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in the spaces M, Cp, Cpp, C; and Ly, respectively. | show that the double sequence
spaces B(M,), B(Cyp) and B(C,) are the Banach spaces under some certain conditions.
| give some inclusion relations with some topological properties. Moreover,
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BM,), B(Cy), B(Cyp), B(C,) and B(L,), where & € {p, bp,r}, and the y-dual of the spaces
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mappings defined on the spaces B(M,,), B(C,), B(Cyp), BC,) and B(L,) of double
sequences.
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1 Introduction

We denote the set of all complex-valued double sequences by 2 which is a vector space
with coordinatewise addition and scalar multiplication. Any subspace of €2 is called a dou-
ble sequence space. A double sequence x = (x,,,) of complex numbers is called bounded
if |%lloc = SUP,, uen [%mn| < 00, where N = {0,1,2,...}. The space of all bounded double se-
quences is denoted by M, which is a Banach space with the norm | - ||. Consider the
double sequence x = (x,,,) € Q. If for every € > 0 there exists a natural number 7y = n(€)
and [ € C such that |x,,,, — [| < € for all m, n > ng, then the double sequence x is called con-
vergent in Pringsheim’s sense to the limit point /, and we write p-lim,, ,_, 0o Xmn = [, Wwhere
C denotes the complex field. The space of all convergent double sequences in Pringsheim’s
sense is denoted by C,. Unlike single sequences, there are such double sequences which
are convergent in Pringsheim’s sense but unbounded. That is, the set C, — M,, is not empty.
Actually, following Boos [1], p.16, if we define the sequence x = (x,,,) by

n, m=0,nelN;
KXmn =

0, m>1neN,

then it is obvious that p-limy,; ;o0 %pmn = 0 but [|X|leo = SUP,, ,en [¥mn| = 00, 5O x € C, —
M.,,. Then we can consider the set Cy, of double sequences which are both convergent in
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Pringsheim’s sense and bounded, i.e., Cy, = C, N M,,. Hardy [2] showed that a sequence
in the space C, is said to be regular convergent if it is a single convergent sequence with
respect to each index and denoted the space of all such sequences by C,. Moreover, by
Cppo and Cyg, we denote the spaces of all double sequences converging to 0 contained in
the sequence spaces Cp, and C,, respectively. Méricz [3] proved that Cy,, Cppo, Cr and C, are
Banach spaces with the norm || - || . By £,, we denote the space of absolutely g-summable

double sequences corresponding to the space £, of g-summable single sequences, that is,

L,:= {x:(xkl)e Q:Zka1|q<oo} 1=<g<o0)
ki

which is a Banach space with the norm || - ||, defined by Basar and Sever [4]. Zeltser [5]
introduced the space £, as a special case of the space £, with g = 1. Let A be a double se-
quence space converging with respect to some linear convergence rule ¢-lim: » — C.
The sum of a double series };;x; with respect to this rule is defined by -3, .x; =
P-lim,,, ;- 00 ZZ’:’O x;. For short, throughout the text the summations without limits run
from 0 to oo, for instance, 3, x; means that 3 7, x;.

Here and in what follows, unless stated otherwise, we assume that ¥ denotes any of the
symbols p, bp or r.

The a-dual A%, the B(19)-dual A#®) with respect to the ©¥-convergence and the y-dual
LAY of a double sequence space X are respectively defined by

A% = {a = (a) € Q: Z |arxi| < oo for all x = (xy) € )»},
k,l

APO) = {a =(ay) e N: 19—2 awuxy exists for all x = (xy) € A},
ki
m,n

> auxy

AV = {a = (ay) € 2: sup
k1=0

m,neN

<ooforallx=(xk;)ek}.

It is easy to see for any two spaces A and u of double sequences that u* C A* whenever
A C u and A% C AY. Additionally, it is known that the inclusion 1% € A#® holds, while
the inclusion A*™ A7 does not hold since the #-convergence of the double sequence of
partial sums of a double series does not imply its boundedness.

Let A and p be two double sequence spaces and A = (d,ux) be any four-dimensional
complex infinite matrix. Then we say that A defines a matrix mapping from A into u, and
we write A : A — u if for every sequence x = (xy;) € A the A-transform Ax = {(AX) i} m,neN

of x exists and it is in u where

(Ax) ) = 19—2 Amniaxia  for each m,n € N, (1.1)
Kl

We define ¥ -summability domain )\ff) of A in a space A of double sequences by

)\29) — {x — (xkl) e Q:Ax = (ﬁ—z ﬂmnklxkl> exists and is in )x}
kI m,neN
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We say with notation (1.1) that A maps the space X into the space p if A C uff) , and we
denote the set of all four-dimensional matrices, transforming the space A into the space p,
by (A : u). Thus, A = (@) € (A : p) if and only if the double series on the right-hand side
of (1.1) converges in the sense of ¥ for each m,n € N, i.e., A,,, € A*® for all m,n € N and
every x € A, and we have Ax € u for all x € A, where A, = (@mnii)k e for all m, n € N. We
say that a four-dimensional matrix A is Cy-conservative if Cy C (Cy)4, and is Cy -regular if

it is Cy-conservative and
P-limAx = 9- lim (Ax),, =9- lim &, wherex = (x,,) € Cy.
m,n— 00 m,n— 00

Adams [6] defined that the four-dimensional infinite matrix A = (@) is called a tri-
angular matrix if @, = 0 for k > m or [ > n or both. We also say by [6] that a triangular
matrix A = (@) is said to be a triangle if @, # 0 for all m, n € N. Moreover, by re-
ferring to Cooke [7], Remark (a), p.22, we can say that every triangle matrix has a unique
inverse which is also a triangle.

