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Diabetic retinopathy is one of the leading diseases affecting eyes. Lack of early detection and treatment can lead to total blindness of
the diseased eyes. Recently, numerous researchers have attempted producing automatic diabetic retinopathy detection techniques
to supplement diagnosis and early treatment of diabetic retinopathy symptoms. In this manuscript, a new approach has been
proposed. The proposed approach utilizes the feature extracted from the fundus image using a local extrema information with
quantized Haralick features. The quantized features encode not only the textural Haralick features but also exploit the
multiresolution information of numerous symptoms in diabetic retinopathy. Long Short-Term Memory network together with
local extrema pattern provides a probabilistic approach to analyze each segment of the image with higher precision which helps
to suppress false positive occurrences. The proposed approach analyzes the retina vasculature and hard-exudate symptoms of
diabetic retinopathy on two different public datasets. The experimental results evaluated using performance matrices such as
specificity, accuracy, and sensitivity reveal promising indices. Similarly, comparison with the related state-of-the-art researches
highlights the validity of the proposed method. The proposed approach performs better than most of the researches used for
comparison.

1. Introduction

Diabetic retinopathy (DR) is a medical term used to describe
a sightly threatening ailment which appears on the retina.
The disease is predominantly common among the working
age people which when properly not treated could lead to
total loss of vision [1, 2]. Retinopathy is the leading cause
of blindness amongst adults worldwide [3]. According to a
research, over 239 million people in the year 2010 were
affected with over 7.7 million in America alone. The number
of Americans with diabetic retinopathy, according to the new
projection, is expected to nearly double, from 7.7 million in
2010 to around 14.6 million by the year 2050 [4]. Sequel to
its enormity and the gravity of devastation it causes, early
detection and treatment has been one of the key focus for
most health institutions around the world.

Diabetic retinopathy causes major changes in retina
vasculature structure which comprises the major blood ves-
sels used for transforming oxygenated blood and nutrients
to the various part of the retina. In some people with diabetic
retinopathy, blood vessels may swell up and leak fluid leading
to formation of abnormalities such as hard and soft exudates.
In other situations, development of abnormal new blood
vessels, blood vessels occlusion, and leakage of blood (hemor-
rhages) into a healthy portion of the retina are experienced.
Detection of the signs of diabetic retinopathy involves proper
identification of all the possible abnormalities such as hard
and soft exudates, hemorrhages, and blood vessel occlusions
[2, 3, 5].

Therefore, an effective technique to realize a reasonable
diagnosis of DR diseased eye will involve identification and
segmentation of the various features of the retina such as
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blood vessels, optic disk, and many other anomalous symp-
toms of a diseased eye. Segmentation of blood vessels is one
of the important aspects being looked at, whereby the retina
vasculature is being extracted from the fundus image for close
examination of some anatomical changes in the structures of
these vessels such as diameter, branching angle, and occlusion.

In the past, diagnosis of these retinal symptoms depends
on a manual segmentation of the retinal fundus image. This
action requires an ophthalmologist expertise as the proce-
dure is time-consuming, effort prone, and very complicated
[6]. However, with the major breakthrough in machine
learning and artificial intelligence fields, many algorithms
were developed by researchers to help accomplish the process
of diagnosis of these abnormalities in retina fundus images.
For example, ophthalmologists can use a properly segmented
vessel to examine and detect a disease by identifying the
growth of number of extra vessels or fluids like features, their
shapes, and sizes. Different techniques have been adopted or
proposed in many researches, some of which focused mainly
on the segmentation of various features of the retina to
examine anomalies. Moreover, some techniques have more
general approach, whereas machine learning algorithm is
developed and trained to classify a fundus image as healthy
or nonhealthy with various stages of the disease. Anatomical
overview of retina is depicted in Figure 1.

The manuscript is divided into seven sections. Sections 1
and 2 comprise of the introduction and literature review while
in Section 3, theoretical background of the key concepts used
in the proposed approach was presented. In Section 4, the pro-
posed approach was discussed while Section 5 presents the
experimental results using the proposed approach. In Section
6, discussion and comparison were presented, and the manu-
script was concluded in Section 7.

