrum from the visible to the
thermal infrared. AOD data was possessed from the cloud-masked
MCD19A2-v6 product, which is a MODIS Terra and MODIS Aqua com-
bined AOD retrieved with the Multi-Angle Implementation Atmospheric
Correction (MAIAC) algorithm (Lyapustin et al., 2018). This dataset has
previously been used effectively to map ground-level PM2.5 concentra-
tions (Wei et al., 2019). In this analysis, AOD at 550 nm (i.e., the green
band) was utilized because of its superior accuracy as shown by previous
studies (Lyapustin andWang, 2018). Concerning night LST data, for 2019
Fig. 2.Workflow flowchart ado
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and 2020, MODIS Aqua's MYD11A2-v6 performance entails an 8-day
composite of LST data at night from 1 March to 30 June 2019 and 2020.
In the long time series, the 8-day LST composite productswill undervalue
the quantity of gaps created by clouds or other unwanted circumstances,
that are beneficial for SUHII studies to conduct a spatial comparison (Hu
and Brunsell, 2013; Schwarz et al., 2011). Modern Time LST products
(v6) have resolved past version accuracy issues. Additionally,measure er-
rors and validation assessments in bare land and arid regions currently
suggest their use in these areas (Lu et al., 2018). For the present work,
MAIAC AOD and night LST data on a 1 kmnadir resolutionwere retrieved
from the NASA Land Processes Distributed Active Archive Center
(Table 1).
2.2.3. SRTM data (DEM)
The SRTMDEM data was downloaded from the USGS Earth Explorer

(Table 1) to pick a suitable reference location for SUHII calculation. The
area's topography is predominantly flat but increases slowly from the
northwest to southeast and east, reaching approximately 1830 m
(Fig. 1b). The Digital Elevation Model (DEM) 30 m resolution was
used for this study. The DEM model was obtained from the Shuttle
Radar Topography Mission (SRTM).
pted in the present study.

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://earthexplorer.usgs.gov/
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2.2.4. Meteorological data
The air quality andmeteorological records utilized in our studywere

collected from the Municipality of Dubai (DM) and the National Center
ofMeteorology (NCM) for validation. From the aforementioned sources,
three parameters were obtained: NO2, PM2.5, andminimum air temper-
ature (Tamin) for each of the years 2019 and 2020, from March to June.
Tamin was chosen for the highest degree of matching with MODIS
night LST overpass time, which is closer to Tamin (Alqasemi et al.,
2020). Likewise, PM2.5 was selected as AOD, which is considered a
proxy for PM2.5 (Fan et al., 2020; Venter et al., 2020).

2.3. Methods

2.3.1. Data pre-processing
Usually, the products MCD19A2 and MYD11A2 were available in the

sinusoidal grid projection that was re-projected to the WGS 1984 geo-
graphic coordinate system. In addition, a mosaic of two tiles was created
with MYD11A2 data. The scale factor was multiplied by both MCD19A2
and MYD11A2. Then, we subtracted 273.15 to produce a night LST in
Celsius, from the reported Kelvin. In the process of producing a seamless
dataset, every unrealistic LST data, values above 100 °C and/or below
−50 °C, or any value outside the acceptable range was labeled as no
data and ignored. Only reliable pixels and high-quality data were used
as per the layer of Quality Assessment (QA). Missing values were
amended using the mean value of each series. Afterward, night LST data
Fig. 3. Average concentrations of (a) NO2, (b) AOD, and (c) SUHII in the NEUAE befo
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was aggregated to a monthly period by averaging the 8-day composite
data to obtain monthly average night LST. As for TROPOMI-Sentinel-5P,
NO2 was resampled to 1 × 1 km to ensure conformity with a spatial res-
olution of MODIS data (i.e., AOD and night LST). Finally, the boundary
polygon that defined the study area was used to clip all datasets.

As a preventive strategy for COVID-19, the three months of April,
May, and June (AMJ) were averaged as one period applied for all
datasets throughout the NEUAE. The March month was collected and
processed for pre-lockdown in 2020 for NO2, AOD, and night LST. Simi-
larly, for the identical time spans as the lockdown andpre-lockdownpe-
riods, the mean of datasets was obtained for 2019 for comparative
analysis, aswell as utilized for evaluating the correlationwithmeasured
data from ground stations.

