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This experimental work investigates the mechanical performance and ductility behavior of Ultra-High
Performance Fiber Reinforced Concrete (UHPFRC) containing high volume of micro-glass fibers (MGF).
The influence of various volume fractions of MGF and two water-to-binder ratios (w/b) are investigated.
These w/b ratios are 0.12 and 0.14. Based on these ratios, two groups of UHPFRC mixes were prepared and
each group include seven mixes made with 0%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% MGF volume dosages. In
total fourteen mixes were examined for the mechanical properties such as compressive strength, splitting
tensile strength, modulus of elasticity, flexural strength; and the ductility behavior. It was concluded that
lower w/b resulted in better mechanical performance. Also, the mixes containing 1.5% to 3% of MGF,
resulted in the highest compressive strength reaching up to 160 MPa. Furthermore, the results indicated
that no more strength enhancement can be achieved beyond 1.5% MGF.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

The term ‘‘Ultra-High Performance Concrete” was first used by
De Larrard and Sedran [1] and a similar development, Richard
and Cheyrezy [2] used the term reactive powder concrete (RPC)
in 1995. Since the late 20th century the concrete technology had
experienced a significant development led to the production of
Ultra-High Performance Concrete (UHPC) or Ultra-High Strength
Concrete (UHSC), which has been the topic of most research related
to concrete technology worldwide. The characteristics of UHPC
make it an ultimate applicant for use in several construction com-
ponents [3,4]. UHPC is composed of high binder content such as
cement and silica fume, different types of fibers, and crushed
quartz ranging between (10–2500) mm used to give uniformity
instead of using conventional coarse [2,5–7]. Besides, UHPC is rec-
ognized by a meager water-to-binder ratio with enough workabil-
ity which can be achieved with the help of a new generation of
superplasticizers. The very low w/b ratio can result in a concrete
with low permeability and hence improved durability and strength
[8,9]. For instance, Serelis et al. [10] were able to enhance the
strength of concrete under compression load from 119 MPa to
145 MPa via decreasing w/b from 0.28 to 0.22. Studies have
reported, mechanical properties of UHPC including the results of
compression test, flexural, splitting test were >150 MPa, between
(30–60) MPa and >7 MPa, respectively, and Young’s modulus
reached to 60 GPa [2,11,12]. Bahedh and Jaafar [13] investigated
on UHPC with water/cement of 0.24, high binder content of
657 kg/m3 and a Quarry dust of 1050 kg/m3 with Maximum size
(150 lm–1.18 mm) in saturated surface dry condition. To achieve
a good workability 40 kg/m3 of superplasticizer was used. The
maximum compressive strength that achieved was 122.4 MPa.

Due its high brittleness, UHPC displays low in tensile strength
and undesired ductility. This has created barriers against the wide
spread of the use of such type of concrete in many applications. To
overcome these barriers, studies have been conducted to examine
ced con-
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Table 1
Chemical compositions and physical properties of OPC and SF.

Item Cement Silica Fume

Fe2O3 2.88 1.31
SO3 2.63 0.41
K2O 0.88 1.52
CaO 62.12 0.45
MgO 1.17 –
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the effect of using fibers with different types and characterizations
on the mechanical performance of plain UHPC. UHPFRC is a com-
posite material that comprises the plain UHPC with different kinds
of fibers which can enhance the mechanical properties and fracture
behavior in a progressive manner. Many researchers have proved
the utilization of fibers significantly develops the properties of con-
crete such as toughness, flexural strength, fatigue resistance,
impact and abrasion resistance, load bearing capacity after crack-
ing and post-cracking capacity, deformation capability and tensile
strength [5–7]. Mainly, UHPFRC represents the highest develop-
ment of UHPC, and its ultimate compressive strength could be as
high as 800 MPa depending on the w/b ratio and curing conditions
[2]. Some parameters that negatively affects the workability of
UHPFRC such as: w/b ratio, high cement content, silica fume and
steel fibers. To attain a constant slump value superplasticizer in
variable amounts was used. So as to keep the superplasticizer
request, a relatively high w/b of 0.195 was used. Whereas to
achieve a workable batch with low w/b utilizing superplasticizer
could be a good choice [14–16].

