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Abstract: In this paper, we discussed some new properties on the newly defined family of Genocchi
polynomials, called poly-Genocchi polynomials. These polynomials are extensions from the Genocchi
polynomials via generating function involving polylogarithm function. We succeeded in deriving the
analytical expression and obtained higher order and higher index of poly-Genocchi polynomials for
the first time. We also showed that the orthogonal version of poly-Genocchi polynomials could be
presented as multiple shifted Legendre polynomials and Catalan numbers. Furthermore, we extended
the determinant form and recurrence relation of shifted Genocchi polynomials sequence to shifted
poly-Genocchi polynomials sequence. Then, we apply the poly-Genocchi polynomials to solve the
fractional differential equation, including the delay fractional differential equation via the operational
matrix method with a collocation scheme. The error bound is presented, while the numerical examples
show that this proposed method is efficient in solving various problems.
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1. Introduction

Genocchi polynomial is one of the important polynomials in the family of Appell polynomials.
Moreover, many interesting patterns and number sequences arise in the field of combinatory [1–3].
Recently, Genocchi polynomials had been widely used to solve the various fractional calculus problems
since the first research work in [4]. Following from there, the Genocchi polynomials or Genocchi
wavelets were used in solving fractional differential equations with delay [5], fractional differential
equations [6], system of Volterra integro-differential equation [7], fractional diffusion wave equation
and fractional Klein–Gordon equation [8], nonlocal anti-periodic boundary value problem of arbitrary
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fractional order [9], fractional Abel differential equation [10],variable order fractional optimal control
problems [11]. On the other hand, researchers in combinatory extended Genocchi polynomials’
study to poly-Genocchi polynomials [12] and Apostol-Genocchi polynomials [13]. Many interesting
properties had been discovered. For example, the bivariate poly-Genocchi polynomial is related to
Stirling numbers of the second kind [14] and generalized Laguerre poly-Genocchi polynomials [15].

This paper will discuss some new properties of these poly-Genocchi polynomials, which can
be extended from the properties of Genocchi polynomials. We successfully derived the analytical
expression to obtain higher-order and higher index of poly-Genocchi polynomials using the lower
order and lower index of poly-Genocchi polynomials. We also showed that the orthogonal version of
the poly-Genocchi polynomials is multiple of the shifted Legendre polynomials. The multiple is related
to the Catalan numbers. We extended the determinant form and recurrence relation of shifted Genocchi
polynomials sequence recently introduced in [16] to shifted poly-Genocchi polynomials sequence.
Apart from this, we use the poly-Genocchi polynomials to derive the operational matrix and apply it
to solve fractional differential equations. This kind of operational matrix is widely used in solving
fractional calculus problems such as fractional partial differential equation [17], linear Fredholm-
Volterra integro-differential equations [18], nonlinear variable-order time fractional reaction–diffusion
equation involving Mittag-Leffler kernel [19], fractional strongly nonlinear Duffing oscillators [20].
More specifically, we apply this new poly-Genocchi polynomial operational matrix to solve some
benchmark problems and compare the results as in [21] for delay fractional differential equation (or so
called generalized fractional pantograph equations).

The rest of the paper is organized as follows. Section 2 briefly explains the poly-Genocchi
polynomials and their new properties while discussing the orthogonal version of poly-Genocchi
polynomials via the Gram-Schmidt process in subsection 2.1. Apart from that, we explain the
procedure to obtain the shifted poly-Genocchi polynomials sequence. Then, in Section 3, we apply
the poly-Genocchi polynomials to derive the operational matrix of the derivative. The error bound of
the method is also presented in this section. Moreover, the numerical examples are presented in Section
4. Last, we provide a summary and some recommendations in Section 5.

2. Properties of poly-Genocchi polynomials

According to [22], the poly-Genocchi polynomials, G(k)
n (x) can be obtained using the generating

function in (2.1).

2Lik(1 − e−t)
et + 1

ext =

∞∑
n=0

G(k)
n (x)

tn

n!
, (2.1)

where Lik(x) =
∑∞

n=1
xn

nk denotes the kth polylogarithm function. For x = 0, we obtain the poly-Genocchi
numbers, g(k)

n = G(k)
n (0) of index k, where k is a positive integer. By using Eq (2.1), we obtain the

following first few poly-Genocchi polynomials of index k, G(k)
n (x).
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G(k)
1 (x) = 1,

G(k)
2 (x) = 2x − 2 +

2
2k ,

G(k)
3 (x) = 3x2 +

(
6
2k − 6

)
x +

6
3k −

9
2k +

5
2
,

G(k)
4 (x) = 4x3 +

(
12
2k − 12

)
x2 +

(
24
3k −

36
2k + 10

)
x +

24
4k −

48
3k +

26
2k − 2.