2.3.2. SUHII calculation
The night SUHII is a distinctive feature of arid regions, as cited by

previous researchers (Alahmad et al., 2020; Clinton and Gong, 2013;
Lazzarini et al., 2013). Additionally, the lowest surface temperature is
reported at midnight, making Aqua night data an optimal choice near
the SUHII maxima. SUHII is typically measured from the LST contrasts
between urban and surrounding areas (will be cited here as reference).
Consequently, choosing a reliable reference is important. In different
tests, however, the approaches for determining the reference differed
extensively in various studies. The reference should not be influenced
by urban, high altitude, vegetation, or water (Hu et al., 2019). Therefore,
re and during the COVID-19 lockdown, compared to the same 2019 time period.
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in this study, the referencewas defined as bare land using chronological
images from Google Earth Pro (GEP) with elevation lower than 50m as
determined by the 30 m DEM dataset, to prevent the cooling effect on
the SUHII quantification. Finally, by subtracting the average night LST
of the reference from the night LST of all pixels, the SUHII was calculated
for every pixel utilizing the following equation (Eq. (1)):

SUHII ¼ LSTPX−LSTRF ð1Þ

where LSTPX is the night LST of all pixels, and LSTRF is themean night LST
of the reference.

2.3.3. Change rate (concentration)
It is critical to understand the change in the NO2, AOD, and SUHII

concentrations throughout the lockdown period. After retrieving the
data on pollutants and SUHII, the Spatiotemporal pattern of average
levels of NO2, AOD, and SUHII was categorized into four groups;
(i) pre-lockdown (March 2020); (ii) during the lockdown period
(AMJ, 2020); (iii) the same Pre-lockdown dates (March 2019); (iv)
the same 2019 lockdowndates. Furthermore, the change rateswere cal-
culated utilizing Eq. (2) to reflect the percentage of change in the study
area's NO2, AOD, and SUHII levels during the lockdown period related to
Fig. 4. Spatiotemporal distribution of average NO2 over the NEUAE: (a) March 2019, (b) a
(e) percentage of change between March 2019 and 2020, and (f) percentage of change betwe
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the past year (i.e., 2019) for the same period,whichwere also compared
to pre-lockdown in March 2020. The change rate of variation between
March and AMJ throughout 2019 and 2020 was also examined.

Change rate %ð Þ ¼ X2020−X2j019ð Þ=X2019ð Þ⁎100 ð2Þ

where, X is NO2, AOD, or SUHII for the selected periods in 2019 and 2020.
Also, the correlation was analyzed by calculating the regression coeffi-
cients (R2) among stations and satellite data based on the availability of
the metrological and air quality station data. The flowchart for the meth-
odological workflow is presented concisely in Fig. 2. The sequence of data
collection, pre-processing, clipping, resampling, data extractions, and
SUHII measurement, change rate, and validation are described in Fig. 2.
For the processing, analysis, and exhibition, the ESRI ArcGIS™ version
10.4 software framework and Microsoft Office Excel were used.

3. Results and discussion

3.1. Nitrogen dioxide (NO2)

A dramatic drop in NO2 concentrationwas recorded during the lock-
down period (i.e., AMJ, 2020) in the NEUAE due to the COVID-19. Fig. 4
verage AMJ 2019, (c) pre-Lockdown (March 2020), (d) during Lockdown (AMJ 2020),
en average AMJ 2019 and 2020.
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depicts the substantial spatiotemporal changes in NO2 levels through-
out lockdown and pre-lockdown in the NEUAE. The analysis showed
that the six Emirates experienced a decline in NO2 levels because of re-
stricted transportation and factories' closure. This result is compatible
with other earlier studies undertaken in various regions around the
globe (Baldasano, 2020; Dantas et al., 2020; Islam et al., 2020; Kaplan
and Avdan, 2020; Sharma et al., 2020). Fig. 3a indicates that RAK expe-
rienced the highest decline in NO2 levels among the six Emirates
(18.6%), followed by UMQ (~18%), AJM (13%), and FUJ (11.6%) com-
pared with the average NO2 levels throughout lockdownwith the aver-
age levels immediately pre-lockdown, for other Emirates relative to
DUB (7.6%) and SHJ (5.4%). In addition, our study indicates that, as
shown in Fig. 3a, the average decline in NO2 concentration throughout
NEUAE was substantial 12.2%. This decline should be noted that NO2

