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Abstract: Thrombosis is a life-threatening disease with a high mortality rate in many countries.
Even though anti-thrombotic drugs are available, their serious side effects compel the search for
safer drugs. In search of a safer anti-thrombotic drug, Quantitative Structure-Activity Relationship
(QSAR) could be useful to identify crucial pharmacophoric features. The present work is based on a
larger data set comprising 1121 diverse compounds to develop a QSAR model having a balance of
acceptable predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR).
The developed six parametric model fulfils the recommended values for internal and external
validation along with Y-randomization parameters such as R2

tr = 0.831, Q2
LMO = 0.828, R2

ex = 0.783.
The present analysis reveals that anti-thrombotic activity is found to be correlated with concealed
structural traits such as positively charged ring carbon atoms, specific combination of aromatic
Nitrogen and sp2-hybridized carbon atoms, etc. Thus, the model captured reported as well as
novel pharmacophoric features. The results of QSAR analysis are further vindicated by reported
crystal structures of compounds with factor Xa. The analysis led to the identification of useful novel
pharmacophoric features, which could be used for future optimization of lead compounds.

Keywords: thrombosis; factor Xa; QSAR; machine learning; pharmacophores

1. Introduction

World Thrombosis Day (WTD) is celebrated on 13 October each year in memory of
Rudolf Virchow, who developed the concept of “thrombosis”. Thrombosis, which is respon-
sible for high mortality in the U.S. and Europe, involves the formation of pathologically
dangerous clots in the artery or vein [1]. Recent studies point out that COVID-19 or vaccines
approved to fight against COVID-19 could lead to the formation of clots [2–6]. The herpes
simplex virus type-1 surface is responsible for the initiation of thrombus formation [7].
For cancer patients, thrombosis substantially decreases the survival rate [8,9]. The main
reasons for thrombosis include age, surgery, trauma, inflammation, cancer, vessel injury,
or overexpression of thrombogenic factors, to mention a few [1,8–13]. The understanding
of thrombus development and its inhibition has gained a high interest to develop a safer
and orally active anticoagulant for the treatment and prevention of thrombotic diseases.
The cascade of thrombus development involves a good number of enzymes like factor X,
prothrombin, thrombin, etc. [1,8–13].

Stuart–Prower factor, or factor X, is a vitamin K-dependent enzyme (EC 3.4.21.6)
synthesized in the liver [1,8–10,13]. It is a serine protease with a half-life of 40–45 h and
acts as the first enzyme in the coagulation cascade, consequently making it essential for the
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thrombin pathway. The cell-based model of anticoagulation identifies three main stages
(see Figure 1) [1,8–10,13]:
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Figure 1. Depiction of mechanism of thrombus formation.

(1) Step 1 [1,8–11,13]: The mechanism of the coagulation cascade begins with coagulation
on TF-bearing cells. Factor IX and VII, along with their respective co-factors, are
responsible for the hydrolysis of factor X, leading to its conversion to its activated
form Xa. The activated factor Xa is accountable for the dual breaking of prothrombin
first at an arg-thr and then at an arg-ile bond, thereby generating active thrombin,
which is a coagulation protease. A single factor X converts several prothrombin
molecules, thus generating multiple thrombin molecules.

(2) Step 2 [1,8–11,13]: The second step involves conversion of fibrinogen to fibrin, which
is accomplished by the activation of platelets and platelet-associated cofactors in the
presence of a sufficient quantity of active thrombin.

(3) Step 3 [1,8–11,13]: The third step involves “thrombin burst”, which occurs due to
continuous generation of thrombin on the platelet surface, thereby leading to repeated
cycles of mutual activation of factor X, IX and VII by each other. This thrombin burst
through fibrin polymerization is vital for a thrombus formation.

Factor Xa has been identified to play a significant involvement in all three stages [8–10,13].
Additionally, it bridges the intrinsic and extrinsic pathways to the common coagulation
pathway, which makes it a legitimate target to block the activation cascade of the thrombus
formation [1]. Thus, inhibition of factor Xa will reduce the development of new thrombin
without disturbing the minimal thrombin level required for primary hemostasis. Therefore,
many marketed anti-coagulating agents like Warfarin, Phenprocoumon, Acenocoumarol,
Rivaroxaban, etc. [14] act either by inhibiting the synthesis of factor Xa or its activity.