(2.2)

For k = 1, Eq (2.2) reduces to Genocchi polynomials given below.

G1(x) = 1,
G2(x) = 2x − 1,
G3(x) = 3x2 − 3x,

G4(x) = 4x3 − 6x2 + 1.

(2.3)

Some of the properties of Genocchi polynomials can be extended to poly-Genocchi polynomials,
such as

G(k)
n (x) =

n∑
r=0

(
n
r

)
g(k)

n−r xr

= g(k)
n +

n−1∑
r=0

(
n
r

)
g(k)

r xn−r,

dG(k)
n (x)
dx

= nG(k)
n−1(x), n ≥ 1,

d2G(k)
n (x)

dx2 = n(n + 1)G(k)
n−2(x), n ≥ 2,∫ x

0
G(k)

n (x)dx =
G(k)

n+1(x) − g(k)
n+1

n + 1
.

(2.4)

Here, we refer the readers to other interesting properties of poly-Genocchi polynomials in [22, 23],
the properties of Genocchi polynomials in [24–26] and other families of Genocchi related polynomials
in [27, 28].

For function f (x) in an arbitrary element of L2[0, 1], ones can approximate the function in terms of
poly-Genocchi polynomials as in (2.5):

f (x) ≈ f ∗(x) =

N∑
n=1

cnG(k)
n (x) = CG(k)(x)T , (2.5)

where C = [c1, c2, · · · , cN], G(k)(x) = [G(k)
1 (x), G(k)

2 (x), · · · ,G(k)
N (x)] and C or cn can be calculated using

the following equation,

C = [c1, c2, · · · , cN] =

〈
f (x),G(k)(x)

〉〈
G(k)(x),G(k)(x)

〉 , (2.6)

where
〈
G(k)(x),G(k)(x)

〉
is an N × N matrix.
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The poly-Genocchi polynomials, G(k)
n+1(x) can be obtained if the lower degree n and lower index k

are known. We now introduce the following theorem.

Theorem 1. The poly-Genocchi polynomials, G(k)
n (x) can be determined as follows:

G(k)
n+1(x) = −

1
2

G(k−1)
n (x) +

bn/2c+1∑
i=0

G(k−1)
2i (x)
(2i)!

n!Bn−2i+1

(n − 2i + 1)!

−
1

2(n + 1)

n∑
i≥0,

i+ j=n+1

(−1)n+i

(
n + 1

i

)
G(k)

i (x)G j + xG(k)
n (x), for n = odd,

(2.7)

G(k)
n+1(x) = −

1
2

G(k−1)
n (x) +

n/2∑
i=0

G(k−1)
2i+1 (x)

(2i + 1)!
n!Bn−2i

(n − 2i)!

−
1

2(n + 1)

n∑
i≥0,

i+ j=n+1

(−1)n+i

(
n + 1

i

)
G(k)

i (x)G j + xG(k)
n (x), for n = even,

(2.8)

where Bn is Bernoulli number and Gn is Genocchi number obtained using Gn = 2(1 − 2n)Bn.

Proof. Suppose the generating function of poly-Genocchi polynomials as follows:

2Lik(1 − e−t)
et + 1

ext =

∞∑
n=0

G(k)
n (x)

tn

n!
. (2.9)

Both sides of Eq (2.9) is then differentiated w.r.t t, which yields

2Lik−1(1 − e−t)ext

et(1 − e−t)(et + 1)
−

2Lik(1 − e−t)extet

(et + 1)2 +
2Lik(1 − e−t)extx

(et + 1)
=

∞∑
n=0

G(k)
n+1(x)

tn

n!
. (2.10)

For the LHS of (2.10) and using (2.9), we denote Bn as nth Bernoulli number, while Gn as the Genocchi
number, which yields

 ∞∑
n=0

G(k−1)
n (x)

tn

n!

 ( 1
et − 1

)
−

 ∞∑
n=0

G(k)
n (x)

tn

n!

 ( et

et + 1

)
+

 ∞∑
n=0

G(k)
n (x)

tn

n!

 x

=

 ∞∑
n=0

G(k−1)
n (x)

tn

n!

 −1
2

+

∞∑
n=0

B2n

(2n)!
t2n−1


−

 ∞∑
n=0

G(k)
n (x)

tn

n!

  ∞∑
n=0

(−1)n 1
2

Gn+1

n + 1
tn

n!

 +

 ∞∑
n=0

G(k)
n (x)

tn

n!

 x.