There are limited works on the UHPFRC to optimize the volume
fraction of MGF. Although, Many researchers have examined the
performance of UHPFRC so as to determine the fiber properties
such as; fiber type, volumetric content, distribution homogeneity,
length and types of steel fibers [17–19]. Tran et al. [20] showed
the enhancement of fracture parameters of UHPFRC by adding 1–
1.5% fibers. They determined that smooth fibers displayed higher
fracture strength than twisted fibers. Many attempts has been
done to improve the performance of UHPC using fibers with altered
characteristics. Glass fibers (GF) are relatively lightweight, high in
tensile strength, and cheap. There are limited study on utilizing of
MGF in UHPC despite some studies on their effect on conventional
concrete. Also, researchers had shown when GF added into a stan-
dard concrete matrix it could increase the flexural, and tensile
strengths with improving the post-peak ductility in compression
[21,22]. Furthermore, Chandramouli et al. [23] observed that 20–
25% of compressive strength and 15–20% of splitting and flexural
strength were increased when they reinforced concrete by using
GF. Also, Tassew and Lubell [24] observed that with increasing
MGF, the flexural strength value of concrete improved. Hannawi
et al. [25] inspected on the effect of utilizing different types of
fibers on the microstructure and the mechanical behavior of the
UHPFRC, the experimental values showed that fibers has a rela-
tively slight influence on the compressive strength and elastic
modulus of concrete, except for the steel fiber which improves
the strength because of its inherent rigidity. It was also reported
that UHPFRC is very strong, ductile and durable compared to the
normal concrete [26].

The main purpose of the present study is to optimize the vol-
ume fraction of MGF through investigating the mechanical proper-
ties and ductility behavior of Ultra-High Performance Concretes
reinforced with glass fibers (HPFRC). For the production of UHPFRC,
two groups of UHPC were designated for the low w/b of 0.12 and
0.14. Each group contains seven mixes made with MGF at contents
of (volume fractions) 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0%. The
strengths of UHPFRC were assessed through the following tests:
modulus of elasticity, compressive strength, flexural strength,
and tensile strength. Also, the ductility of UHPFRC was evaluated
through fracture parameters.
SiO2 19.69 90.36
Na2O 0.17 0.45
CI 0.0093 –
Al2O3 5.16 0.71
Free CaO 1.91 –
Specific surface (m2/kg) 394 21,080
Insoluble residue 0.16 –
Loss on ignition 2.99 3.11
Specific gravity 3.15 2.2
2. Experimental program

2.1. Materials

In the current work, OPC (CEM, I 42.5 R) cement was utilized in
ultra-amount meeting the requirements of the TS EN-97 [27]
2

(mainly based on the European EN 197-1), and Silica fume (SF)
was used as supplementary cementitious materials. Silica fume
(SF) is the most commonly used amorphous silica as a cementi-
tious matrix, which owns an average particle size of about 10 times
lower than that of cement. It has been used in the ranges of 10–25%
by weight of cement since last 60 years, therefore its pozzolanic
and filling properties on the concrete properties have been broadly
recognized [28]. Table 1 provides the physical properties as well as
chemical composition of the PC and SF. Commercial quartz in three
different size fractions of 1.2–2.5 mm, 0.6–1.2 mm and 0–0.4 mm
with a specific gravity of 2.65 were used as fine aggregates. In order
to achieve the workability specifications, a new-generation super-
plasticizer (SP) that named as a type of polycarboxylate was uti-
lized in different amounts to maintain the target workability for
the mixtures. MGFs of 13 mm length and diameter of 18 mm were
used as fiber reinforcement. The properties of MGFs as given by the
producer are listed in Table 2.
2.2. Mixing proportions and casting

The composition of UHPFRC mixes investigated in the present
study are characterized with high volume of binder and MGFs, free
of coarser aggregate, and extremely low w/b ratio such as many
other studies [29–32]. The examined parameters in the current
study are w/b ratio and MGF content. Table 3 presents the 14 mix-
tures of UHPC, divided into two groups based on the w/b that
designed and produced (0.12 and 0.14). In both groups, the silica
fume content was fixed at 15% by weight of total cementitious
materials. Micro glass fibers at volume ratios of 0%, 0.5%, 1%,
1.5%, 2%, 2.5%, and 3% for each group were used. The first column
in Table 3 represents the code of the mixture which include the
w/b ratio and the content of MGF; for example, mix 0.12MGF0.5
denotes the mix of UHPFRC at 0.12 w/b reinforced with 0.5%
MGF volume fractions.