Let r,s,t,u € R\ {0}. Then the four-dimensional generalized difference matrix B(r,s,
t,u) = {byia(7,8,t, 1)} is defined by

su, (k,I)=(m-1,n-1),
st, (k1) =(m-1,n),
bumia(ry s, 6,u) .= { ru,  (k,0) = (m,n - 1),

rt, (k1) =(m,n)

0, otherwise

for all m, n, k, [ € N. Therefore, the B(r,s, t, u)-transform of a double sequence x = (x,,,) is

given by

Yon = {Br,s,t,1)x}, =" Byuuia(rs 5,8 Ui
k,l

= SUXyy_1p-1 + SEXp—1y + TUX 1 + VX (1.2)

for all m,n € N. Thus, we have the inverse B™\(r,s,t,u) = F(r,s,t,u) = {funui(r> 5, t, 1)} as

follows:

(=s/r)" K (—uje)nt

It ) Ofkfm;oflfl’l,

Skt (758, 8, 1) := ‘
0, otherwise

for all m,n, k,I € N. Therefore, we can obtain x = (x,,,) by applying the inverse matrix
F(r,s, t,u) to (1.2) that

1 mn _s m—k —u n-I
i = — — — for all m, N. 1.3
X rtz(r> (t) y forallm,ne (1.3)

k,1=0

Throughout the paper, we suppose that the terms of double sequence x = (x,,,) and
¥y = (Ymn) are connected with relation (1.2). If p-lim{B(r, s, £, u)x},,, = [, then the sequence
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% = (%) is said to be B(r, s, t, u) convergent to /. Note thatinthe caser =t =lands=u = -1
for all m, n € N, the four-dimensional generalized difference matrix B(r, s, ¢, ) is reduced

to the four-dimensional difference matrix A = B(1,-1,1,-1).

2 Some new spaces of double sequences
In this section, we define the double sequence spaces B(M,,), B(C,), B(Cyp), B(C;) and B(L,)
as the domain of four-dimensional generalized difference matrix B(r,s, t, &) in the double

sequence spaces M, C,, Cp,, C, and L, respectively, that is,
q P p>» Lbp q P Y

B(M,) := {x = (%) € Q2 sup ‘{B(r,s, t, u)x}mn‘ < oo},

m,neN

BC) =[x = (o) € 2:31 €T3 p- lim_[{B(rys,t,0},, 1] =0},

B(Cyp) := {x = (Xm) € Q:B(r,s, t,u)x € Cbp},

B(C,) = {x = (%) € Q:B(r,s,t,u)x € C,},

B(L,) := {x = (Xn) € Q: Z|{B(r,s, t, u)x}mn|q < oo}, 0<g<oo.

mn

Then we give some topological properties and inclusion relations.

Theorem 2.1 The double sequence spaces B(M,), B(Cyp) and B(C,) are linear Banach
spaces with coordinatwise addition and scalar multiplication, and are linearly norm iso-

morphic to the spaces M, Cyy and C,, respectively, with the norm

11l BA,) = SUP [S8Xk—1,1-1 + SEXk_1, + TUX) 11 + TEXK]. (2.1)
kleN

Proof We only prove the theorem for the space B(M,,) since it can be shown in the same
way for the other spaces. It is easy to show the linearity of the space, so we omit the details.
Let us consider a Cauchy sequence & = {xT .} nen € B(M,) in order to show that the space
B(M,,) is a Banach space with the norm ||x| g r1,) defined by (2.1). Then, for a given € > 0,
there exists a positive integer N(¢) € N such that

ol

||xi —xi”B(Mu) = sup |{B(r,s, t, u)xj}mn - {B(r,s, t, u)xi}
m,neN

<e foralli,j>N(e). (2.2)

Then we have power to say that {(B(r, s, t, 1)x/) ., }jen is a Cauchy sequence in M, for each
m,n € N. Since M,, is complete, it converges, say

{B(r,s,t,w’} — {B(r,s,t, ux} =~ asp—> oo.

mn

By taking limit as p — oo on equality (2.2), we have that

’{B(r, s, t, u)xj} {B(r, s, t, u)x}mn’ <e forallm,neN.

mn
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Moreover, since {{B(r,s, t,11)%'},.,} € M, there exists a positive real number K such that

sup ! {B(r, s, t, u)xj}mn‘ <K.

m,neN

Hence, the following inequality

’{B(r, s, t, u)x}mn’ < |{B(r, s, t, u)xj}mn - {B(r, s, t, u)x}mn| + ’{B(r, s, t, u)xj}

mn‘

<e+K

is satisfied. Therefore, by taking supremum over m, n € N for all the results obtained above
gives that B(r,s, t, u)x € M,, that is, x € B(M,,). We read from here that the space B(M,,)
is a linear Banach space with the norm || - ||gn1,) defined by (2.1). Since the proof can
be given in the same way for the other spaces, we only show here that B(M,)) is linearly
isomorphic to the space M,,. With the notation of (1.2), define the transformation T from
B(M,) to M, by x> Tx = y = B(r, s, t,u)x. Then it is trivial that T is linear and injective.
Let y = (yu) € M, and define x = (x,,,,) via the sequence y by relation (1.3) for all m,n € N.
Therefore, we see by (1.2) that

{B(r, S, t, u)x}mn = SUXyy_1p-1 + SEX 1 + TUX 1 + TEXyyy

m-1,n-1 s m—k-1 —u n—I-1 Y
=su — — —
k,1=0

m-1,n _s m—k-1 —u n-l Vil

+ st — — —

m,n—1 _s m—k —u n—I-1 Y

+ru Z — — —

r t rt

k,1=0

for all m, n € N, which leads us to the consequence that

I%llamy = sup [{B(r,s,t,u)x}, | = sup [l = [ylloo < 0.
m,neN m,neN

This means that x = (x,,,) defined by (1.3) is in the space B(M,,), i.e., T is surjective and is
norm-preserving.