2. Related Literature

Quite recently, a number of researches have emerged giving
birth to computer-aided diagnostic systems which are used
for diagnosis of ophthalmic anomalies in the retina fundus
images. Blood vessel segmentation has seen one of the high-
est volumes of articles produced [2, 7]. Most of the tech-
niques used in the segmentations can be grouped into two
categories: supervised methods and unsupervised method.
The supervised methods use labeled data to train classifier

algorithms such as support vector machine (SVM) to classify
each pixel according to the labels. The unsupervised methods
in contrast use no label data or any prior information about
the disease. The unsupervised techniques may include mor-
phological operation, matched filtering approach, and deform-
able models [1].

Yin et al., [8] used probabilistic tracking-based method
to segment the retina blood vessel from the fundus images
using structural Analysis for Retina (STARE) and Digital
retinal Images for a Vessel Extraction (DRIVE) databases.
Sensitivity and specificity of 0.75 and 0.95 were recorded,
respectively.

In their submission, Ravichandran and Raja [9] applied
local entropy-based thresholding technique after preprocessing
the fundus image. Wang et al., [10] utilized supervised learning
approach in which the Convolutional Neural Network (CNN)
and Random Forest (RF) were combined to classify vessel pixel
after being trained with a label data. This method performed
well but at a cost of huge computational cost incurred.

Sohini et al., [11] extracted major vessels in the prepro-
cessing stage, and then, they applied Gaussian Mixture
model (GMM) classifier has been used tune and refine the
final vessel from the rest of the image. Zhao et al. [12] used
active contour techniques by applying graph cut to segment
vessels. They initially enhanced the image using local phase
filter. Zhao et al. [13] proposed a new infinite active
contour model for the automated detection of retinal blood
vessels.

Walter et al. [14] introduced an algorithm formicroaneur-
ysm detection using candidate extraction. Their techniques
initially enhance the image and then extract the green channel
and normalize it followed by candidate detection with diame-
ter closing and an automatic thresholding scheme. The classi-
fication of the microaneurysm pixel candidates was done
based on kernel density estimation.

Similarly, Spencer et al. [15] and Frame et al. [16] both
applied candidate extractor approach where shade correc-
tion was used by subtracting a median filtered background
from the green channel image. Then, they finally used
morphological operation based on top-hat transformations
using twelve structuring elements to extract candidate
extraction. The resulted candidate pixels were further sub-
jected to contrast enhancement operations before finally
were binarized.
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Figure 1: Anatomical view of retina.
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3. Theoretical Background

3.1. Gray-Level CooccurrenceMatrix.GLCM is commonly used
in texture analysis and was first introduced by Haralick et al. in
1973 for extracting statistical textural features from an image
[17]. Haralick texture features calculated from GLCM encode
important texture descriptors which can be used for texture
classification and region of interest (ROI) localization in an
image. The GLCM is constructed by considering each pixel in
relation to its neighborhood pixels. It gives the distribution of
cooccurring pixel values for a particular neighborhood under
consideration. The neighborhood of the center pixel is defined
in terms of their distance and direction (offset) from the center
pixels [18]. An offset of ½−1, −1] or [1,135°] describes a neigh-
borhood pixel at one-pixel distance ðd = 1Þ and 135 degrees
(θ = 135°Þ from the center pixel. Figure 2 shows how these off-
sets are considered.

Therefore, for a gray image I of size M ×N with L gray-
level values, the cooccurrence matrix C will have a size L ×
L which is define over the entire image and parameterized
by the offset (d, θ).

Cd,θ i, jð Þ = 〠
M

m=1
〠
N

n=1

1, if I m, nð Þ = i and Id,θ m, nð Þ = j,

0, otherwise:

(

ð1Þ

GLCM computed at the four different offsets defined by off-
set angle [0°,45°,90°,135°] typically encodes transition value
information on both the horizontal, vertical, and two diago-
nals. Such GLCM is rotation invariant. Symmetrical GLCM
is formed when all offsets on the opposite symmetry of the
four directions are considered in constructing the GLCM
(i.e., all directions are considered) [18].