For producing UHPC, a high speed vertical axis mixing machine
having a maximum speed of 470 rpm was used. Firstly, the binder
and the quartz aggregate were mixed in the machine at low rate of
100 rpm for three minutes. After that 75% of the water was used to
the mixture and remixed for another four minutes at the same
speed. Then SP and the rest water were poured into the batches
and mixed for 5 min. Last part of the of mixing process included
adding the MGF and all materials were mixed for more two min-
utes at 100 rpm speed and an extra two minutes at a rate of
470 rpm. The fresh mixtures were then poured into the molds of
varies sizes; three cubic specimens of 503 mm, three cubic speci-
mens of 703 mm, three cubic specimens of 1503 mm, and three
prisms of dimension’s 70 � 70 � 280 mm to determine mechanical
properties and ductility behavior. After that, the molds were com-



Table 2
Properties of glass fiber.

Fiber type Length (mm) Diameter (mm) Modulus of elasticity (GPa) Elongation (%) Tensile Strength (MPa) Aspect ratio (L/d) Density (g/cm3)

Micro Glass 13 18 77 2.56 2000 722 2.60

Table 3
Mix proportions (kg/m3).

Concrete mixture w/b Cement (kg/m3) Silica fume (kg/m3) Water (kg/m3) SP (kg/m3) Glass fiber % Quartz aggregate (kg/m3)

0.12MGF0 0.12 998.8 176.25 141.0 75.2 0.0 1010.1
0.12MGF0.5 0.12 998.8 176.25 141.0 77.6 0.5 991.1
0.12MGF1.0 0.12 998.8 176.25 141.0 78.7 1.0 975.0
0.12MGF1.5 0.12 998.8 176.25 141.0 81.7 1.5 954.5
0.12MGF2.0 0.12 998.8 176.25 141.0 82.8 2.0 942.7
0.12MGF2.5 0.12 998.8 176.25 141.0 84.6 2.5 920.8
0.12MGF3.0 0.12 998.8 176.25 141.0 88.2 3.0 898.7
0.14MGF0 0.14 998.8 176.25 164.5 49.4 0.0 1013.9
0.14MGF0.5 0.14 998.8 176.25 164.5 49.4 0.5 998.0
0.14MGF1.0 0.14 998.8 176.25 164.5 50.5 1.0 981.9
0.14MGF1.5 0.14 998.8 176.25 164.5 52.9 1.5 962.9
0.14MGF2.0 0.14 998.8 176.25 164.5 54.1 2.0 946.8
0.14MGF2.5 0.14 998.8 176.25 164.5 55.2 2.5 930.6
0.14MGF3.0 0.14 998.8 176.25 164.5 62.3 3.0 900.1
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pacted by using a vibrator machine then wrapped with nylon
sheets and left to cure under room temperature. The molds of
the samples were removed one day after process of casting and
then water curing selected until the test date. Furthermore, despite
using very low w/b ratios in the current research study that were
smaller than the ratio chosen by most of the other researchers
yet good UHPC flow of 18 ± 1 cm were produced. Yoo et al. [33]
studied on the UHPFRCs. The w/b was 0.2 with steel fibers of 2%
volume, 13 mm in length and 0.2 mm in diameter was utilized
and 23 cm flow was obtained.

2.3. Testing procedures

Cubes with dimensions of 50*50*50 mmwere used for the com-
pression test according to BS 1881-116 [34]. This test was con-
ducted at ages of 7, 14, and 28 days. Three samples were tested
for each mixture, and the average pf these tree samples was
recorded. The splitting test was carried concerning BS 1881-117
[35] on 70 mm cubes at 28 days. 150 mm Cubic specimens were
used for determining the elastic modulus following BS EN 1352
[36]. The samples were loaded up to the load level of 40% for the
maximum load that is obtained from the compressive strength
test; corresponding stress was found from it, and the elastic mod-
ulus was reported as the average of the three sets of readings, using
the stress–strain response.