(2.11)
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The first two terms in (2.11) are expanded, where after some algebraic manipulation, we obtain

−
1
2

∞∑
n=0

G(k−1)
n (x)

tn

n!
+

∞∑
n=0,

n=odd

bn/2c+1∑
i=0

G(k−1)
2i (x)
(2i)!

n!Bn−2i+1

(n − 2i + 1)!
tn

n!

+

∞∑
n=0,

n=even

n/2∑
i=0

G(k−1)
2i+1 (x)

(2i + 1)!
n!Bn−2i

(n − 2i)!
tn

n!

−

∞∑
n=0

1
2(n + 1)

n∑
i≥0,

i+ j=n+1

(−1)n+i

(
n + 1

i

)
G(k)

i (x)G j
tn

n!
+

 ∞∑
n=0

G(k)
n (x)

tn

n!

 x.

(2.12)

By equating coefficients, when n is odd, we obtain

G(k)
n+1(x) = −

1
2

G(k−1)
n (x) +

bn/2c+1∑
i=0

G(k−1)
2i (x)
(2i)!

n!Bn−2i+1

(n − 2i + 1)!

−
1

2(n + 1)

n∑
i≥0,

i+ j=n+1

(−1)n+i

(
n + 1

i

)
G(k)

i (x)G j + xG(k)
n (x).

(2.13)

On the other hand, for even n, we have

G(k)
n+1(x) = −

1
2

G(k−1)
n (x) +

n/2∑
i=0

G(k−1)
2i+1 (x)

(2i + 1)!
n!Bn−2i

(n − 2i)!

−
1

2(n + 1)

n∑
i≥0,

i+ j=n+1

(−1)n+i

(
n + 1

i

)
G(k)

i (x)G j + xG(k)
n (x).

(2.14)

This completes the proof. �

2.1. Orthogonal version of poly-Genocchi polynomials

Here, we briefly explain the Gram-Schmidt process for the poly-Genocchi polynomials. Note
that we have G(k)

0 (x) = 0 and also G(k)
1 (x) = 1. Suppose also that φ1(x), · · · , φq(x) are orthogonal

version of poly-Genocchi polynomials obtained from Gram-Schmidt process in which the polynomial
is orthogonal with respect to the inner product 〈 f , g〉 =

∫ 1

0
w(x) f (x)g(x)dx. Then

φq+1(x) = G(k)
q+1(x) −

q∑
i=1

λiφi(x) (2.15)

satisfies
〈
φq+1, φ j

〉
=

∫ 1

0
w(x)φq+1(x)φ j(x)dx = 0, j = 0, 1, · · · , q with λ j =

〈
G(k)

q+1,φ j
〉

〈φ j,φ j〉
.

Obviously, we have φ0(x) = 0, φ1(x) = 1 and shifted Legendre polynomials, P0(x) = 1. Here,
we compare the poly-Genocchi polynomials of degree q + 1 with the shifted Legendre polynomials
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of degree q since both of them have same highest power of x. By using Gram-Schmidt process as in
(2.15) with q = 1, we obtain

φ2(x) = G(k)
2 (x) −

1∑
i=1

λiφi(x)

=

2∑
r=0

(
2
r

)
g(k)

2−r xr −

∫ 1

0

∑2
r=0

(
2
r

)
g(k)

2−r xrφ1(x)dx∫ 1

0
(φ1(x))2dx

φ1(x)

=

2∑
r=0

(
2
r

)
g(k)

2−r

(
xr −

1
r + 1

)
= 2x − 1.

This is the same as degree 1 shifted Legendre polynomials, P1(x) = 2x − 1. In other words, the
orthogonal version of poly-Genocchi polynomials, φ2(x), regardless of the k value in (2.1) or (2.2), is
the multiple of 1 for degree 1 shifted Legendre polynomials after Gram-Schmidt process. Now, by
using Gram-Schmidt process as in (2.15) with q = 2, we obtain

φ3(x) = G(k)
3 (x) −

2∑
i=1

λiφi(x)

=

3∑
r=0

(
3
r

)
g(k)

3−r xr −

∫ 1

0

∑3
r=0

(
3
r

)
g(k)

3−r xrφ2(x)dx∫ 1

0
(φ2(x))2dx

φ2(x) −

∫ 1

0

∑3
r=0

(
3
r

)
g(k)

3−r xrφ1(x)dx∫ 1

0
(φ1(x))2dx

φ1(x)

=

3∑
r=0

(
3
r

)
g(k)

3−r xr − 3
3∑

r=0

(
3
r

)
g(k)

3−r

[
2xr+2

r + 2
−

xr+1

r + 1

]1

0
(2x − 1) −

3∑
r=0

(
3
r

)
g(k)

3−r

[
xr+1

r + 1

]1

0

=

3∑
r=0

(
3
r

)
g(k)

3−r

(
xr −

3r(2x − 1)
(r + 2)(r + 1)

−
1

r + 1

)
= 3x2 − 3x +

1
2
.