This concludes the proof of the theorem. O
Theorem 2.2 The inclusion M,, C B(M,,) strictly holds.

Proof Firstly, we show that the inclusion M, C B(M,) holds. For this, when we take a
double sequence x = (x,,,,) € M, then there exists a positive real number K such that
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SUp,,, wen |¥mn| < K. Therefore, one can easily see that

sup HB(r,s, t, u)x}mn‘ = SUP |SUXy_15-1 + SEXy 1 + TUXy 1 + FEX |
m,neN m,neN

< (|su| + |st| + |ru| + |rt|)K < 00.

This means that the double sequence x = (x,,,) € B(M,), that is, the inclusion M, C
B(M,,) holds.

Now, we prove that this inclusion is strict. That is, the set B(M,) \ M, is not empty.
Let us consider the double sequence x = (x,,,) defined by x,,, = (-1)"*"(m + 1)(n + 1) for
all m,n € N. It is obvious that x is not in M,,. If we take r = t = s = u, then we obtain

{B(r,s, t,u)}-transform of x as

{B(r,r,r,r)x} = (D" mn + (-1)"" m(n + 1)
+ (=)™ Y+ D+ (1) (m + 1) (n + 1)]

— (_1)m+nr2
which gives the fact that B(r, r,r,r)x € M,,. This completes the proof. O
Theorem 2.3 The inclusion C, C B(C,) strictly holds.

Proof For the first step of the proof, we show that the inclusion C, C B(C,) holds. Let
us take a sequence x = (¥,,,) € C,. Then there exists a complex number / such that
p-limy, ;00 [%mn — I] = 0. Then we have by taking limit of the B(r,s, ¢, u)-transform of x

as m,n — oo in Pringsheim’s sense
p- lim {B(r, s, t, u)x} =p- m (Suxy,_1,-1 + SEp1,0 + FiXp 1 + FEXpy)
m,n— 00 mn m,n— 00

=su(p— lim xm_l,n_1)+st< - lim xm_ly,,>
m,n—> 00 —> 00

m.

+ru (p— lim xm,,,,l) + rt(p— lim xm,,>.
m,n— 00 m,n— 00
Since x € C,, then all the subsequences of x are also convergent. Thus, B(r,s, ¢, u)x € C,,
ie,xeB(Cp)).
To prove the fact that the inclusion C, C B(C,) is strict, we should show that the set
B(C,) \ C, is not empty. Let us consider the double sequence x = (x,,,) defined by x,,, =
(mn)/(rt) for all m,n € N. If we take s = —r, u = —t, then we have

{B(r,-r,t,~t)x}, = rtxm n1—rtXmin = MtXmn + I

+rt—
rt rt rt rt

_ rt(m—l)(n—l) _rt(m—l)n _rtm(n—l) mn
=1

for all m,n € N. Thus, one can easily observe that x = (x,,) ¢ Cp. But, p-lim,, ,—, o {B(r, s,
t, u)X}mn = 1, that is, » € B(C,). This step completes the proof. d
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Theorem 2.4 The inclusion Cy, C B(Cyp) strictly holds.
Proof This is a natural consequence of Theorems 2.2 and 2.3. So, we omit the details. [
Theorem 2.5 The inclusion L, C B(L,) strictly holds, where 1 < q < oo.

Proof Let us take a double sequence x = (x,,) € L, with1 <g<oo.Then}_  |x,,|7 < 0o.

Now, we have

1/q 1/q
|:Z| {B(r, s, t, u)x}mn |q] = (Z |SUXp—1,1-1 + SEX 1,1 + TUX 1 + rtxm,,|q)
m,n

mn

1/q 1/q
< Jsul (Z 101 |q) + st (Z |xm_1,n|q)

m,n m,n
1/q 1/q
+ |rul (Z |xm,n_1|q) +Irt| (Z |xmn|q) <00,
n,n m,n

which says that B(r, s, t,u)x € Ly, i.e., x € B(L,).
In order to prove the fact that the inclusion is strict, we should define a double sequence
belonging to B(L,) but not to £,. Let us define the double sequence x = (x,,,) by

-\"/—u\"1
K = | — — ) =
" r t rt
forall m,n € N.1f () > 1 or (5%) > 1, or both, then it is obvious that x ¢ £,. But, under the
same restrictions, we have

—s m-1 —u n-1 1 —s m-1 _ n 1
B ) ,t; 1 = - - - | — - -
an:H (r,s u)x}mn| me;su<F> (t) rt+s(r) (t)rt
)G &G G
+ru| — — — +rt| — — ) =] =
r t rt r t rt
This says that B(r,s,t,u)x € L, i.e., x € B(L,). This completes the proof. O

Theorem 2.6 Let1 < q < q < 0o. Then the inclusion B(L,;) C B(Ly,) holds.