Fracture energy behavior of UHPFRC was obtained according to
the specifications and recommendations of the RILEM 50-FMC [37].
A closed-loop of 250 KN capability machine was utilized. See Fig. 1
Fig. 1. Front view of notched beam specimen.
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for the test details and sample setting. A linear variable displace-
ment transducer (LVDT) was attached to specific samples to record
the displacement (d) in the middle of the span. The fracture energy
(GF) define as area below the curve (Wo) was found after getting
the load–displacement curve. The equation was used as follows:

GF ¼ W0þmgA
BL

A ¼ ds s
u ; L ¼ W - að Þ ð1Þ

where S is the length, W is the depth, B is the width, a is the notch
depth, U is the span length, m is mass, ds is the beam displacement,
and g is the acceleration of gravity. For prisms the loading rate was
0.02 mm/min. The net flexural strength (fflex) was measured via Eq.
(2) where Pmax is the critical load by supposing no notch sensitivity
[38,39]. Furthermore, characteristic length (lch) was obtained by
using Eq. (3) where fst referred to the splitting tensile strength
[40]. The characteristic length (lch) was used as an indicator to
assess the ductility of the concrete mixes.

fflex ¼ 3PmaxS
2BL2

ð2Þ

lch ¼ EGF

f 2st
ð3Þ
3. Results and discussion

3.1. Compressive strength

The outcomes of the compressive strength at ages 7, 14 and
28 days for all UHPCFRCs mixes are shown in Fig. 2. These figures
illustrate the influence of MGFs content on the compressive
strength of UHPC for 0.12 and 0.14 w/b ratios.

The obvious influence of w/b on the results of compressive
strength of the plain UHPC mixes is clear. At all ages, it can be seen
that the plain concrete mix made with w/b ratio of 0.12 shows
higher strength than that of 0.14 w/b ratio. Such inverse relation
between w/b and compressive strength is also reported by other
studies [10,41,42]. Moreover, the strength that is gained due to
water curing was observed higher at the ages of 14 days and
28th days in comparison to the 7 day of water curing. For example,
the compressive strength at the ages of 14 and 28 days were higher
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by 8.3% and 21.7% for the mixes with 0.12 w/b and by 10.6% and
25.7% for the mixes with 0.14 w/b ratio than that of the 7 days,
respectively. Moreover, the reduction in strength observed in the
UHPCs with increasing w/b ratio may be attributed to formation
of further unwanted calcium hydroxide particles during the hydra-
tion process.

Fig. 2 shows that out of the two groups of UHPFRC mixes, the
highest compressive strengths were obtained at the group of 0.12
w/b, even the differences were slightly small. The figure also indi-
cates that there is an effective improvement in strength by raising
the fiber content until 1.5%; whereas beyond this fiber content this
strength enhancement stays at a certain level, irrespective to w/b
and age. As soon as the fiber content raised from 0% to 1.5%, the
improvement in compressive strength reached 10%, and 11.1% for
0.12, and 0.14 w/b, respectively. This is probably due to the exces-
sive numbers of fibers in the mixture. With increasing MGF for
more than 1.5%, there was no effect on the compressive strength.
The above mentioned behavior could be due to the high content
of fibers mean large number of fibers which may result in the
development of micro-voids in the concrete during the mixing pro-
cedure leading to diminish of strength enhancement because of the
existing of higher number of fibers.

3.2. Splitting tensile strength

The splitting tensile mechanism of failure is not comparable to
compressive strength since the splitting tensile failure path
spreads throughout the aggregates and cement paste rather than
interfacial transition zone (ITZ) as a result of the strong bonds
between them [43,44]. Also, the Fiber reinforced concrete tensile
behavior can be distributed into two classes: pre and post-
cracking. The earlier behavior is commonly influenced by the elas-
tic shear transfer mechanism among the fiber and the matrix.
4

Whereas the latter one is stated by the collective effect of fiber
bridging and matrix tension softening behaviors [45]. Typically,
the addition of fibers develops the concretes tensile strength. This
is due to that the fibers enables to block tensile cracks and then
restricting crack growth [54].