After this Gram-Schmidt process, we obtain the orthogonal version of poly-Genocchi polynomials,
φ3(x) in multiple of 2 for degree 2 shifted Legendre polynomials, P2(x). Upon continuing the Gram-
Schmidt process as in (2.15) with q = 3 yields
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φ4(x) = G(k)
4 (x) −

3∑
i=1

λiφi(x)

=

4∑
r=0

(
4
r

)
g(k)

4−r xr −

∫ 1

0

∑4
r=0

(
4
r

)
g(k)

4−r xrφ3(x)dx∫ 1

0
(φ3(x))2dx

φ3(x)

−

∫ 1

0

∑4
r=0

(
4
r

)
g(k)

4−r xrφ2(x)dx∫ 1

0
(φ2(x))2dx

φ2(x) −

∫ 1

0

∑4
r=0

(
4
r

)
g(k)

4−r xrφ1(x)dx∫ 1

0
(φ1(x))2dx

φ1(x)

=

4∑
r=0

(
4
r

)
g(k)

4−r xr − 20
4∑

r=0

(
4
r

)
g(k)

4−r

[
3xr+3

r + 3
−

3xr+2

r + 2
+

1
2

xr+1

r + 1

]1

0

(
3x2 − 3x +

1
2

)

− 3
4∑

r=0

(
4
r

)
g(k)

4−r

[
2xr+2

r + 2
−

xr+1

r + 1

]1

0
(2x − 1) −

4∑
r=0

(
4
r

)
g(k)

4−r

[
xr+1

r + 1

]1

0

=

4∑
r=0

(
4
r

)
g(k)

4−r

(
xr −

5r(r − 1)(6x2 − 6x + 1)
(r + 3)(r + 2)(r + 1)

−
3r(2x − 1)

(r + 2)(r + 1)
−

1
r + 1

)
= 4x3 − 6x2 +

12
5

x −
1
5
.

After this Gram-Schmidt process, we obtain the poly-Genocchi polynomials, φ4(x) in multiple of 5
for degree 3 shifted Legendre polynomials, P3(x). By using similar algebra manipulation, for φ5(x) =

G(k)
5 (x) −

∑4
i=1 λiφi(x), we obtain φ5(x) = 5x4 − 10x3 + 45

7 x2 − 10
7 x + 1

14 which is the multiple of 14 for
degree 4 shifted Legendre polynomials, P4(x). We summarize the results as shown in Table 1. These
multiples are indeed the Catalan numbers 1, 1, 2, 5, 14... which given by Cn = 1

n+1

(
2n
n

)
. More generally,

we have

φq+1(x) = G(k)
q+1(x) −

q∑
i=1

λiφi(x)

=

q∑
r=0

(
q
r

)
g(k)

q−r

xr −

q−1∑
m=0

(2m + 1)(
∏m−1

a=0 (r − a))(Pm(x))∏m
a=0(r + a + 1)


=

1
q + 1

(
2q
q

)
Pq(x).

In conclusion, for the orthogonal version of poly-Genocchi polynomials, φq(x) obtained via Gram-
Schmidt process, we have

φq+1(x) =
1

q + 1

(
2q
q

)
Pq(x), (2.16)

where 1
q+1

(
2q
q

)
are the Catalan numbers, C(q).
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Table 1. Existing of Catalan numbers in the Gram-Schmidt process for poly-Genocchi
polynomials, φq(x).

Orthogonal poly-Genocchi polynomials, φq+1(x) Shifted Legendre polynomials, Pq(x) Multipler

φ1(x) = 1 P0(x) = 1 1
φ2(x) = 2x − 1 P1(x) = 2x − 1 1

φ3(x) = 3x2 − 3x +
1
2

P2(x) = 6x2 − 6x + 1 2

φ4(x) = 4x3 − 6x2 +
12
5

x −
1
5

P3(x) = 20x3 − 30x2 + 12x − 1 5

φ5(x) = 5x4 − 10x3 +
45
7

x2 −
10
7

x +
1

14
P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1 14

2.2. Shifted poly-Genocchi polynomials sequence

This subsection extends the determinant form and recurrence relation of shifted Genocchi
polynomials sequence recently introduced in [16] to shifted poly-Genocchi polynomials sequence.
Similar to [16], we shift the order of poly-Genocchi polynomials from n to n + 1, i.e. we have
Gs(k)

n (x) = G(k)
n+1(x), where Gs(k)

n (x) denotes shifted poly-Genocchi polynomials sequence. We now
have the following lemma.