Proof Let us take a double sequence x = (,,,) € B(L;) which implies that Bx € £,. Since
the inclusion £, C £, holds for 1 < g < g1 < 0o, by Basar and Sever [4], we have the fact
that Bx € £,,. Hence, x € B(L,,), as desired. O

Theorem 2.7 The set B(Cy) becomes a linear space with coordinatewise additions and
scalar multiplication which is linearly isomorphic to the space C,, and B(C,) is a complete
seminormed space with the seminorm

ll%llzc,) = klgrgo( sup |{B(r,s, A u)x}mn‘).

m,n>k

Proof The proof of the theorem is similar to the proof of Theorem 2.1. So, we omit the
details. O
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Theorem 2.8 The set B(L,) is a linear space with coordinatewise addition and scaler mul-
tiplication, and the following statements hold.
(i) If0<q<1,then B(L,) is a complete q-normed space with the norm

”xﬂB(ﬁq) = Z| {B(V, 51, u)x}mn iq
mn

which is g-norm isomorphic to the space L.
(ii) If1 < gq <00, then B(L,) is a Banach space with the norm

1/q
%z, = [ZHB(ns» t, u)x}ml"]

m,n

which is norm isomorphic to the space L.

Proof (i) To show the linearity of the space B(L,) which is a g-normed space with the
given norm is a routine verification. So, we omit the details. Let us take a Cauchy sequence
xi= {x%} mneN for every fixed i € Nin the space B(L,). Then, for a given € > 0, there exists
a positive real number N(¢) > 0 such that

||xi —xjﬂB(ﬁq) = ZHB(V,S, t, u)xi}mn - {B(r,s, t, u)xj}mn|q <€
m,n

is satisfied for all i,j > N(e). Then we conclude that {{B(r, s, £, %)%’} .1, }ien is @ Cauchy se-
quence for each fixed m, n € N. It is known by Part (i) of Theorem 2.1 of Yesilkayagil and
Basar [8] that the space £, is a complete g-normed space. Then the Cauchy sequence
{(Bx%),un}ien is convergent in the space Ly, as i — oo, that is, there exists a sequence
B(r,s,t,u)x € L, such that

’{B(r, s, t, u)xi}mn - {B(r,s, t, u)x} <€

mn ‘
for all m, n € N. Furthermore, since the {{B(r,s, ¢, )%} ,un} € L, for each fixed i € N, there
exists a positive real number M > 0 such that ), [{B(r,s,¢, u)x},un9 < M. Therefore, we

have

Z‘(Bx)m,,}q < Z(’{B(r, s, t, u)xi}mn - {B(r, s, t, u)x}mn| + HB(r, s, t, u)xi}mn’)q

m,n
< Z| {B(r, s, t, u)xi}mn - {B(r,s, t, u)x}mn|q + Z| {B(r, s, t, u)xi}mn|q
m,n m,n

<€e+M,

which means that B(r,s, t, u)x € L,, that is, x € B(L,;). The last conclusion says that the
space B(L,) is a complete g-normed space.

Now, we should define a transform from B(L,) to £, which is a norm-preserving bijec-
tion. Let us consider the transformation 7T used in the proof of the second part of Theo-
rem 2.1 with B(£,) and £, instead of B(M,,) and M,, respectively. It is easy to see that
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T is linear and bijective. Let y = (y,,) € £, and define x = (x,,,,) by relation (1.3). Then we
derive by taking summation over 71, n € N on the following inequality:

’{B(r, s, L, u)x}mn ’q = |SUXy_1 1 + SEX 1y + TUX 1 + TEXyy |7

su m-1,n-1 s m—k-1 —u n—-1-1
P () ()
k,1=0
st mil,:n _s m—k-1 —u n-1
+ J— [ —_—
rt r t T

k,1=0

m,n-1 m—k n—I
+t— - — ) u
rt e r t

that || B(r, s, ¢, u)xﬂg(gq) = IIyﬂq, that is, x € B(L,). Thus, T is surjective. This concludes the
proof of Part (i).
Since Part (ii) can be proved in a similar way, we omit the details. O

3 The alpha-, beta- and gamma-duals of the new double sequence spaces

In this present section, we calculate the «-dual of the spaces B(M,,) and B(Cp,), the B(1})-
duals of the spaces B(M,,), B(C,), B(Cyp), B(C;) and B(L,) and the y-dual of the spaces
B(M,), B(Cyp) and B(L,).

Theorem 3.1 The a-dual of the spaces B(M,,) and B(Cyy) is the space L,,.

Proof To prove the equality {B(M,)}* = L£,, we should show that the inclusions £, C
{B(M,)}* and {B(M,)}* C L, hold. Let us take a sequence a = (a,,,) € L, and x = (x,,,,,) €
B(M,,). Then there exists a double sequence y = (y,,,) € M,, with relation (1.2) that there
exists a positive real number M > 0 such that sup,,, , o [Vimn| <M . If |s/7]|, |u/t] <1, then we

mn m—k n-1
) (—_S> (;”) K
paars r t rt

have the following inequality:

Z |ﬂmnxmn| = Z |ﬂmn|

oy mn
AN
=< |mX:I mn|];)< ) (7> |ykal
e
<o ZI WIZ .

k,1=0

L= 3"\ (1= 151!
= Z| mn| rs tu
|rt| 1- 5| 1- %]
M 1 1 S
= — N 1-|-
|rt|(1—|§|><1—|%|>Z'“"’”'< ’r
m,n

m+1)( ’M n+1>
1-|=
t
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M 1 1
- W(1—|§|><1—|%|>Z'“”’”'
nm,n

< o0

which says that a = (a,,,) € {B(M,,)}*. Hence, the inclusion £, C {B(M,)}* holds.