The results of splitting tensile strength for the two groups of
mixes having various volumes of MGF are known in Fig. 3. The
strength development of the splitting tensile strength is parallel
to that obtained in the compressive strength. Just as the compres-
sive strength, the batches with lower w/b showed higher tensile
splitting strength. The splitting tensile strengths of the plain con-
cretes were 9.2 MPa for the mix with 0.12 w/c ratio and 8.3 MPa
for the mix with 0.14 w/b ratio. It seems that the addition of the
MGF enhanced the splitting tensile strength up to a certain volume
fraction of fibers. For instance, adding MGF from 0.0% to 1.5% leads
to an increase in the strength value by 27.7% and 27.3% for 0.12 and
0.14 w/b ratios, correspondingly. Similar to the compressive
strength, it was noticed that no significant enhancement in split-
ting strength for the UHPFRC was achieved with increasing the
MGF content beyond the 1.5%, irrespective to its water content.
This behavior could be due to that with small number of fibers at
low content of MGF the matrix reaches a high level of packing
which in turn improves the ITZ leading to high strength; whereas
at high content of MGF, the large number of fibers could reduce
the contribution of fibers in enhancing the strength due to the pos-
sible development of the micro voids developed during the mixing
process of the concrete.

3.3. Modulus of elasticity

The static elastic modulus of UHPC for various volume fractions
of MGF made with the two groups of water-to-binder ratios at
28-day curing are shown in Fig. 4. It was observed the modulus
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of elasticity for UHPC was improved by adding fibers [46]. In this
study, it was observed that there is a slight variance between the
results of the two groups of w/b ratios. Regardless of the water-
to-binder ratios, it was observed that by adding MGF the static
elastic modulus of the UHPC increased systematically up to a vol-
ume fraction content of MGF (1.5%). After Beyond that certain limit
of fibers dosage, results showed no variations, possibly due to an
excessive number of fibers that have led to no more enhancement
due to the possible reduction in the well packing between aggre-
gate particles, fibers and the matrix. The mixes of UHPFRC had
improvement by 5.8% and 8.3% at 1.5%, comparing to their refer-
ences for the first and second groups, correspondingly. These
results indicate that UHPFRC mixes with an optimized dosage of
micro-glass fibers could result in a high stiffness UHPFRC. Further-
more, based on the experimental results, the stiffness of UHPFRC
increased up to a certain limit of MGF content then no significance
variation in stiffness has been observed. This maximum can be
Fig. 5. Micro glass fiber.
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explained by the effect of the well packing of the ingredients of
the concrete and the good bond between the cement paste matrix
and particles of aggregates. Also, the well distribution of the micro
fibers could lead to the delay of the propagation of the micro cracks
resulting in high stiffness. Moreover, the reason for modulus of
elasticity to remain constant after adding 1.5% of MGF could be
attributed to the existence of too much of micro fibers (Fig. 5) that
might disturb the packing of the concrete and weakens the bond
between the aggregate particles and the cement matrix.

3.4. Modulus of rupture

Fig. 6 shows the results of net flexural strength (moduli of rup-
ture) of UHPFRC under three-point bending. The outcomes of this
experimental work are in good agreement with earlier works on
improving the flexural strength of UHPCs, since the fibers were uti-
lized, particularly existing in large volume fractions. [24,40].
Indeed, there was relatively enhancement in the net flexural
strength of UHPFRC with adding 3% of MGF to reach its maximum
value of 17.7 MPa and 16 MPa at 28-day water curing for the 0.12
and 0.14 w/b, respectively. Increment in the modulus of rupture
may be refers to enhancing the connection between aggregate par-
ticles and cement matrix through the help from small well-
distributed glass fibers (Fig. 4). Furthermore, more energy is
needed to make a crack in UHPFRC as a result of the substantial
capacity of the high volume of glass fibers to absorb most energy
under bending. On the other hand, the percentage of MGF was
more effective on the modulus of rupture of the produced UHPFRC
than the water-to-binder ratios. For instance, the average enhance-
ment in the net flexural strength with adding 3% of MGF to plain
UHPC was 60.1% for the 0.12 w/b, whereas decreasing of w/b from
0.14 to 0.12 causes an improvement by 10.7% for the same content
of MGF.
1.5 2.0 2.5 3.0

tent (%) 

rent volume of micro glass fiber at 28 days.



Table 4
Load - displacement test results.