Lemma 1. For n > 0, the determinant form and recurrence relation of shifted poly-Genocchi
polynomials sequence, Gs(k)

n (x) is given by

Gs(k)
n (x) =

(−1)n∏n
i=0 si,i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xn−1 xn

s0,0 s1,0 s2,0 · · · sn−1,0 sn,0

0 s1,1 s2,0 · · · sn−1,1 sn,1

...
. . .

. . .
...

...

...
. . .

. . .
...

...

0 · · · · · · 0 sn−1,n−1 sn,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.17)

and

Gs(k)
n (x) =

1
sn,n

xn −

n−1∑
j=0

sn, jGs(k)
j (x)

 . (2.18)

The procedure to obtain the values for si, j follows from Francesco A. Costabile et al. [16],
summarized as follows:

Step 1: From G(k)
n (x) =

∑n
r=0

(
n
r

)
g(k)

n−r xr, the poly-Genocchi number, g(k)
i is obtained. Hence, we calculate

the lower triangular Toeplitz matrix, TG with entries

ti, j =
g(k)

i+1− j

(i + 1 − j)!
.

Step 2: The upper triangular, S , can be obtained via

S = D−1
2 T−1

G D−1
1 ,
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where D1 = diag{(i + 1)! | i = 0, 1, . . .}, while D2 = diag{1/i! | i = 0, 1, . . .}.

For example, the determinant form of shifted poly-Genocchi polynomials sequence, Gs(2)
3 (x) (k =

2, n = 3) and Gs(3)
4 (x) (k = 3, n = 4) are given by

Gs(2)
3 (x) =

(−1)3

1
4!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 x3

1 3
4

59
72

95
96

0 1
2

3
4

59
48

0 0 1
3

3
4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, Gs(3)

4 (x) =
(−1)4

1
5!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 x3 x4

1 7
8

863
864

2909
2304

25345241
15552000

0 1
2

7
8

863
576

2909
1152

0 0 1
3

7
8

863
432

0 0 0 1
4

7
8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is easy to see that the above determinant forms give the poly-Genocchi polynomials as follows:

G(2)
4 (x) = Gs(2)

3 (x) = 4x3 − 9x2 +
11
3

x +
2
3
,

G(3)
5 (x) = Gs(3)

4 (x) = 5x4 −
35
2

x3 +
575
36

x2 −
55
72

x −
4819
3600

.

(2.19)

3. Operational matrix based on poly-Genocchi polynomials

This section derives the new operational matrix based on poly-Genocchi polynomials and applies it
to solve the fractional differential equations. This new operational matrix is called the generalization
of the Genocchi operational matrix developed in [29].

Theorem 2. Suppose G(k)(x) is the poly-Genocchi vector G(k)(x) = [G(k)
1 (x), G(k)

2 (x), · · · ,G(k)
N (x)]T and

let α > 0. Then,
DαG(k)(x)T = PαG(k)(x)T , (3.1)

where Pα is an N × N operational matrix of fractional derivative of order α in Caputo sense and is
defined as follows:

P(α) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
dαe∑

r=dαe
θdαe,r,1

dαe∑
r=dαe

θdαe,r,2 · · ·
dαe∑

r=dαe
θdαe,r,N

...
... · · ·

...
n∑

r=dαe
θn,r,1

n∑
r=dαe

θn,r,2 · · ·
n∑

r=dαe
θn,r,N

...
... · · ·

...
N∑

r=dαe
θN,r,1

N∑
r=dαe

θN,r,2 · · ·
N∑

r=dαe
θN,r,N



,

where θn,r, j is given by

θn,r, j =
n!g(k)

n−r

(n − r)!Γ(r + 1 − α)
c j. (3.2)
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Here g(k)
n is the poly-Genocchi number and c j can be obtained from the inner product via (2.6).

Proof. From (2.4), we can write the poly-Genocchi polynomials in analytical form, where its fractional
derivative is given as in (3.3).

DαG(k)
n (x) =

n∑
r=0

n!g(k)
n−r

(n − r)!r!
Dαxr =

n∑
r=dαe

n!g(k)
n−r

(n − r)!Γ(r + 1 − α)
xr−α. (3.3)

Let f (x) = xr−α. By using truncated poly-Genocchi polynomials, we obtain f (x) =
N∑

j=1
c jG

(k)
j (x).