Despite the availability of many different marketed drugs (see Figure 2) [1,10,12,14,15],
the high mortality and associated side effects like bleeding, spinal hematoma, anaphylaxis
along with a high necessity of continuous monitoring of patients indicate that there is
a need for a better anticoagulant [1,9,10,12,14,15]. While optimizing the ADMET profile
of a compound, it necessary to retain the features associated with high activity (pharma-
cophoric features). Therefore, a rational analysis of different anti-coagulating agents is
required to recognize prominent and visually unrecognizable pharmacophoric features.
To achieve this goal, there is a prerequisite to perform computer-assisted analysis like
QSAR, virtual screening, etc., of a larger dataset of anti-coagulating agents. A rational
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drug designing approach such as QSAR is a method of choice due to a good number of
advantages, including cost reduction, minimal trial and error, its time efficient nature,
etc. [16–19] A typical QSAR analysis is a machine learning approach, which involves a
systematic approach which begins with selection of a dataset followed by its methodi-
cal analysis to identify pharmacophoric features (Mechanistic/Descriptive QSAR) and
to predict the activity of a compound before its wet lab synthesis and biological testing
(Predictive QSAR) [16,17,19,20].
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Figure 2. Some marketed anti-coagulating drugs.

Different researchers have reported QSAR models for factor Xa. For example,
Matter et al. [21] used a dataset of 3-Oxybenzamides (107 molecules) to perform 3D-QSAR,
which had acceptable statistical performance with R2

tr = 0.95 and Q2 = 0.74. Ye et al. [21]
performed QSAR using Thiophene-anthranilamides. However, use of smaller data sets
comprised of molecules with fewer scaffolds/pharmacophoric features thereby limited
applicability of those QSAR models and confined their use in optimization to a few classes
of compounds [14,21,22]. A QSAR analysis based on a larger dataset comprised of diverse
scaffolds with a balance of acceptable predictive capability and mechanistic interpretations
is highly beneficial for lead optimization. Therefore, the present work involves QSAR
analysis of a dataset comprised of a large number of diverse anti-coagulating agents. The
results could be useful to develop a novel compound as an anti-coagulating agent.

2. Results

The present QSAR analysis was performed using a large dataset comprised of struc-
turally diverse compounds with experimentally measured Ki in the range between 0.007 to
18,000 nM. Thus, it covers a sufficiently broad chemical and data range. This helped to de-
rive a properly validated [19,23–27] genetic algorithm unified with a multilinear regression
(GA-MLR) model to collect or extend thorough information about the pharmacophoric
features that control a desired bio-activity (Descriptive QSAR) while having adequate
external predictive capability (Predictive QSAR). The six variable-based GA-MLR QSAR
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model (see Equation (1)), along with selected internal and external validation parameters
(see Supplementary Material for additional parameters), is as follows:

pKi = 6.176 (±0.073) + 1.513 (±0.104) * ringCplus_sumpc + 0.519 (±0.04) * aroN_sp2C_4B + 1.197 (±0.077) *
fClamdN5B − 1.018 (±0.099) * fsp2Osp3O6B − 1.091 (±0.111) * fsp2Nsp3O9B − 0.9 (±0.158) * fsp2Csp2O8B

R2
tr = 0.831, R2

adj. = 0.83, RMSEtr = 0.476, CCCtr = 0.908, s = 0.478, F = 731.048, R2
cv (Q2loo) = 0.829,

RMSEcv = 0.479, CCCcv = 0.907, Q2
LMO = 0.828, R2

Yscr = 0.007, RMSEex = 0.526, R2
ex = 0.783,

Q2 − F1 = 0.782, Q2 − F2 = 0.782, Q2 − F3 = 0.794, CCCex = 0.874, R2 − ExPy = 0.783, R′o2 = 0.704, k′ = 0.996,
1 − (R2/R′o2) = 0.101, Ro

2 = 0.782, k = 0.999, 1 − (R2 − ExPy/Ro
2) = 0.001

(1)