Concrete
mixture

area under the curve
(kN�mm)

maximum
displacement (mm)

P max
(kN)

0.12MGF0 261.2 0.9 4.6
0.12MGF0.5 364.2 0.9 5.8
0.12MGF1.0 460.6 0.9 6.1
0.12MGF1.5 629.5 1.0 6.3
0.12MGF2.0 895.5 1.1 6.4
0.12MGF2.5 1033.9 1.2 7.0
0.12MGF3.0 1315.7 1.5 7.3
0.14MGF0 471.7 0.73 3.9
0.14MGF0.5 592.7 0.95 5.2
0.14MGF1.0 888.0 1.01 5.5
0.14MGF1.5 1236.2 1.02 5.6
0.14MGF2.0 1350.6 1.09 6.2
0.14MGF2.5 1391. 1.12 6.3
0.14MGF3.0 1557.4 1.42 6.6
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3.5. Load-displacement curves

The load–displacement curves for the notched beam of UHPC
with various percentages of volume fraction of MGF for the w/b
of 0.12 and 0.14 ratios as in Fig. 7 a & b. Also, Table 4 presents the
influences of w/b and different volume fractions of fibers on param-
eters such as: area under the load–displacement curve, maximum
displacement, and peak load. When the test starts, initially the
applied load is sustained by the intact matrix of UHPC up to a cer-
tain level of load; thereafter the MG fibers start to be effective and
help in carrying the load named as the peak load. The peak load
denotes as themaximum load of the load–displacement curve. Nev-
ertheless, as much as the composite of UHPFRC subjected to a load
more significant than its capacity, the first crack would appear, and
the subjected load consecutively decreases as the short fibers no
longer resist the propagation of the cracks [47]. Unquestionably,
existing huge numbers of well-distributed MGF in the plain UHPC
result in extent the slope of the pre-peak and post-peak of the curve
due to bridging the micro-cracks of the UHPC. Likewise, the MGF
content increased the toughness of the composite concrete due to
increasing the area under the curve and the maximum load that
can be carried. MGF could delay the development of the micro-
cracks and can arrest them after their development. However, when
these micro cracks propagate and become macro-cracks under
loading, the short MG fibers are no longer active leading to the fail-
ure of concrete (See Fig. 4). The addition of fibers significantly
reduces the lateral strain at peak loading and increases the thresh-
old of initial cracking. Therefore, the fibers clearly confine the crack-
ing progression in concrete under the mechanic loading [25].

The UHPFRC containing 3% MGF with 0.12 w/b had an area
under the curve, a maximum displacement, and a peak load of
1557.4 kN�mm, 1.5 mm, and 7.3 kN, respectively, whereas these
values decreased to 1315.7 kN�mm, 1.4 mm, and 6.6 kN with mix
prepared with 0.14 w/b. This decline in the fracture parameters
indicates that any extra water may play a passive role to restrict
improving ITZ, de-bonding between aggregate and binder, and
obstructing fibers to bridge the micro-cracks. The significance of
decreasing w/b and its effects on the microstructure of concrete,
in general, were also approved by the others [15,16,48,49].
3.6. Fracture energy (Gf)

Despite having the central role in determining ultimate stress at
the crack tip, fracture energy is a function of the displacement and
Fig. 7. Load-displacement curves of UHPFRC with regard
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not the strain. It can be expressed as the energy required to open
the unit area of the crack surface. However, the fracture parame-
ters specify the ductility behavior of concrete, the higher the con-
crete ductility, the greater is the Gf.

In the current study in Fig. 8, the total fracture energy of UHPFRC
is affected by the two significant investigated factors; w/b and vol-
ume fraction of the MGFs. It can be seen that the Gf is directly
related to the content of the MGF regardless of w/b ratio. However,
the effect of the addition of MGF hasmore positive effect on the val-
ues of Gf of the mixes made with 0.12 w/b than the mixes made
with 0.14 w/b. The results also show that the UHPC with 3% MGF
content exhibit the maximum value of the fracture energy, irre-
spective of water content. For instance, adding 3% of micro glass
fibers to plain UHPC led to an improvement in the Gf by 211.4%
and 370.6% for the 0.12 and 0.14 w/b, subsequently. The high per-
formance of MGF in showing significant enhancement in the Gf
may be related to their main properties like high-tensile strength
and aspect ratio as seen in Table 4, which necessities high energy
to fracture the prisms due to arresting cracks and energy absorbing
by thesemicrofibers. Furthermore, it can be concluded that because
of the ability to bridge the micro-cracks and delaying the propaga-
tion of the micro cracks to macro cracks, the micro glass fiber-
reinforced UHPCs have more considerable fracture energy [50].