Substituting this into (3.3) yields

DαG(k)
n (x) =

N∑
j=1

 n∑
r=dαe

n!g(k)
n−r

(n − r)!Γ(r + 1 − α)
c j

G(k)
j (x)

=

N∑
j=1

 n∑
r=dαe

θn,r,l

G(k)
j (x),

(3.4)

where θn,r,l is given in (3.2). Rewriting (3.4) in the vector form, we have

DαG(k)
n (x) =

 n∑
r=dαe

θdαe,r,1

n∑
r=dαe

θdαe,r,2 · · ·

n∑
r=dαe

θdαe,r,N

 G(k)(x), (3.5)

where n = dαe · · ·N. For n = 1, · · · , dαe − 1, we have

DαG(k)
n (x) = [0, 0, · · · 0] G(k)(x), n = 1, · · · , dαe − 1. (3.6)

Hence, by combining (3.5) and (3.6), the poly-Genocchi operational matrix as in (3.1) is proven. �

3.1. Error bound

In this subsection, we briefly explain the error bound for the function approximation for arbitrary
f (x) by using poly-Genocchi polynomials.

Theorem 3. For the arbitrary function f (x) ∈ Cn+1[0, 1] and

Y = Span{G(k)
1 (x),G(k)

2 (x), · · · ,G(k)
N (x)}.

Let CT G(k)(x) be the best approximation of f (x) out of Y, we then have

‖ f (x) − CT G(k)(x)‖ ≤
h

2n+3
2 M

(n + 1)!
√

2n + 3
, x ∈ [xi, xi+1] ⊆ [0, 1], (3.7)

where M = max
x∈[xi,xi+1]

| f (n+1)(x)| and h = xi+1 − xi.
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Proof. By using Taylor’s series, we can write

y1(x) = f (xi) + f ′(xi)(x − xi) + f ′′(xi)
(x − xi)2

2!
+ · · · + f (n)(xi)

(x − xi)n

n!
.

If we truncate the Taylor’s series, the following bound may be obtained,

| f (x) − y1(x)| ≤ | f (n+1)(ξx)|
(x − xi)n+1

(n + 1)!
,

where ξx ∈ [xi, xi+1].

Since CT G(k)(x) is the best approximation of f (x) out of Y and y1(t) ∈ Y , then from
∀y(x) ∈ Y, ‖ f (x) − f ∗(x)‖2 ≤ ‖ f (x) − y(x)‖2, we have

‖ f (x) − CT G(k)(x)‖22 ≤ ‖ f (x) − y1(x)‖22

=

xi+1∫
xi

| f (s) − y1(s)|2ds

≤

xi+1∫
xi

‖ f (n+1)(ξx)‖2
(
(s − xi)n+1

(n + 1)!

)2

ds

≤
h2n+3M2

((n + 1)!)2(2n + 3)
.

(3.8)

Taking the square root of both sides of (3.8) yields

‖ f (x) − CT G(k)(x)‖ ≤
h

2n+3
2 M

(n + 1)!
√

2n + 3
.

This proofs the error bound inequality as in (3.7). �

In short, for each sub interval [xi, xi+1], i = 1, 2, · · · , n, f (x) has a local error bound of O(h
2n+3

2 )
while for the whole interval, [0, 1], f (x) has a global error of O(h

2n+1
2 ).

3.2. Collocation scheme based on poly-Genocchi operational matrix

In this subsection, we use the collocation scheme based on the poly-Genocchi operational matrix
to numerically solve the fractional differential equation. This kind of approach replaces symbol by
symbol, i.e. replacing fractional derivative, Dα with the operational matrix, Pα. This approach is also
the same if we intend to solve the integer order differential equations, i.e. when α = 1. To do this, we
have the following procedure:

Step 1: We first approximate y(x) using poly-Genocchi polynomials as follows:

y(x) =

N∑
r=1

crG(k)
r (x) = CG(k)(x)T , (3.9)
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where C = [c1, c2, · · · , cN] is an unknown vector that need to be determined. If we want to
approximate fractional derivative for y(x), we replace it by poly-Genocchi operational matrix as in
(3.1) yielding

Dαy(x) ' CP(α)G(k)(x)T . (3.10)

For the initial and boundary conditions, we can replace y(0) = a with CG(k)(0)T − a = 0 and y(1) = b
with CG(k)(1)T − b = 0.

Step 2: Substituting (3.9) and (3.10) into the fractional differential equation, it collocates at the
collocation points xi = i

N , i = 1, 2, · · · ,N − 2. Together with initial and boundary condition, we have
N algebraic equations. We solve this system of algebraic equations with Newton’s iterative method
to obtain the value for C = [c1, c2, · · · , cN] . Thus, the solution of fractional differential equation is
obtained using (3.9).