Conversely, suppose that (a,,,) € {B(M,)}* \ L. Then we have ) @%mun| < 00 for
all x = (x,,,) € B(M,,). We can easily say with the special case x = (x,,,) = {(-1)"*"} €
B(M,,) that

Z |ﬂmnxmn| = Z |ﬂmn| =00
m,n m,n

This means that (a,,,) ¢ {B(M,)}*, which contradicts the hypothesis. Therefore, (4,,,)
must belong to the space € £,,.

Since the proof can be given for the space B(Cp,) in a similar way, we omit the details.
O

The «- and y-duals of a double sequence space are unique. But 8(¢)-dual of a double
sequence space can be more than one according to the ¥ -convergence. In this part, we
give the B(¢)- and y-duals of the new double sequence spaces. The conditions for the
characterization of the four-dimensional matrices transformed the spaces Cp,, C, and C,
into the space Cp, are well known (see [9, 10] and [5]).

Lemma 3.2 A four-dimensional matrix A = (aunx) € (Cpp : Co) if and only if the following
conditions hold:

SUp Y |l < 00, (3.1)
m,neN k1
Jday e C3>9- lim apu=an forallkleN, (3.2)
m,n—> 00
A eC>9- lim Zamnld =1 exists, (3.3)
m,n— o0

kl

o €N> Y- lim > N@mnkot — @kl = 0, (3.4)
I

Ay eN> z?—mylnir_{looz |Gty — ki | = 0. (3.5)
k

In the case (3.5), a = (ay) € L, and

ﬂ—m,lr}goo [Ax] mn = ; AKXk + (l'; ﬂkl) bp—m,lr}gloo Xmn

holds for x € Cyy

Lemma 3.3 A four-dimensional matrix A = (@) € (Cp : Cy) if and only if (3.1)-(3.3) hold
and the following conditions also hold:

VkeN,lp e N2 ayu=0 foralll>lyandm,neN, (3.6)
VieN,3ko e Noayy=0 forallk>kyandm,neN. (3.7)
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In the case (3.7) Jko,ly € N such that a = (ax) € L, and (ax,)ken, (aky1)ien € @, Where @
denotes the spaces of all finitely non-zero sequences and

9 lim [Ax]y, = ; Ak + Xk: (L%: akz>p-m};jgnw X

holds for x = (xy) € Cp.

Lemma 3.4 A four-dimensional matrix A = (i) € (C, : Cy) ifand only if (3.1)-(3.3) hold
and the following conditions also hold.:

3y €N 9- lim Zamnklo = uy, (3.8)
dko e N> ﬁ—mlr}inoo Zam"kol = Vi (3.9)

In the case (3.9), a = (ay) € L, and (w;), (vy) € €1 and
0- lim [Ax]y,, = > auxa + Z(Vk‘z ﬂkz)xk + Z(WZ ﬂk1>xz
’ K k I l k
<L + Zakl ka Zu;) r- hm Kynn

holds for x € C,.
Theorem 3.5 A four-dimensional matrix A = (@) € (Cpp : M) ifand only if (3.1) holds.

Proof Let the four-dimensional matrix A = (@) € (Cpp : My). Then Ax exists and is in
M, for all x = (xy;) € Cpp. That is, A, € M, for each m, n € N. Therefore,

Z AymnkiXkl

k1

[Ax[loo = sup

m,neN

< sup Zlﬂmnklllxkll <00,
m,neN 1

Then condition (3.1) is sufficient.
Conversely, suppose that condition (3.1) is satisfied for all x = (xx;) € Cpp. Then

> it < Y i il
il k.l

We have, after taking supremum over m, n € N, that

E AmnkiXkl

k1

sup
m,neN

= sup Z |@pnii| M < 00.
m,neN Kl

Then it is derived from the last approaches that Ax € M,,. This completes the proof. [
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Lemma 3.6 ([11]) Let A = (auuii) be a four-dimensional matrix. Then the following state-
ments hold:
(i) ForO<q<1,Ae(Ly: M,)ifand only if

Sup |k < 00. (3.10)
m,nk,leN

(i) Forl<q<oo, A€ (Ly: M,) ifand only if

, 1 1
sup Z |@mn|? <00, where — + — =1. (3.11)
mneN 7 q 9

Lemma 3.7 ([11]) Let A = (auun) be a four-dimensional matrix. Then the following state-
ments hold:
(i) For0<q<1,A e (L,:Cy) ifand only if conditions (3.2) and (3.10) hold with & = bp.
(ii) Forl<g<oo,A e (Ly:Cyp) if and only if conditions (3.2) and (3.11) hold with
v =bp.