emission is closely connected to fuel combusting within the factories
area (Figs. 1a & 4). Therefore, the limitations on these areas' operations
are hypothesized to correlate to the substantial drop in NO2 level
throughout the lockdown period. Additionally, within March 2019, the
NO2 level was lower than March 2020, as shown in Fig. 3a and c,
which may be due to higher precipitation during March 2019.
Fig. 5. Spatiotemporal distribution of average AOD over the NEUAE: (a) March 2019, (b) a
(e) percentage of change between March 2019 and 2020, and (f) percentage of change betwe
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A substantial decrease inNO2 is visible in the study area by comparing
the NO2 values during the 2020 lockdown periodwith the identical 2019
time period. The maximum calculated decline was for UMQ (27.8%)
followed by RAK (26.8%), SHJ (~26%), FUJ (24.3%), AJM (19.8%) and
DUB (18.7%). The average reduction was 23.7% with the whole study
area (Fig. 3a). These results are in accordance with the results of previ-
ously published research. Islam et al. (2020) recorded identical outcomes
for Bangladesh, Agarwal et al. (2020) recorded an average reduction in
NO2 during the lockdown in China by 49% and in Mumbai (India) by
more than 76%. In theMiddle East (Morocco), NO2 levels were decreased
during the lockdown phase as well (Sekmoudi et al., 2020). This decline
in NO2 concentrations shows that lockdown initiatives related to the
COVID-19 pandemic significantly impacted NO2 concentrations in the
NEUAE as well as elsewhere.

3.2. Aerosol optical depth (AOD)

The average AOD values during the lockdown period were lower
than the mean AOD values in 2019 for the equivalent time frame, as
shown in Fig. 5. The analysis indicates that all six Emirates encountered
verage AMJ 2019, (c) pre-lockdown (March 2020), (d) during lockdown (AMJ 2020),
en average AMJ 2019 and 2020.
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a decline in AOD concentration because of restricted aerosol sources,
specifically, burning biomass, emissions from factories, vehicles, heavy
transport, machinery (Ranjan et al., 2020b), and dust (Khuzestani
et al., 2017). Therefore, a reduction in AOD due to the restrictions of in-
dustrial and automobile movement is reasonable. The spatiotemporal
variations in AOD concentrations in the NEUAE (Fig. 5) show that AJM
with 5.7% and UMQ with 5.3% were the largest declines, followed by
SHJ with 3.4%, FUJ and RAK, both with 3.1%, and, in Dubai, the lowest
drop, 1.7%. The rate of change was 3.7% throughout the overall study
area (NEUAE), as shown in Fig. 3b. Similarly, a common declining
trend of AOD has been recorded in China (Fan et al., 2020; Filonchyk
et al., 2020), India (Gautam, 2020; Pathakoti et al., 2020; Ranjan et al.,
2020b), and South Asia (Zhang et al., 2020).

During the average AMJ, the level of AOD increased significantly com-
pared to March (Fig. 5). This may be due to the fact that rainfall through-
out these months (AMJ) is scarce, and the gusty winds ensure that dust
storms become frequent (Barbulescu and Nazzal, 2020; Karagulian
et al., 2019). Furthermore, according to Al Otaibi et al. (2019), AOD typi-
cally rises over the gulf nations in hot summer months. Consequently,
there is generally a rise in the AOD level in AMJ when compared to
March. However, the change rate between March and the average AMJ
Fig. 6. Spatiotemporal distribution of SUHII over the NEUAE: (a)March 2019, (b) average AMJ 2
change between March 2019 and 2020, and (f) percentage of change between average AMJ 20
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in 2020 decreased relative to the past year for all six Emirates, as shown
in Fig. 3b. In 2019, the change rate over the NEUAE was 26.3%, whereas
it dropped in 2020 to 3.6%. Notably, AOD emission is linked with the
major industries, particularly inDubai (Figs. 1a, 5). Furthermore,Dubai re-
corded the smallest reduction in AOD. Themost populous and established
region of the UAE is the Emirate of Dubai, which includes themost indus-
trialized regions. Therefore, certain additional considerationsmay explain
the relatively small reduction in Dubai.

3.3. Surface Urban Heat Island Intensity (SUHII)

SUHII specifically portrays urbanized areas andmountains, as shown
in Fig. 3(a–d). A drop in SUHII levels was also recorded, like NO2 and
AOD (Fig. 3f), also attributed to the partial or full nationwide lockdown.
The result reveals that during the specific time frame, nighttime SUHII
levels over this duration were comparatively less than the 2019 levels
(Figs. 3c & 6). The decline was generally identified in all Emirates, vary-
ing from 12.3% to 28.6%, in which the average drop is 19.2% across the
whole study area.