Consider Figure 3(a) of an original gray image with gray
level L = 3, if a horizontal offset is defined (i.e., d = 1, θ = 0°),
the computed GLCM in Figure 3(b) is a 3 × 3 sized whose
entries are computed using Eq. (1). For instance, the
highlighted entry “2” of the GLCM matrix (Figure 3(b))
which occurs at row ði = 3Þ and column ðj = 1Þ was obtained
by counting the number of pixel pair on the horizontal offset
which have gray values exactly 3 and 1, respectively, from the
original gray image in Figure 3(a). The normalized GLCM in
Figure 3(c) represents the estimated probability of each com-
bination of GLCM occurrence to occur within the image. For
each row of the gray image in Figure 3(a), there are 3 unique
possibilities for combination of pixel pair on the horizontal
offset; therefore, a total of 12 possibilities exist for the entire
gray image. The normalized GLCM in Figure 3(c) is obtained

by dividing each gray cooccurrence entries in Figure 3(b) by
12. This normalized GLCM is used to extract Haralick fea-
tures, and its entries sum up to one. The normalized GLCM
can be considered as a probability mass function of the
gray-level pairs in the image.

3.2. Haralick Textural Features.Haralick computed 24 differ-
ent statistical features from the normalized GLCMmatrix, Cn
as exemplified in Figure 3(c). These features quantify essen-
tial part of local information and spatial features within the
image. Though all the 24 features may be useful in different
textural analyses, in this research after a few trial combina-
tions of these features to extract the desired information, five
of these features are standout to very promising hence are
described in Eqs. (2)–(6).

Homogeneity: describes the measure of closeness of the
each GLCM element to its diagonal elements

Homogenity = 〠
M

m=1
〠
N

n=1

Cn i, jð Þ
1 + i − jð Þ2 : ð2Þ

Entropy: is the measure of randomness or the degree of
disorder present in the image

Entropy = − 〠
M

m=1
〠
N

n=1
Cn i, jð Þ ln Cn i, jð Þ: ð3Þ

Energy: is the root of Angular Second Moment, which
gives the measures of the local uniformity of the gray levels

Energy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
M

m=1
〠
N

n=1
Cn

2 i, jð Þ
s

: ð4Þ

Correlation: this feature shows the linear dependency of gray-
level values in the cooccurrence matrix.

Correlation = 〠
M

m=1
〠
N

n=1
Cn i, jð Þ

i − μxð Þ j − μy

� �
σxσy

, ð5Þ

where terms μxμy and σx σy are the means and standard
deviation of the summed cooccurrence matrix Cn, a long
horizontal and vertical spatial plane, respectively.

Contrast: contrast which is also known as standard devi-
ation indicates the measure of gray-level intensity variation
between pixels.

C = 〠
M

m=1
〠
N

n=1
i − jð Þ2Cn i, jð Þ: ð6Þ

3.3. Long Short-Term Memory (LSTM) Network. LSTM net-
work is a deep learning form of Recurrent Neural Network
(RNN) which was first proposed in 1997 by Hochreiter and
Schmidhuber [19]. It addresses the familiar problems of
vanishing/exploding gradients associated with traditional
neural networks. The vanishing gradient problem gradually
erodes the magnitude of error gradients used to update
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Figure 2: GLCM center pixel neighborhoods offset.
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weights and biases. This prevents the network from further
adjusting weights and biases, and hence, the learning eventu-
ally halts in the deeper layers of the network [13].

In a classical structure of RNN (Figure 4), the network
updates the weight vectors W, at each hidden layer. The out
of the hidden layer ht at time stamp t is compared with data
label yðtÞ to compute the net error LðtÞ for that layer which is
used by gradient decent to minimize the network error. The
net input to each hidden layer at time lag t comprises of the

input sequence xðtÞ and the weighted output (Whðt−1Þ) of
the adjacent hidden layer at time t − 1.