4. Application in solving fractional differential equation

In this section, we solve some fractional differential equations to illustrate the applicability and
accuracy of these poly-Genocchi polynomials. We achieve this by using the collocation scheme and
the fractional derivative by employing an operational matrix based on poly-Genocchi polynomials.
This operational matrix is the generalization of different indexes of Genocchi polynomials. All the
numerical computations are carried out using Maple.

Example 1. Consider a simple fractional differential equation, given by

D(1/2)y(x) + y′(x) =
8
3

x3/2

√
π

+ 2x, (4.1)

with initial condition y(0) = 0. The exact solution is given by y(x) = x2.

This problem is solved using collocation scheme with N = 4, 8 and poly-Genocchi polynomials for
k = 2 and k = 5. The absolute errors for the Example 1 are shown in Table 2. From the table, although
the numerical scheme is simple and easy to use, the solution is accurate. Using different k values (i.e.
k = 2, 5) of poly-Genocchi polynomials will give the same numerical result.

Example 2. Consider the following fractional delay differential equation as in [21, 30].

D( 5
2 )y(x) = −y(x) − y(x − 0.5) + h(x), x ∈ [0, 1], (4.2)

with initial condition y(0) = 0, y′(0) = 0, y′′(0) = 0 and h(x) =
Γ(4)
Γ( 3

2 )
x

1
2 + x3 + (x − 0.5)3.

The exact solution is y(x) = x3. Here, we compare our results with those in [30] using the
generalized Laguerre-Gauss collocation scheme with Laguerre parameters β and in [21] using a
collocation scheme based on Genocchi operational matrix. Using N = 4 with poly-Genocchi
polynomials k = 2 and k = 5, respectively, and following the procedure as in Example 2 [21], we
obtained the result as in Table 3. Obviously, the proposed method with poly-Genocchi operational
matrix gives better results.
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Table 2. Absolute errors for proposed method for Example 1.

Absolute errors, N = 4 Absolute errors, N = 8
x k = 2 k = 5 k = 2 k = 5

0 1.00000E-15 6.00000E-16 1.00000E-15 2.99000E-15
0.1 4.77187E-04 4.77187E-04 4.23183E-06 4.23183E-06
0.2 6.79231E-04 6.79231E-04 1.07341E-05 1.07341E-05
0.3 6.81968E-04 6.81968E-04 2.92267E-06 2.92267E-06
0.4 5.61237E-04 5.61237E-04 7.80106E-07 7.80106E-07
0.5 3.92875E-04 3.92875E-04 6.45866E-06 6.45866E-06
0.6 2.52718E-04 2.52718E-04 7.37434E-06 7.37434E-06
0.7 2.16605E-04 2.16605E-04 6.47144E-07 6.47144E-07
0.8 3.60373E-04 3.60373E-04 2.74148E-06 2.74148E-06
0.9 7.59859E-04 7.59859E-04 8.16082E-06 8.16082E-06
1.0 1.49090E-03 1.49090E-03 1.38949E-04 1.38949E-04

Table 3. Comparison of the absolute errors obtained by the proposed method with those
in [21, 30] for Example 2.

[30] [21] Proposed Method
x β = 5,N = 22 N = 4 N = 4, k = 2 N = 4, k = 5

0 - - 5.00000E-15 4.00000E-15
0.1 6.273E-06 6.17040E-09 5.97970E-09 5.97969E-09
0.2 3.892E-05 4.93630E-08 4.78376E-08 4.78376E-08
0.3 1.023E-04 1.66600E-07 1.61452E-07 1.61452E-07
0.4 1.901E-04 3.94910E-07 3.82701E-07 3.82701E-07
0.5 2.944E-04 7.71300E-07 7.47462E-07 7.47462E-07
0.6 4.088E-04 1.33280E-06 1.29161E-06 1.29161E-06
0.7 5.306E-04 2.11640E-06 2.05104E-06 2.05104E-06
0.8 6.597E-04 3.15920E-06 3.06160E-06 3.06160E-06
0.9 7.977E-04 4.49820E-06 4.35920E-06 4.35920E-06
1.0 9.468E-04 6.17040E-06 5.97970E-06 5.97970E-06

Example 3. We consider the Lane-Emden equation up to the fractional order. It has been widely used
in describing the thermal distribution profile in the human head [31] and radial stress on a rotationally
symmetric shallow membrane cap [32]. The equation is given by:

D(α)y(x) +
1
x

y′(x) + ey(x) = 0, x ∈ [0, 1] (4.3)

with initial and boundary conditions y′(0) = 0, y(1) = 0.