The above statistical validation parameters are recommended to judge the internal
and external robustness and have the usual meaning (see Supplementary Material for
detailed descriptions and formulae). The high value of different parameters like R2

tr
(coefficient of determination), R2

adj. (adjusted coefficient of determination), and R2
cv (Q2loo)

(cross-validated coefficient of determination for leave-one-out), R2
ex (external coefficient of

determination), Q2 − Fn and CCCex (concordance correlation coefficient) etc. and low value
of LOF (lack-of-fit), RMSEtr (root mean square error), MAEtr (mean absolute error), R2

Yscr
(R2 for Y-scrambling), etc. along with the different graphs related with the model point out
that the model is statistically robust with excellent internal and external predictive ability
as well as free from chancy correlation [19,23–30]. Moreover, the Williams plot indicates
that the model is statistically acceptable (see Figure 3) [16,19,26,29–31]. Therefore, it fulfils
all the Organisation for Economic Co-operation and Development (OECD) recommended
guidelines for creating a useful QSAR model.
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3. Discussion
3.1. Mechanistic Interpretation of QSAR Model

A properly validated correlation between salient features of the molecules, represented
by molecular descriptors, and their bioactivity expands information about mechanistic
aspects of molecules, specificity and quantity (presence and even absence) of various
structural traits for the desired bioactivity. In the present analysis we have compared
the Ki values of different molecules in correlation and as an effect of a specific molecular
descriptor; however, an analogous or opposite effect of other molecular descriptors or
unknown factors having a dominant effect in determining the overall Ki value of a molecule
cannot be neglected. In other words, a single molecular descriptor is incapable of fully
explaining the experimental Ki value for such a diverse set of molecules. That is, the
successful utilization of the developed QSAR model relies on the concomitant use of
constituent molecular descriptors.

The molecular descriptor ringCplus_sumpc stands for the sum of partial charges on
positively charged ring carbon atoms. It has a positive coefficient in the QSAR model;
therefore, augmenting its value could result in improved activity against factor Xa. From
this, it appears that mere ring carbon atoms or only positively charged carbon atoms
are independently very important, but replacing ringCplus_sumpc by ringC (number of
ring carbon atoms) or nCplus (number of positively charged carbon atoms) significantly
reduced the statistical performance of the model (R2 = 0.68–0.71). Similarly, replacement of
ringCplus_sumpc by naroC (number of aromatic carbon atoms) and naroCplus (number
of positively charged aromatic carbon atoms) resulted in reduced statistical performance
of the model (R2 = 0.68–0.75). Moreover, ringCplus_sumpc, has a better correlation with
pKi than ringC, nCplus, naroC and naroCplus (see Supplementary Material). Therefore,
merely increasing the number of ring or aromatic carbon atoms is not sufficient. It is
essential to increase the positive charge on ring carbon atoms to augment the activity
profile, which can be achieved by attaching electronegative atoms to the ring carbon atoms.
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This observation is in tune with previously reported studies [14,32], which highlighted
that the aromatic cavity of the S4 pocket of factor Xa is suitable for positively charged
lipophilic moieties. Thus, QSAR provides consensus results with reported crystal structures
of inhibitors for factor Xa.

Another molecular descriptor with a positive correlation (R = 0.57) with activity
is aroN_sp2C_4B, which represents the presence of an aromatic nitrogen atom within
4 bonds from sp2-hybridized carbon atoms. The positive coefficient indicates that higher
the value of aroN_sp2C_4B, higher the activity for factor Xa. The molecular descriptors
aroN_sp2C_3B and aroN_sp2C_5B represent the presence of aromatic nitrogen atoms
within 3 and 5 bonds from sp2-hybridized carbon atoms, respectively. Interestingly, the
binding affinity has slightly lower correlations with these two molecular descriptors (R
= 0.55 and 0.54). Further, replacing aroN_sp2C_4B by aroN_sp2C_5B or aroN_sp2C_3B
slightly reduced the performance of model with R2 = 0.79 and 0.80, respectively. Therefore,
the optimum value of separation is 4 bonds.