LSTM replaces each hidden layer by a gated structure
called cell (Figure 5) which has additional connection to each
layer using cell state, C. The LSTM cell consists of three gates:
forgetting gate, input gate, and the output gate. Each of these
gates uses sigmoid (σ) activation to control the amount of
information through the cell at various stages. Forgetting gate
f t , controls the information to retain or forget from the pre-
vious time lag of the sequence in the adjacent layers while the
input gate it regulates the current internal cell state �C which
holds the cell’s net input after being squashed using tanh acti-
vation function. The output gate ot , controls the cell output
hðtÞ, which literally is a squashed vector of the current cell
state Ct regulated by the output gate. The output gate
controls the squashed current cell state.

The relations for LSTM network for each gate with biases
can be presented in Eq. (7).

f tð Þ = σ wf h t−1ð Þ + x tð Þ
h i

+ bf
� �

i tð Þ = σ wih t−1ð Þ + x tð Þ
h i

+ bi
� �

o tð Þ = σ woh t−1ð Þ + x tð Þ
h i

+ bo
� �

�C tð Þ = tanh wch t−1ð Þ + x tð Þ
h i

C tð Þ = C t−1ð Þ f tð Þ + i tð Þ�C tð Þ

h tð Þ = tanh C tð Þ
h i

o tð Þ

ð7Þ

The LSTM network uses the gradient decent with trun-
cated Backpropagation Through Time (BPTT) to adjust the
weights ðwf ,wf ,wf ,wf Þ and biases (bf , bi, b0) to minimize
the error between the network’s outputs and target outputs.

4. Proposed Method

In the proposed method, feature encoding uses the local
extrema information at different quantization levels to con-
struct the GLCM. The constructed normalized GLCM is used
to extract Haralick features of interest which are subse-
quently encoded as a feature sequence to be fed to the LSTM
network for training.
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Figure 3: GLCM computation. (a) Original gray image with 3 gray levels, (b) computed GLCM using ðd = 1, θ = 0°Þ offset, and (c) normalized
GLCM which sums up to one.

C

W W

o(t+1)

h(t+1)

x(t+1)x(t)

o(t–1)

h(t–1)

x(t–1)

h(t)

L(t–1) L(t+1)

y(t+1)
y(t–1) y(t)

L(t)

o(t)

W

U U U

V V V
LSTM

cell

Figure 4: Recurrent Neural Network.

x(t)

h(t–1) h(t)

h(t)

Ct–1 X

X X
ft Cit ot

Ct

tanh

tanh 𝜎𝜎𝜎

+

Figure 5: Long Short-Term Memory cell.

4 International Journal of Biomedical Imaging



4.1. Local Extrema Quantized Haralick Features. It obvious
that, for the same image, Haralick feature magnitudes are influ-
enced by the number of discernible gray levels in the image,
since number of gray levels determine the size of the GLCM.
One way to seeing the effect is through quantization of the orig-
inal gray level to new level. For a gray-level image, I, the quan-
tized value is nonlinear transformation which presents the
image at a different resolution than the original. Apart from
the gray quantization level, other features like GLCM offset
and predetermined gray-level intensity range (extrema) of the
original gray image all affect Haralick features. These attributes
are usually referred to as GLCM construction parameters

To capture two of these GLCM construction parameters,
quantization level and extrema range of gray intensity image,
GLCM is computed with a new image created from the orig-
inal image I, with different quantization level (resolution)
and local extrema range.

An image I, which is quantized at gray level LQ with gray
local extrema information Gr = ½Imax, Imin] where Imax, Imin
represent the minimum and maximum of the local extrema
gray-level intensity values, will have different Haralick fea-
tures when these parameters are varied. The new modified
image Is which captures both quantization LQ and Gr can
be computed using Eqs. (8) and (9).

Iint m, nð Þ = I m, nð Þ − Imin
Imax − Imin

× LQ

� �
, ð8Þ

Is m, nð Þ =
1 if Iint m, nð Þ ≤ 1,

LQ if Iint m, nð Þ ≥ LQ,

Iint m, nð Þ otherwise,

8>><
>>: ð9Þ

where Iint is an intermediary image and de is a ceiling
operator that maps the computed values in Iint to the least
integer greater than or equals itself.