3.7. Characteristic length

As long as the rate of characteristic length (lch) is high, the con-
crete become less brittle because it is a measurement of brittleness
s to MGF content: (a) 0.12 w/b (b) 0.14w/b group.
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of concrete. Additionally, according to Eq. (3), the characteristic
length depends directly on some essential mechanical properties
of UHPFRC like fracture energy and elastic modulus and inversely
on the tensile strength.

The results of the characteristic length of UHPC reinforced with
different volume of MGFs and two water-to-binder contents of
0.12 and 0.14 are shown in Fig. 9. Lower w/b displays higher values
of lch as can be seen in Fig. 9. Regardless of the w/b ratio, the addi-
tion of MGF resulted in more ductile UHPCFRC than the plain UHPC
due to the higher values of the lch of the mixes reinforced with
MGF comparing to those of the plan mixes. Nonetheless, the arte
of the increase in the lch due to adding MGF for the mixes made
w/b of 0.14 is higher than the mixes of 0.14 w/b ratio.

It can be seen that even small dosage of fibers led to enhance-
ment in the lch. Also, it is clear that the differences in the measured
lch of the UHPFRC become lesser between the two groups when
the volume dosage of micro glass fibers ranged between (2–3) per-
cent. This could be attributed to a vast number of fibers at high sur-
face area, which will not let water to play an essential role in
effecting of ductility of UHPCs. However, compared to the study
of Gesoglu et al. [46] (where the w/b was 0.195 and the fibers
had l = 13 mm and d = 0.018 mm) there is a significant improve-
ment of the brittleness of UHPC by adding MGFs. The maximum
value that they achieved was nearly 48 mm for the plain concretes
without fibers. Whereas, for the plain UHPC the value of the lch
were 82.4 mm and 54 mm for the 0.12 and 0.14 w/b, consecutively.
This could be due to the difference in the composition and w/b
ratios used in this study. In the current study, by adding MGF up
to 3%, the characteristic lengths of 167.4 mm, and 163 mm were
recorded for the prisms of the same dimensions (70 � 70 � 280)
mm for the first and second groups, consequently. Zhang et al.
[51] measured the characteristic length between 412 and
235 mm, and Petersson [52] measured the characteristic length
between the range of 200 and 500 mm. furthermore, for self-
compacting high-strength concretes containing plastic it was
found that lch ranged between 85 and 178 mm [53].
4. Conclusion

In this study, the influence of very low w/b and the addition of
MGF on the performance of UHPC have been examined. The results
obtained for the experiments can lead to the following conclusions:

1 The decline in strength observed in the UHPCs with increasing
w/b may be attributed to the formation of further unwanted
calcium hydroxide particles during the hydration process.

2 It was noted that there was a systematic growth in the com-
pressive strength, tensile strength, and modulus of elasticity
with increasing the fiber contents up to 1.5% and then the
results of the mechanical properties indicated no more strength
gaining. This behavior could be because of the vast number of
fibers per the volume of the concrete as the fiber content
increases.

3 The reason of the close results of the modulus of elasticity for
the two w/b ratios could be related to small difference in the
investigated values of the water-to-binder ratios. The addition
of MGF improves the stiffness of the plain UHPC but to a certain
content of MGF.

4 The increase in the content of the MG fibers has much more
beneficial effect on the strength of UHPC than the influence of
decreasing water content. For example, the average enhance-
ment in net flexural strength with adding 3% of fibers to plain
UHPC was 60.1% for 0.12 w/b group, whereas decreasing of
w/b from 0.14 to 0.12 caused an improvement by only 10.7%
for the same volume dosage of micro glass fiber.
9

5 The addition of MGF increases the value lch of the concrete even
with small dosage of fibers. The differences in the measured lch
of the UHPFRC become lesser between the two groups of w/b
ratios when the MGF content ranged between (2–3) %. This
could be due to a vast number of fibers at high surface area,
which will not let water to play an essential role in effecting
of the ductility of UHPCs.

6 More ductile UHPC can be obtained when MGF is added. The Gf
increases as the content of the MGF increases regardless the
w/b ratio. The high performance of micro-glass fibers may be
related to their main properties like high tensile strength and
aspect ratio, which made it need tremendous energy necessary
to fracture the prisms due to arresting cracks. Furthermore, it
was also observed that the toughness of the composite concrete
was increased with utilizing the MGF due to increasing the area
under the curve and the maximum load that can be carried.
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