From this descriptor, it also appears that the aromatic nitrogen atoms and sp2-hybridized
carbon atoms could be individually able to augment activity. Therefore, we examined them
individually by replacing aroN_sp2C_4B with aroN (number of aromatic nitrogen atoms)
and then with nsp2C (number of sp2-hybridized carbon atoms) in the QSAR model, which
resulted in R2 = 0.75 and 0.70, respectively. This decrease in the statistical performance of
the model indicates that individually they are less useful. Moreover, aroN and nsp2C have
a correlation of 0.54 and −0.16 with pKi respectively, which indicates that the presence of
aromatic nitrogen atoms within four bonds from sp2-hybridized carbon atoms is required
to have better activity. This observation is highlighted and supported by the presence
of aroN_sp2C_4B in Apixaban. The X-ray-resolved structure of Apixaban with factor Xa
confirmed that the pyrazole N2 nitrogen atom interacts with the backbone nitrogen atom
of Gln192, whereas the carboxamide carbonyl makes a H-bond with NH of Gly216 [14,32].
Another example is Dabigatran (see Figure 4) [11,33].
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Figure 4. Marketed factor Xa inhibitors with aroN_sp2C_4B (blue colored).

fClamdN5B signifies the frequency of the occurrence of an amide nitrogen atom
exactly at five bonds from a chlorine atom. If the same amide nitrogen atom is simulta-
neously present at one to four bonds from any other chlorine atom, then it was excluded
during the calculation of fClamdN5B. It has a positive coefficient in the developed QSAR
model; therefore an increase in the value of this descriptor results in a better affinity for the
target enzyme. In Figure 5, we have presented two examples, A and B, to understand the
influence of fClamdN5B. The importance of fClamdN5B is vindicated by the fact that the
NH of the chlorothiophene carboxamide of A is responsible for H-bond formation with
Gly219 CO [14,32].
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Figure 5. Representative examples molecule (A) and (B) to understand fClamdN5B (highlighted by red colored bonds
and atoms).

The molecular descriptor fsp2Osp3O6B stands for the frequency of occurrence of
sp3-hybridized oxygen atoms exactly at six bonds from sp2-hybridized oxygen atoms. If the
same sp3-hybridized oxygen atom is also present at five or less bonds from any other sp2-
hybridized oxygen atom, then it was omitted during the calculation of fsp2Osp3O6B. Re-
placement of this molecular descriptor with a similar molecular descriptor sp3O_sp2O_6B,
which represents the total number of sp3-hybridized oxygen atoms within 6 bonds from
sp2-hybridized oxygen atoms, led to a visible decrease in the statistical performance of the
model (R2 = 0.76). Therefore, the idea to exclude the same sp3-hybridized oxygen atom
which is simultaneously present at five or less bonds from any other sp2-hybridized oxygen
atom provided useful and additional understanding of concealed structural features.

The negative coefficient for fsp2Osp3O6B in the QSAR model indicates that increasing
the value of this descriptor could lead to poor anti-thrombotic activity. In addition, it has a
negative correlation of 0.43 with the activity. From 1121 molecules in the present data set,
358 molecules with a better activity (Ki = 0.007 to 10 nM) do not possess such a combination,
whereas only 131 molecules have such a combination with their Ki ranging between 18,000
to 18.5 nM. Considering all these observations, it is reasonable to avoid such a combination
of oxygen atoms to achieve a better activity profile.

The molecular descriptor fsp2Nsp3O9B signifies the frequency of occurrence of an
sp3-hybridized oxygen atom exactly at nine bonds from sp2-hybridized nitrogen atom. If
the same sp3-hybridized oxygen atom is also present at eight or less bonds from any other
sp2-hybridized nitrogen atom then it was rejected during the calculation of fsp2Nsp3O9B.
Replacing it with a very similar molecular descriptor sp3O_sp2N_9B, which counts the
total number of sp3-hybridized oxygen atoms within nine bonds from a sp2-hybridized
nitrogen atom, in the developed model led to a slightly poorer statistical performance
(R2 = 0.78). Additionally, fsp2Nsp3O9B and sp3O_sp2N_9B have a correlation of −0.36
and −0.27 with activity values Ki, respectively. Clearly, fsp2Nsp3O9B is a better choice to
be considered while predicting the activity. Thus, all these observations and its negative
coefficient in the QSAR model indicate that lowering its value could lead to a better activity
for factor Xa.