One of the common choices for the extrema Gr is the
global minimum and maximum of the gray-intensity values
in the image. A choice of Gr within a localized ROI in the
image at the same quantization level LQ will result in different
intensity value distributions within the image compared to
the same image whose Gr is the global extrema intensity
values of the image. Hence, choice of extrema value Gr influ-
ences the GLCM matrix (see Figure 6).

The proposed quantized Haralick features are formed
using the five Haralick features of the normalized GLCM as
described in Section 3. Initially, four different versions of
the original gray image are computed at different quantiza-
tion levels, i.e., LQ = ½128, 64, 16, 8� bins.

I = I128, I64 I16 I8f g: ð10Þ

From each of the quantized version IQ, a normalized GLCM
is constructed and then use to extract the five Haralick
features (i.e., homogeneity, entropy, energy, correlation, and
contrast). For each quantized image, minimum and maxi-
mum pixel intensity values are used as the extrema Gr . For
instance, the extrema values for I128 is given by (11).

Gr127
= min I128ð Þ, max I128ð Þ½ �: ð11Þ

In the end, all the Haralick features extracted from the nor-
malized GLCM of the four quantized images are concatenated
to form a feature vector FHaralic of length 20.

4.2. Segmentation. Instead of applying the proposed feature
selection described above to the entire gray fundus image,
the image is segmented into 64 × 64 window. Where neces-
sary, the image is padded with zeros to ensure that an integer
number of segments of size 64 × 64 is generated. Each seg-
mented window uses the proposed approach to form the 20
features. The objective of segmentation is to help find the
probability of occurrence of region of interest (ROI) where
the diabetic retinopathy symptomsmost likely occur. To com-
pute this probability, a prior information about the location of
the symptoms is needed. This information is provided in the
training datasets where regions that are infected were marked
by experts. These probabilities for each segment are deter-
mined using a benchmarking method similarity measures
between the features of a segment and the features of an actual
ROI are compared. The ROI is simply the ground-truth image
of the training data as indicated in Figure 7(b).

4.3. Sequence Encoding for LSTM. LSTM network is trained
in a vector to sequence model. For any training image, its
corresponding ground-truth is used to extract the 20 features
proposed. If there are N training samples, each ground-truth
(ROI) generates Fi f or i = 1 toN of length 20. The bench-
mark ROI feature vector FROI use to evaluate each segment
is given as the average of these features as in (12).

FROI =
1
N
〠
N

i=1
Fi: ð12Þ

A correlation coefficient ρ is computed between each FROI
features and Fsegment features to assign a label to that
segment. To generate level for each segment with encoded
feature sequence, a correlation coefficient ρ is computed
between each encoded segment features and the encoded fea-
ture for the candidate ROI. If the computed ρ is less than 0.5,
that segment is assigned a label of none. A value of ρ between
0.5 and 0.7 is labeled mild, 0.7 to 0.89 are labeled strong, and
0.9 to 1 take very strong label.

Every segment extracted features (20 features) in the
image is train as sequential input to the LSTM and the com-
puted label as the label data. Therefore, the network trains on
a stream of sequential data. For a ROI encoded feature X and
segment feature Y , the correlation coefficient ρ is computed
using Eq. (13). The complete flowchart of the proposed
method is depicted in Figure 8.

ρX,Y =
E X − μxð Þ Y − μy

� �h i
σxiσy

, ð13Þ

where E½�, μ, and σ are the expected value mean and variance
functions, respectively.
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The LSTM network is trained with segments within each
training data and their corresponding labels computed (cor-
relation coefficient ρ) above. During testing, the network uses
its learned model to predict the correlation coefficient ρ of a
new segment presented to it. The result of the prediction
which is interpreted as the probability of occurrence of the
symptoms within that segment is used in subsequent stages
to analyze and detect portion of the fundus image with symp-
toms. The complete flowchart of the proposed method is
shown in Figure 9.

(a) (b)

(c)

Figure 6: (a) Green channel of a retina fundus image after being preprocessed with adaptive histogram equalization. (b) Quantized version of
(a) using LQ = 8 and global extremaGr = ½2, 222�. (c) The same quantization level with (b) but withGr = ½48, 143� localized to a ROI containing
hard exudate.