Lemma 3.8 ([12]) A four-dimensional matrix A = (@yunia) € (M : Cyp) if and only if con-
ditions (3.1)-(3.2) hold and the following conditions also hold:

day € C > bp- lim Z | @it — axt| = 0, (3.12)
m,n— 00 v,
n
bp- lim Zamnkl exists for each k € N, (3.13)
m,n—> 00 Py
m
bp- lim Zamnkl exists for each [ € N, (3.14)
m,n— 00 =0
Z |@mnki]  converges. (3.15)

kil

Lemma 3.9 ([13]) A four-dimensional matrix A = (@) € (M, : M,,) if and only if con-
dition (3.1) holds.

Lemma 3.10 ([14]) A four-dimensional matrix A = (@uun) € (M, : Cp) if and only if con-
ditions (3.2), (3.6) and (3.7) hold.

Let us define the sets di(r, s, t, u) with k € {1,2,...,14} as follows:

-k - |7
mn _ _
=\ (—u\" aj
2(7) (7)) ] ep
r r
ji=kil

mn ok o\l
dy(r,s,t,u) = Ja=(ay) € R:3Pu e C3 Y- lim Z(TS) (—u> aﬁ:ﬁkz},

m,n—>00 t
Jimkd

di(r,s,t,u)={a=(ay) € 2: sup Z
m,neN Kkl

dy(r,s,t,u)={a=(ay) € 2:
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l .
SeCs9- i ZZ( s) ( ) a—ltl:lexists},
m,n— 00 r

kil ji=kl

du(r,s,t,u) = :a =(an) € Q:

3l e N> 9¥- lim Z

m,n— 00
k

m,n —s j—k —u i-lp
2 () (7) @t

Ji=k,lp

d5(r,S, t’”) = {ﬂ = (akl) €Q:

m,n —s Jj—ko —u i-l
Z - e aji — Biol| =

Jri=ko,l

dko e N> ¥- lim Z

m,n— 00

1

de(r,s,t,u) = iﬂ =(an) e Q:

mn o Njok N
VkeN,3l, eN> Z(—S) (—”) & _0VI>lpandVmneNy,
Jiokd r t rt

d;(r,s,t,u) = {ﬂ = (an) € Q:

mn N jek Nl
VieN,3k € N> Z(—S) (—”) Y _ 0 Vk > ko and Vi, n e N\,
ikl r t rt

m,n i— i— q
>(5) ()%
mneN| 57 r t rt

dS(r’57 L, L{) = {ﬂ = (ﬂ/(l) €Q: sup

do(r,s,t,u) = {61 =(an) e Q:

- —u ’loa,,
azoeNaﬁ-mlgle Z T [
k  ji=klo
dl()(r,S,t,M) = {ﬂ = (akl) €Q:
s\ —u\ T ay
3ko e N3 ¥- 1121@22( ) <t) rt:Vko ,
1 ji=ko,l
dn(r,s t,u) = ia = (an) € Q:

% _s j—k —u i—laji ﬁ
- r t rt K

ji=k,l

B eC> ﬁ-m,lnlgoc %:

dlz(risytv Ll) = :ﬂ = (akl) €eQ:

n o\ /K i-lp .
VkeN9- lim 3 Z( ) (_> “—f;exists},
m,n— 00 T

1=0 j,i=k,ly
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dis(r,s, tu) = :a =(ay) € 2:

moomn g Njk N il a
VieN, - lim — — — exists ¢,
dn S (F)(F)

k=0 ji=k.o

% —S Jk —-Uu i-lo aji
i r t rt

Jjri=k,lo

da(r,s,t,u) = {d =(ay) € Q: Z

k,l

converges } .

Theorem 3.11 The following statements hold:
(i) {BIM)}Y =di(r,s, t,u) withq' =1.
(i) (BLHY ={Gerin oZacr

(iil) {B(Cup)}¥ =di(r,s,t,u) withq' =1

Proof (iii) Let us suppose that a = (@,,,) € Q and &% = (x,,,,) € B(Cyp). Then we have y = Bx €
Cpp. Therefore, we have the following equality for the 1, nth partial sum of k] KIXKL

Ak

k=0 k=0 Ji=0
mu  m,n i—l
—S - aji
=22\ ) () e
k,1=0 j,i=k,l

= (DY) mn» (3.16)

where the four-dimensional matrix D = (d,,,,x) is defined by

S Y HRE L, 0<k<m0<l<n

dmnkl =
0, otherwise

for all k, k,m, n € N. Then we can say that ax € BS whenever x = (%,,,) € B(Cy,) if and only
if Dy e M, whenever y = (,4,) € Cpp. This means that a = (a,,,) € {B(Cp,)}” if and only if
D € (Cpp : M,,). Thus, one can easily see that the conditions of Theorem 3.5 hold, that is,

mn j—k i~
—s —u @i
su — —
b2 |2 <r> <t) it
jri=k,l

m,neN k1

< 00,

which is the set dy(r, s, ¢, u) with ¢’ = 1. This completes the proof of Part (iii).
The proofs of Parts (i) and (ii) can be shown in a similar way by using Lemmas 3.9
and 3.6, respectively, instead of Lemma 3.5. Thus, we omit the details. O

Theorem 3.12 The following statements hold:

() {BCo)Y?) = N2, di(r,s,t,u) with q =
(ii) {B(Cp)}ﬂ(l’) = ﬂ?zl di(r,s, t,u) Nde(r,s, t,u) Nd;(r,s,t,u) with q' = 1.
(iiY) (B(C)YPP = L, di(r,s,t,u) Ndo(r,s,t,u) N dro(r,s,t,u) with ¢’ =1.
(iv) {B(L, )}’3 0) = d (r,s,t,u) N dy(r,s,t,u) for 1 < g < o0.
) {B(L, NEOP) = dy(r,s,t,u) Nds(r,s,t,u) withq =1for 0 < g <1.
(vi) {B(/\/lu)}ﬂ(bp) di(r,s,t,u) Ndy(r,s, t, u) ﬂl 1 di(r,s,t,u).
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(Vll) {B(Mu)}ﬁ(p) = dZ(r)Sy t; u) N dﬁ(r)sy t; I/i) N d7(r,s, t) M)

Proof Suppose that a = (@) € Q and x = (%) € B(Cpp). Then there exists a sequence
¥ = (Ymn) € Cpp with Bx = y. Therefore, since (3.16) holds, one can conclude that ax € CSy
whenever x = (x,,,) € B(Cp,) if and only if Dy € Cy whenever y = (y,,) € Cpp. It gives us that
a = (@) € {B(Cpp)}P?) if and only if D € (Cyp : Cy). Hence, the conditions of Lemma 3.2
are satisfied with d,,,,;; instead of a,,,,,5;. That is,

sup Z |dmnkl| <00,
m,neN Py,

B e Co - lim dyup =P forallk,leN,

m,n— 00

A eC>9- lim de,,/d =/ exists,
Kl

m,n— 00

ko € N> 9= im " |dyigr — Broi| = 0,
I

o eN> D~ lim > |dynity — Buap| =0,
k

m,n— 00

which give the $(#%)-dual of the space B(Cy,) is ﬂ?zl d;(r,s,t,u). This completes the proof
of Part (i). Since Parts (ii)-(vii) can be proved in a similar way by using Lemmas 3.3, 3.4,
3.7, 3.8 and 3.10, respectively, to avoid the repetition of similar statements, we omit their
proofs. d

4 Characterization of some classes of four-dimensional matrices
In this section, we characterize some four-dimensional matrix classes which are related
to the double sequence spaces derived as the domain of the four-dimensional general-
ized difference matrix in the spaces M, Cp, Cyp, C, and L, by using the concept of four-
dimensional dual summability methods for double sequences introduced and studied by
Basar [15] and Yesilkayagil and Basar [16].

Now, let us suppose that the four-dimensional matrices A = (@,x;) and E = (ey,x7) trans-
form the sequences x = (x,,,) and y = (¥,,,) which are connected with relation (1.2) to the
double sequences s = (s,,) and z = (z,,,), respectively, that is,

Sn = (AX) yn = Z At forall myn € N, (4.1)
k=0
oo
Zin = (EY)mn = Z emniiyiy  forall m,nmeN. (4.2)
k=0

It is obvious that the method B is applied to the B(r, s, t, u)-transform of the sequence x,
while the method A is directly applied to the elements of the sequence x. Then we can say
that the methods A and E are essentially different.

Let us assume that the usual matrix product EB(r, s, t, 1) exists, which is a much weaker
hypothesis than the conditions on the matrix E belonging to any class of matrices, in gen-
eral. We can say in this case that the matrices A and E in (4.1) and (4.2) are the dual
summability methods if s is reduced to z or viceversa under the application of the usual
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summation by parts. This leads us to the fact that EB(r,s, t, u) exists and is equal to A,
and Ax = {EB(r,s, t,u)x} = E{B(r,s, t,u)x} = Ey formally holds if one side exists. This state-
ment is equivalent to the relation between the elements of the matrices A = (a,,x;) and
E = (emnkt)

Amnkd = SUCwmm—-11-1 + Stemnm-1n + Y'h€mpmp-1 + Femmmn O equivalently

i =S ik -u - Amnij (43)
e, = — — —_—
mnkl - P p

ij=k,l

for all m,n, k,l € N. It is trivial that relation (4.3) between the elements of the matrices

A = (@mui) and E = (eymi1) can be stated by the matrix product as follows:
A =EB(r,s,t,u) orequivalently E =AF(r,s,t,u).

For the sake of brevity in notation, we may also write here and after for all m,n,k,/ e N

that
mn oo i—k j-
=S —Uu ﬂmnij
e(m,n) = — — — 4.4
( )EE <r) <t> ” (4.4)
k=0 i,j=k,l
and

kl
A1()ﬂmnkl = Amnkl — Amn,k+1,0>
Akl _

01%mnkl = Amnkl — Amnk,l+1>

kl kl kl kl ki
A11“mrzkl = A1() (Aolﬂmnkl) = Ao1(A10ﬂmnkl)'

Now, we may give the following theorem by using equality (4.3) between the methods
Aand E.

Theorem 4.1 Suppose that the elements of four-dimensional infinite matrices A = (ayuii)
and E = (e,un) are connected with relation (4.3). Then A € (B(A) : ) if and only if A,,, €
[BOWIPD for all myn € N and E € (A : i), where A, j1 € (Mo Cpy Cps Cr, Ly}

Proof Suppose that A € (B(A) : ). Then Ax exists and is in u for all x = (x,,,) € B(%), which
implies the fact that A,,, € [B(1)]#® for all m, n € N. Thus, we have the following equality
derived from the partial sum of the series ) k1 Amnkixi With relations (4.3):

mn mn [-mn i—k _ j-l B
> anami= 31| 35 (5) () 2 9

k=0 k1=0 Lij=k,

for all m,n € N. Then, by taking ¢ -limit on (4.5) as m,n — 0o, we have Ax = Ey. Hence,
Ey € yu whenevery e A ,ie, E€ (A:p).