Furthermore, the descriptor fsp2Nsp3O9B highlights the importance of the sp2-hybridized
nitrogen atom, which in turn is present due to the presence of a guanidine group in majority
of the compounds. Thus, this molecular descriptor indirectly identified the guanidine
moiety as an important feature. In short, it indicates that a sp3-hybridized oxygen atom
at exactly nine bonds from a sp2-hybridized nitrogen atom of a guanidine group should
be avoided. Therefore, during the calculation of fsp2Nsp3O9B, the idea to reject the same
sp3-hybridized oxygen atom, which is at the same time present at eight or less bonds from
any other sp2-hybridized nitrogen atom, provided valuable and extended understanding
of visually non-detectable structural features.

fsp2Csp2O8B represents the frequency of occurrence of sp2-hybridized oxygen atoms
at exactly eight bonds from a sp2-hybridized carbon atom. If the same sp2-hybridized
oxygen atom is concurrently present at seven or less bonds from any other sp2-hybridized
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carbon atom then it was rejected during the calculation of fsp2Csp2O8B. This molecular
descriptor has a negative impact on a molecule’s anti-thrombotic activity profile, as it has a
negative coefficient in the developed QSAR model. Therefore, the value of this molecular
descriptor should be kept as low as possible.

From Figure 3a,b it is clear that the model is statistically robust, which is supported by
a high value of R2

tr = 0.831 and a low value of RMSEtr = 0.476. The compounds 46, 59, and
802 are outlier (see Figure 3c), probably chemicals with specific structural characteristics
such as violation of Lipinski’s rule of five (molecular weight >500), higher number of
electronegative elements (F, O, and N), stereocenters, and the presence of a pyrrolidine
ring. The molecule 1109 appears as an outlier due to the presence of a good number
of single bonds, which significantly enhances its flexibility and conformational space,
thereby allowing it to adopt different shapes and conformations inside the active site of
an enzyme. Principal component analysis (PCA) using QSARINS 2.2.4 [34] is available in
the Supplementary Material (Figure S2). Y-randomization is a useful technique to identify
chance correlations. For a good QSAR model, the value of R2

scr and Q2
scr should be low.

Also, a graph between Kxy (correlation of the X block with response Y) and R2
scr and

Q2
scr was plotted (see Figure 3d), which indicates that the QSAR model is free from chance

correlations [34].

3.2. Comparison of QSAR Results with Reported Crystal Structures

The active site of factor Xa consists of a catalytic triad of His57, Asp102 and Ser195
in the heavy chain along with two subsites S1 and S4 (see Figure 6) [14,32]. The S1 sub
pocket is approximately 8Å deep and encompasses Trp215-Gly216 on one side and Ala190,
Cys191 and Gln192 on the other side. A negatively charged Asp189 is present at the
bottom of subsite S1 [11,13,14]. Consequently, S1 is a narrow pocket with substantial
hydrophobic characters. Conversely, the S4 pocket is a relatively large lipophilic ‘U’ shaped
pocket with Tyr99, Phe174 and Trp215 as gating residues responsible for its opening
and closing [11,13,14].

It is well-established that the S4 pocket is appropriate for lipophilic and positively
charged moieties, thus making it highly suitable for developing a highly selective inhibitor.
A comparison of QSAR results with the X-ray-resolved pose of 1 (pdb 1MQ6) in Figure 7
indicates that QSAR resulted in identification of consensus and complementary pharma-
cophoric features. Compound 1 has adopted a ‘J’ or ‘L’ shape conformation inside the active
site of factor Xa with the presence of chloro-pyridine and oxazole moieties inside the S1 and
S4 pockets, respectively. The chlorine atom of the chloro-pyridine moiety is responsible
for lipophilic interactions with the nearby residues, whereas the amide nitrogen attached
to the chloro-pyridine ring has established H-bonding with Gly218. This highlights the
importance of chlorine and amide nitrogen atoms. The same combination is emphasized by
QSAR analysis, as well. The oxazole moiety contains positively charged ring carbon atoms
(see Figure 6) and interacts with residues of pocket S4, which is in tune with QSAR results.
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4. Materials and Methods

To build a thriving QSAR widely applicable model for anti-thrombosis activity, the
following steps were sequentially performed: data collection and its curation, structure
generation and calculation of molecular descriptors, objective feature selection (OFS),
splitting the dataset into training and external validation sets, subjective feature selection,
building a regression model and validation of developed model [16,17,19,26–28,35–38].
Thus, the present work follows the OECD recommended guidelines for the derivation of a
QSAR model for factor Xa inhibitory activity.