Segment

(a) (b)

Figure 7: (a) Segmented training image using 64 × 64 window and (b) ground-truth of (a) with candidate ROI annotated for hard-exudate
symptom.

ROI Segment

Encoder Encoder

Label [none, mild, strong, very strong]

Correlation

Figure 8: Label generation for LSTM.
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5. Experimental Results

The proposed approach was implemented on two separate
popular public retinopathy datasets: STARE [20] and Image
Ret datasets [21]. The Image Ret consists of two separate data-
sets DIARETDB01 and DIARETDB1. DIARETDB1 consists
of 89 fundus images with 5 healthy samples while the remain-
ing samples have light symptoms of diabetic retinopathy such
as hemorrhages, microaneurysms, hard exudates, and soft
exudates. We used this dataset for the detection of hard exu-
date. On the other hand, STARE database was used for blood
vessel segmentation.

Apart from general performance accuracy of the pro-
posed approach, other performance metrics were considered.
These metrics are similarity measures dependent on pixel-to-
pixel template matching between the ground-truth template
and its equivalent obtained using the proposed method. True
positive (TP) and true negative (TN) are defined for correct
classification. TP identifies all the candidate pixels that are
correctly classified as candidates whereas the TN gives the
number of noncandidate pixels that are correctly identified
as noncandidate pixels. For misclassification, false positive
(FP) and false negative (FN) are defined. FP is where a non-
candidate pixel is misclassified as a candidate pixel whereas
FN is where a candidate pixel is misclassified as noncandi-
date. The similarity measures considered are defined in Eqs.
(14)–(19).

For example, true positive (TP) is computed as the num-
ber of white pixel intersection between ground-truth binary
image and binary image obtained with our method whereas
true negative (TN) is the number of black pixels in the inter-
section between ground-truth binary image and binary
image obtained with our method. FP and FN are the number

of white and black pixels in the complimentary set between
the two templates, respectively.

Sensitivity = TPð Þ
TP + FNð Þ , ð14Þ

Specificity =
TNð Þ

TN + FPð Þ , ð15Þ

Accuracy =
TP + TNð Þ

TP + FP + TN + FNð Þ , ð16Þ

Positive prediction value, PPV =
TPð Þ

TP + FPð Þ , ð17Þ

Negative prediction value, NPV =
TNð Þ

TN + FNð Þ , ð18Þ

Structural similarity index, SSIM x, yð Þ =
2μxμy + c1

� �
2σxy + c2
� �

μ2x + μ2y + c1
� �

σ2x + σ2
y + c2

� �′
ð19Þ

where μ, σ, and c1 are the mean, standard deviation, and
dynamic range constant of the template images x and y,
respectively.

5.1. LSTM Implementation Information. To realize the train-
ing of the LSTM network, python 3.8 programming language
was used with TensorFlow and Keras as the libraries. Each
cell of the LSTM has a look back memory of 3, meaning that
to compute the present output of the cells, it uses three previ-
ous results from the preceded segments. The input layers are
made of 100 cells, and the output layer (dense layers) is made

Localized
segmentQuantized

128 bins

Quantized
64 bins

Quantized
16 bins

Quantized
8 bins

RGB color
space CLAHE

Prediction
model

Result

Fundus image

Localized
segment

Localized
segment

Localized
segment

Haralick 
features

Encoded 
feature

EncoderPreprocessing

Quantized
128 bins

Segment

LSTM network

Figure 9: Flowchart of the proposed approach.
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of I neuron as indicated in the model summary in Figure 10.
The network trained total of 41,701 parameters in 100 itera-
tions with training and testing loss (RMSE) 20.79 and 30.13,
respectively.

5.2. Hard-Exudate Detection. The output of the LSTM
network determines the existence or nonexistence of hard
exudates in a particular image segment based on the predicted
ρ value. For ρ less or equals 0.5, it is assumed that hard exudate
is absent in the segment. Values of ρ greater than 0.5 indicate
presence of hard exudates but at different stages (none, mild,
strong, and very strong).