The exact solution for α = 2 is given by y(x) = 2 ln
(

B+1
Bx2+1

)
, where B = 3 − 2

√
2. By using N = 8

with poly-Genocchi polynomials when k = 2, we obtain the approximate solution for α = 2, 1.9, 1.8 as
in Figure 1.
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Figure 1. Comparison of approximate solution and exact solution for Example 3.

The numerical results are compared with the solution obtained in [33] using Modified Adomian
Decomposition Method (MADM). It is obtained by combining between the Adomian Decomposition
Method and collocation approach based on quintic B-spline basis function. The result in Table 4 shows
that our proposed method with fewer terms is comparable with the result in [33].

Table 4. Comparison of the Maximum Absolute Errors (MAE) obtained by MADM, Quintic
B-spline and proposed method for Example 3.

Interval [0, 0.1] Interval [0, 0.1] Interval [0.1, 1] Interval [0.1, 1]
MADM [33] Proposed method Quintic B-spline [33] Proposed method

n = 10, 6.56E-10 N = 12, 6.96E-10 N = 18, 1.47E-09 N = 12, 6.80E-10
n = 12, 1.55E-11 N = 15, 1.84E-13 N = 36, 9.45E-11 N = 15, 2.16E-13

Example 4. We consider the Bratu type equation as in [34]. Our proposed method are not only able
to solve the integer order derivative for Bratu type equation, but also can solve the fractional Bratu
type equation efficiently. This Bratu type equation are widely used in the fuel ignition model [35], the
Chandrashekhar model [36]. Meanwhile, fractional Bratu type equations are studied for the problem
arising in electro-spun organic nanofibers elaboration [37].

Here, we extend the Bratu type equation discuss in [34] to fractional order derivative as follow:

D(α)y(x) + λey(x) = 0, x ∈ [0, 1] (4.4)

with initial and boundary conditions y(0) = 0, y(1) = 0.

The exact solution for α = 2 is given by y(x) = −2 ln
(

cosh((x−0.5) θ2 )
cosh( θ4 )

)
, where θ is the solution of
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θ −
√

2λ cosh( θ4 ) = 0. Using N = 8 with poly-Genocchi polynomial when k = 2 and let λ = 1 in the
Eq (4.4), we obtain the approximate solution for α = 2, 1.9, 1.8 as in Figure 2.

Figure 2. Comparison of approximation solution and exact solution for Example 4.

When α = 2, λ = 2, by using N = 8, we compare our approximate solution with the iteration
method developed in [34]. The result is presented as in Table 5. Our solution is comparable with
published result in [34].

Table 5. Comparison of the proposed method with iteration method [34] for Example 4 when
λ = 2.

Absolute error Absolute error
x Iteration method, n = 6 [34] Proposed method, N = 8

0 0 1.91463E-10
0.2 6.9297E-05 3.73495E-05
0.4 1.0775E-04 9.31864E-05
0.6 1.0775E-04 1.38795E-04
0.8 6.9297E-05 1.70014E-04
1.0 7.9936E-17 1.91463E-10

5. Conclusions

In this work, we investigated the new properties of poly-Genocchi polynomials, G(k)
n (x), with any

positive integer, k. When k = 1, it reduces to Genocchi polynomials. We successful derived the
analytical expression to obtain a higher order and higher index of poly-Genocchi polynomials. We
show that the orthogonal version of poly-Genocchi polynomials is the multiple of shifted Legendre
polynomials. Interestingly, the multiple is given by Catalan numbers. We also extended the
determinant form and recurrence relation of shifted Genocchi polynomials sequence introduced in [16]
to shifted poly-Genocchi polynomials sequence. We introduced the poly-Genocchi operational matrix
for the first time, where the error bound for this new method is presented. Using a collocation scheme,
we are able to solve the fractional differential equation and fractional delay differential equation. The
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numerical examples have shown that this proposed method is highly efficient and easy to use. Using
few terms of poly-Genocchi polynomials in our proposed method can give more accurate results than
existing methods. The method can be easily extended to solve more complicated problems such as
those in [38, 39].
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7. J. R. Loh, C. Phang, A new numerical scheme for solving system of Volterra integro-differential
equation, Alex. Eng. J., 57 (2018), 1117–1124.

8. A. Kanwal, C. Phang, U. Iqbal, Numerical solution of fractional diffusion wave equation
and fractional Klein–Gordon equation via two-dimensional Genocchi polynomials with a Ritz–
Galerkin method, Computation, 6 (2018), 40.

9. M. M. Matar, Existence of solution involving Genocchi numbers for nonlocal anti-periodic
boundary value problem of arbitrary fractional order, Revista de la Real Academia de Ciencias
Exactas, Fı́sicas y Naturales. Serie A. Matemáticas, 112 (2018), 945–956.
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