4.1. Data Collection & Curation

The data set of factor Xa inhibitors used for building, training and validating the QSAR
model was downloaded from ChEMBL (https://ebi.ac.uk/chembl/ accessed on 6 April
2021), which is a publicly available database. The data set comprises structurally diverse
molecules experimentally tested for their activity for Factor Xa. Then, as a part of data
curation, molecules with ambiguous enzyme inhibition constant (Ki) values, duplicates,
salts, metal-based inhibitors, etc. were excluded [16,17,19,26–28,36–38]. Finally, the data
set comprises diverse 1121 molecules with prodigious variation in structural scaffolds,
which were tested experimentally for potency in terms of Ki (nM) (see the excel file
‘Supplementary Material-Final’ in the Supplementary Material). The experimental Ki values
have ample variation between 0.007 to 18,000 nM. After that, Ki values were transformed
to their negative logarithmic value (pKi = −log10Ki) so that a comparison of their values
became easier. In Table 1 and Figure 8, some most and least active molecules have been
included as examples only.

http://openmopac.net
https://ebi.ac.uk/chembl/
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Table 1. SMILES notation, Ki (nM) and pKi (M) of five most and least active molecules of the selected data set.

S.N. SMILES Notation Ki
(nM)

pKi
(M)

1 COc1cc(Cl)cc(C(=O)Nc2ccc(Cl)cn2)c1NC(=O)c1scc(CN(C)C2=NCCO2)c1Cl 0.007 11.155
2 COc1cc(Cl)cc(C(=O)Nc2ccc(Cl)cn2)c1NC(=O)c1scc(CN(C)C2=NCCCO2)c1Cl 0.012 10.921
3 CCN(Cc1csc(C(=O)Nc2c(OC)cc(Cl)cc2C(=O)Nc2ccc(Cl)cn2)c1Cl)C1=NCCO1 0.012 10.921
4 COc1cc(Cl)cc(C(=O)Nc2ccc(Cl)cn2)c1NC(=O)c1ccc(-n2ccccc2=O)cc1 0.013 10.886
5 COc1cc(Cl)cc(C(=O)Nc2ccc(Cl)cn2)c1NC(=O)c1scc(CN(C)C2=NCCS2)c1Cl 0.024 10.62

1117 C=Cc1cc(OC2CCOCC2)cc(C(Nc2ccc(C(=N)N)cc2)C(=O)O)c1 13,300 4.876
1118 C#Cc1cc(O[C@@H]2CCOC2)cc(C(Nc2ccc(C(=N)N)cc2)C(=O)O)c1 15,300 4.815
1119 CC(C)(C)OC(=O)[C@@H](Cc1ccc(O)cc1)NC(=O)c1cccc(C(=N)N)c1 16,000 4.796
1120 CN1CC(C)(COc2ccc(C(=N)N)cc2)Oc2cc(N(Cc3ccccc3)C(=O)C(=O)O)ccc21 16,600 4.78
1121 CCOC(=O)CCC(=O)N(Cc1ccccc1)c1ccc2c(c1)OC(C)(COc1ccc(C(=N)N)cc1)CN2C 18,000 4.745
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4.2. Calculation of Molecular Descriptors and Objective Feature Selection (OFS)

The SMILES notations were transformed to 3D-optimized structures using Openba-
bel 3.1 [39] before calculation of molecular descriptors. The success of a QSAR analysis
significantly depends on the appropriate calculation of diverse molecular descriptors to
increase mechanistic interpretation, followed by their pruning to diminish the risk of
overfitting from noisy redundant descriptors. To achieve these goals, PyDescriptor [40]
was used to calculate more than 30,000 molecular descriptors. The vast pool of molecular
descriptors comprises 1D- to 3D- molecular descriptors. Then, OFS was performed us-
ing QSARINS-2.2.4 [34] to eliminate near constant, constant and highly inter-correlated
(|R| > 0.90) molecular descriptors. The final set contains 2682 molecular descriptors,
which still comprise manifold descriptors leading to coverage of a broad descriptor space.
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4.3. Splitting the Data Set into Training and External Sets and Subjective Feature Selection (SFS)