However, to further classify pixels within a segment for
template matching with the ground-truth image, further pro-
cessing is required. Previously computed quantized version
of the segment (I8, I16, I64, I128Þ is transformed using a non-
linear gamma transformation (Eq. (20)) to enhance their
contrast. The constant gamma in the transformation is taken
from the output score ρ of the segment from the LSTM net-
work. These gamma-transformed segments are converted to
binary image using Otsu global thresholding. Only segments
with ρ > 0:5 are considered, and all pixels in segments with
ρ ≤ 0:5 are classified as noncandidate. Pixels in the segments
with ρ > 0:5 are classified by computing the intersection of

lstm_23 (LSTM)

Layer (type) Output shape Param #

(None, 100) 41600

dense_16 (Dense) (None, 1) 101

Total params: 41,701
Trainable params: 41,701
Non-trainable params: 0

Figure 10: LSTM network model.

(a)

(b)

(c)

Figure 11: (a) Contains the preprocessed green channel of fundus image using CLAHE, (b) corresponding ground-truth images marked by
experts with four categories of confidence level, and (c) results obtained using proposed technique.

Table 1: Extract of performance measure results of hard exudates in DIARETDB1.

Image Specificity (%) Sensitivity (%) SSI (%) PPV (%) NPV (%) Accuracy (%)

Image01 98.50 76.78 99.59 57.66 96.25 98.19

Image02 94.89 85.01 98.60 42.69 96.94 92.43

Image03 98.56 88.76 99.44 66.59 98.36 98.54

Image04 86.67 82.16 99.46 54.71 96.26 86.63

Image05 93.99 98.14 98.23 70.19 96.99 94.02

Image06 95.95 95.61 99.57 61.85 99.26 95.95
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(a) (b)

(c)

Figure 12: (a) Original RGB fundus image from STARE, (b) estimated background mask, and (c) quantized image (16 bins) with background
removed.

(a)

(b)

(c)

Figure 13: Segmentation of the vascular system. (a) Original images, (b) ground-truth manually annotated vascular system, and (c) results
using the proposed approach.
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the four different (quantized, gamma-transformed, and binar-
ized) versions of the segment using Eq. (21). Figure 11 and
Table 1 present the extract from the experimental results on
the DIARETDB1 database using the proposed technique.

IQ i,jð Þ =
1 ifcI 1−ρð Þ

Q i,jð Þ > threshold,

0 otherwise,

(
ð20Þ

where c is a constant of the gamma transform

Icandidate = I8 ∩ I16 ∩ I32 ∩ I64j j: ð21Þ

5.3. Blood Vessel Segmentation. As a sign of diabetic retinopa-
thy, blood vessels may swell up and leak fluid leading to for-
mation of abnormalities such as hard and soft exudates. In
other situation, development of abnormal new blood vessels,
blood vessel occlusion, and leakage of blood (hemorrhages)
into a healthy portion of the retina are experienced. Detection
of the signs of diabetic retinopathy involves the proper
segmentation to give clue on any abnormal development on

and around the vessels. The segmentation deploys the same
approach as hard-exudate detection (using Eqs. (20) and
(21)) except that a background estimation is used to remove
background from the preprocessed image before quantization.
To estimate the background, the three channels of the RGB
image are sum up together and the resulting image is con-
verted to binary using threshold of 100 values as shown in
Figure 12. Figure 13 presents the results of the segmentation
of the blood vessel using the proposed method where in
Table 2, a sample of performance measure results of automatic
blood vessel segmentation in the STARE database is tabulated.

6. Comparison and Discussion

Detection of a particular symptom of diabetic retinopathy is
quite a challenging task. This is due to the fact that some of
these symptoms have similar textural composition and inten-
sity distributions which makes it hard to differentiate using
simple textural or intensity distribution analysis. For instance,
in retina vasculature structure when viewed through the green
channel of the fundus image, it exhibits intensity distribution

Table 3: Comparisons with other methods.

Authors Method
Accuracy of
classification

Sensitivity Specificity
Positive predictive

value (PPV)

[22] Muhammad
Faisal et al.