The maximum SUHII concentrations are found in FUJ (28.6%) and
RAK (23%) as displayed in Fig. 3c, which may be due to the elevations
019, (c) pre-Lockdown (March 2020), (d) during Lockdown (AMJ 2020), (e) percentage of
19 and 2020.



Fig. 7. The scatter plots for validation of the derived data from satellites andmeasured data from ground-measuring stations; (a) measured NO2 and derived NO2, (b) measured PM2.5 and
AOD, and (c) minimum air temperature (Tamin) and night LST.
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and type of rocks. Fig. 6(a–d) also reveals that SUHII increases during
AMJ relative to March, related to heat emission in hot months (e.g., air
conditioning system). Nevertheless, the change rate in 2020 between
March and AMJ is less than in 2019. SUHII change rate dropped from
18.3% in 2019 to 6.7% in 2020 over the NEUAE, as exhibited in Fig. 3c.
Overall, the results indicate a reduction in SUHII values as a result of
the shutdown of anthropogenic activities and sources of heat emissions
such as industrial processes, power plants, flight, and transport.

3.4. Validation

In this section, the validations of derived data from satelliteswith the
measured data from actual ground stations are investigated. The com-
parisons between derived NO2, AOD, and night LST plotted against the
measured data NO2, PM2.5, and minimum air temperature (Tamin), re-
spectively, are presented in Fig. 7. Based on the availability of ground
station data, the validation of the NO2 and PM2.5 data were made
using thirteen and five air quality monitoring stations measurements,
respectively, from March to June 2019. Tamin data covers the whole pe-
riod (March–June) in 2019 and 2020 at four metrological stations
(Fig. 1b). Night Aqua LST data is validated with Tamin because the
Aqua satellite crosses the equator at night, close to the Tamin; therefore,
this is the most appropriate temperature measurement for validation
purposes. In addition, as mentioned before, the AOD is considered a
proxy for (PM2.5); thus, AOD is plotted versus PM2.5.

Our comparisons show that the TROPOMI Sentinel-5P NO2 is highly
correlated with the air quality monitoring stations data with R2 = 0.70,
as shown in Fig. 7a. Likewise, Fig. 7(b) shows the scatter plot of mea-
sured PM2.5 versus MODIS MAIAC AOD. The statistical analyses showed
a high coefficient of determination (R2= 0.60). Similarly, a high
9

correlation was found between the MODIS Aqua night LST and the
Tamin from station measurements (R2 = 0.68), as displayed in Fig. 7c.
Overall, a good agreement is found between satellite data and actual
measured data; hence, the satellite observations are a valuable resource
for studying air pollution and SUHII over large geographic regions.

4. Conclusions

The impact of anthropogenic activities lockdown due to the COVID-
19 pandemic on air quality and SUHII in the NEUAE was studied by ex-
amining NO2, AOD, and SUHII levels and evaluating variations in spatial
distribution. To demonstrate how restrictive anthropogenic activities
throughout the COVID-19 lockdown minimized the air pollutants and
SUHII in NEUAE, satellite data of different parameters were used and
compared between 2019 and 2020. As predicted, the current investiga-
tion discovered that NO2, AOD, and SUHII concentrations across the
NEUAE decreased during the pandemic lockdown. The largest average
drop was in NO2 (23.7%) followed by SUHII (19.2%) and AOD (3.7%)
throughout the lockdown period compared with the same period
in 2019.

This study showed that the satellite derivedmeasurements of the se-
lected air pollutants and SUHII data are highly correlatedwith the actual
measured data. Therefore, satellite data is a significant and reliable re-
source for researching air quality and SUHII because of the spatial cover-
age and cost-effectiveness of the data, especially for developing
countries like the UAE. We conclude that our study has established a
benchmark paradigm that will potentially assist the authorities con-
cerned with the potential management of air quality and SUHII in the
UAE by decision-makers, particularly on industrial and vehicle pollution
restrictions. The drawbacks of this work are that some datasets from
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ground stations were incomplete. Additionally, the baseline was only a
single year (i.e., 2019) due to the limited temporal scale of TROPOMI/
Sentinel-5P data, and therefore the outcomes may change slightly
when providing extra datasets. Further study is recommended to exam-
ine the correlation of air pollutants and SUHII with COVID-19 cases in
the UAE.
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