Before exhaustive subjective feature selection, it is important to split the data set
into training and prediction (also known as external or test set) sets with an appropriate
composition and proportions to avoid information leakage [30]. To avoid any bias, the
data set was randomly split into training (80% = 897 molecules) and prediction or external
(20% = 224 molecules) sets. The sole purpose of a training set was to select an appropri-
ate number of molecular descriptors, and the prediction/external set was used only for
external validation of the model (Predictive QSAR). For subjective feature selection, the
genetic algorithm unified with multilinear regression (GA-MLR) method implemented
in QSARINS-2.2.4 was employed to choose relevant descriptors using Q2

LOO as a fitness
parameter. An important step to develop a successful QSAR model with no over-fitting
while maintaining acceptable interpretability is to have an adequate number of molecular
descriptors in the model. In the present work, a graph (see Figure 9) was plotted between
the number of molecular descriptors involved in the model and R2

tr and Q2
LOO values

to obtain the so-called breaking point. Therefore, the number of molecular descriptors
corresponding to the breaking point was considered optimum for model building. From
Figure 9, it is clear that the breaking point corresponds to six variables. Therefore, QSAR
models with more than six descriptors were rejected.
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4.4. Building Regression Model and Its Validation

A good QSAR model which has been properly validated using various methods
such as cross-validation, external validation, Y-randomization and applicability domain
(Williams plot) is useful for future utilization in virtual screening, molecular optimization,
decision making, etc. The following statistical parameters and their recommended thresh-
old values are routinely used to validate a model [19,23,24,27,41–44]: R2

tr ≥ 0.6, Q2
loo ≥ 0.5,

Q2
LMO ≥ 0.6, R2 > Q2, R2

ex ≥ 0.6, RMSEtr < RMSEcv, ∆K ≥ 0.05, CCC ≥ 0.80, Q2 − Fn ≥
0.60, r2

m ≥ 0.5, (1 − r2/ro
2) < 0.1, 0.9 ≤ k ≤ 1.1 or (1 − r2/r′o2) < 0.1, 0.9 ≤ k′ ≤ 1.1,| ro

2 −
r′o2| < 0.3, RMSEex, MAEex, R2

ex, Q2
F1, Q2

F2, Q2
F3, and low R2

Yscr, RMSE and MAE. The
formulae for calculating these statistical parameters are available in the Supplementary
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Material. In addition, a Williams plot was plotted to evaluate the applicability domain of
QSAR model.

5. Conclusions

In the present work, a six-descriptor-based and thoroughly validated GA–MLR QSAR
model with R2

tr = 0.831, Q2
LMO = 0.828, and R2

ex = 0.783 was established to perceive the
important pharmacophoric features that govern factor Xa inhibitory activity. As stated
earlier, it is important to recognize prominent and visually unrecognizable pharmacophoric
features associated with activity for factor Xa for different chemical classes. The QSAR
analysis successfully identified a combination of reported and novel pharmacophoric
features. The analysis vindicates that chlorine with amide nitrogen atoms, the sum of
partial charges on positively charged ring carbon atoms, the importance of aromatic
nitrogen and sp2-hybridized carbon atoms, etc. are prominent features to be retained
in future optimizations. Conversely, new structural features such as the combination of
sp3-hybridized oxygen atoms at exactly six bonds from sp2-hybridized oxygen atoms,
sp3-hybridized oxygen atoms at exactly nine bonds from sp2-hybridized nitrogen atoms,
and sp2-hybridized oxygen atoms at exactly eight bonds from sp2-hybridized carbon atoms
should be avoided to have a better activity profile against factor Xa. The QSAR model
has a good balance of predictive ability and mechanistic interpretations, which are further
supported by the reported crystal structures of factor Xa inhibitors.
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.3390/ijms22158352/s1.
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