Support vector machınes (SVMs) Not reported 96.9% 100% 100%

[23] R. Radha et al. Morphologıcal process and clusterıng technıque 98%
Not

reported
Not

reported
Not reported

[24] Sumandeep
Kaur et al.

K-means colour compression and fuzzy logic 96% 94.7%
Not

reported
Not reported

[25] Akara
Sopharak et al.

Using fuzzy C-means clustering 87.28% 99.24% 42.77% 24.26

[2] Acharya et al. Blood vessel, exudates, microaneurysms, hemorrhages 86% 82% 86% Not reported

[26] Vujosevic et al. Single lesions Not reported 82% 92% Not reported

[27] R.H.N.G.
Ranamuka et al.

Fuzzy logic Not reported 75.43% 99.99%, Not reported

[28] Pavle et al. Deep neural networks and anatomical landmark Not reported 78%
Not

reported
78%

[14] T. Walter et al. Means of morphological reconstruction techniques 92.8%
Not

reported
Not

reported
92.4%

[29] E. Imani et al. Signal separation algorithm 89.01% 99.93% 82.64% Not reported

[30] Abdullah
Saeed et al.

Digital analysis and mathematical morphology
operations

86% 80% 84.69% Not reported

Proposed method
Local extrema quantized Haralick features with Long

Short-Term Memory (LSTM) network
95.45% 91.65% 95.45% 99.34%

Table 2: Extract of performance measure results of automatic blood vessel segmentation in STARE.

Image Specificity (%) Sensitivity (%) SSI (%) PPV (%) NPV (%) Accuracy (%)

Image01 94.34 70.54 99.38 55.31 96.99 92.19

Image02 82.03 91.84 98.55 27.67 99.26 82.71

Image03 92.88 86.88 99.47 51.54 98.78 92.40

Image04 92.79 78.70 99.37 46.83 98.18 91.74

Image05 94.13 85.30 99.55 55.36 98.68 93.43
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similar to the optical disk which sits right on top of the nerve
center where these vascular structures originate. Therefore,
separating such instance needs more than just filtering but
muchmore robust approach is needed to distinctively separate
and scale up the tiniest of difference existing between these
features. The use of different quantization level significantly
enhances the possibility of differentiating overlapping features
in the image. Different quantization level transforms the fea-
tures into a different resolution whereby some features that
are not visible in higher resolution (higher quantization level)
suddenly become visible and therefore can easily be analyzed.

In detection of symptoms like blood hemorrhage and
microaneurysm, they are usually tiny spots which often are
too challenging because any noise in the processed image
could take the form of these symptoms. The use of sequential
training with LSTM becomes very handy and efficient since
its output can be used to decide if a segment of the image
has the symptom or not. These approaches ensure that a
smoothen output is obtained, and only segments with higher
probability of symptoms are further postprocessed. In
Table 3, we present comparison results between the proposed
approach and other state-of-the-art approaches.

7. Conclusions

A new approach for detecting symptoms of diabetic retinop-
athy has been proposed. An algorithm which thoroughly and
comprehensively analyzes the retina vascular structure and
hard exudate has been developed. The approach encodes in
it, a powerful feature representation of the analyzed symp-
toms which facilitated improved performance compared to
its counterparts in the literature. The use of different quanti-
zation levels transforms the spatial image domain to different
resolution domains and significantly helps to improve on the
interclass difference between features of similar textural and
intensity distribution. Moreover, the LSTM model has been
very effective and helps to mitigate the presence of noise or
false positive occurrences in the final postprocessed output
image. It also reduces time needed to postprocess the image
as only segments with higher probability of symptoms cooc-
currence are considered.

In summary, the results obtain are impressive and vali-
date the relevance and the efficiency of the proposed
approach in this context. Despite the success, the proposed
method does not cover the detection of other symptoms of
diabetic retinopathy like hemorrhage and microaneurysm.
Other symptom detection might present different challenges.

Data Availability

The two datasets used in the research can be publicly
accessed through the below links: (1) DIARETDB1: http://
www2.it.lut.fi/project/imageret/diaretdb1_v2_1/ and (2)
STARE: https://cecas.clemson.edu/~ahoover/stare/.
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