Conversely, suppose that A,,, € [B(A\)]?® for all m,n € N and E € (A : i), and let
v = (vi) € B()) with u = Bv. Then Av exists. Therefore, one can derive from the (&, 0)th
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rectangular partial sum of the series ) ; ; @yuxvis for all m,n,&,0 € N that

£,0 .0 k.l §0 [ &0
E ApnkIVKL = E amnklE friijthij = E Z —l

k,1=0 k,1=0 ij=0 k=0 \ij=k,

which gives by letting p-limit as &, 0 — oo that

Z Ak Vil = Z ety forall m,n € N.
k1 k.l

That is, Av = Eu, which leads to the fact A € (B(A) : ), as desired. a

By changing the role of the spaces B(A) and p in Theorem 4.1, we have the following
lemma.

Lemma 4.2 ([8], Theorem 4.7) Let A and p be as in Theorem 4.1, and let the elements of

the four-dimensional matrices A = (Gyux) and G = (i) be connected with the relation

mn

Gunkt = ) bui(r,5,t, Wy for all m,n,k,1 € N. (4.6)
i,j=0

Then A € (i : B(A)) if and only if G € (1 : A).

Corollary 4.3 Let A = (auuu) be a four-dimensional infinite matrix. Then the following
statements hold.
(i) A e (B(Cp):Cy) if and only if (3.1)-(3.3), (3.6) and (3.7) hold with e, instead of
Armnkl-
(ii) A € (B(Cyp):Cy) if and only if (3.1)-(3.3), (3.4) and (3.5) hold with e, instead of
Armnkl-
(iii) A € (B(C,):Cy) if and only if (3.1)-(3.3), (3.8) and (3.9) hold with e,,x instead of
Armnkl-
(iv) A € (B(Ly):Cyp) ifand only if (3.2) and (3.11) hold for 1 < q < 00 With e,y instead
Ofﬂmnkl-
(v) A e (B(L,):Cyp) if and only if (3.2) and (3.10) hold for 0 < g <1 with e, instead
of Amnki.
(vi) A € (B(Ly): M,) if and only if (3.10) holds for 0 < q <1 with e,k instead of amui.
(vii) A € (B(Ly) : My,) ifand only if (3.11) holds for 1 < q < 00 With e, instead of ayuk.
(viii) A € (B(M,,) :Csp) if and only if (3.1), (3.3), (3.12), (3.13),(3.14) and (3.15) hold with
emnki instead of ayup.
(ix) A e(BM,):C,) ifand only if (3.2), (3.6) and (3.7) hold with e, instead of apu.
(x) A € (B(Cyp): M,) ifand only if (3.1) holds with e, instead of @y

Corollary 4.4 Let E = (e;uni;) be a four-dimensional infinite matrix. Then the following
statements hold.
(i) A e(Cp:B(Cy)) if and only if (3.1)-(3.3), (3.6) and (3.7) hold with guuu instead of

Aynnkl -
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(ii) A € (Cyp:B(Cy)) if and only if (3.1)-(3.3), (3.4) and (3.5) hold with g, instead of
Armnkl-
(ii) A € (C,:B(Cy)) if and only if (3.1)-(3.3), (3.8) and (3.9) hold with g, instead of
Armnkl-
(iv) A € (Ly:B(Cyp)) if and only if (3.2) and (3.10) hold for 0 < q <1 with g instead
of Ay
(v) Ae(L,:B(Cyp)) if and only if (3.2) and (3.11) hold for 1 < q < 00 With gk instead
of Ak
(vi) A € (Ly:B(M,)) if and only if (3.10) holds for 0 < q << 1 with gyux instead of
Armnkl-
(vii) A € (L, :B(M,)) ifand only if (3.11) holds for 1 < q < 00 With gk instead of G-
(viii) A € (M, :B(Cpp)) if and only if (3.1), (3.3), (3.12), (3.13),(3.14) and (3.15) hold with
Gunkl instead of aypui.
(ix) A € (M, :B(Cp)) ifand only if (3.2), (3.6) and (3.7) hold with g instead of auui.
(x) A €(Cyp:B(M,)) ifand only if (3.1) holds with guu« instead of amu.

Theorem 4.5 Suppose that the elements of the four-dimensional matrices A = (i) and
H = (W) are connected with the relation

mn

Mokt = Z byuij(r, s, t,u)eg  for all myn, k,1 e N, (4.7)
ij=kl

where the four-dimensional matrix E = (ey,1) is defined as in (4.3). Then A € (B(A) : B(n))
ifand only if H € (A : i), where &, u € {M,,Cp,Cpp,Cy, Lg}.

Proof Suppose that A € (B(A) : B(i)). Then Ax exists and is in B(u) for all x = (x,,,) €
B(A) and {B(A%)},un € u for all m,n € N. Furthermore, we can say that the relation Bx =
y € A implies B(AB™y) € u. By using relations (4.7) between the matrices A = (,,x;) and
H = (H,,,1;) and relation (1.3) between x = (x,,,) and y = (¥,,,,), we can write the following

equality derived from the partial sum of the series ), Humiyia:

m,n m,n m,n
D hmiya =YY b5ty ey (4-8)
=0 k=0 i,k

for all m,n, k,I € N. When we apply the ¢ -limit on equality (4.8) as m,n — 0o, we have
Ax = Hy. So, Hy € u whenever y € A says that H € (A : ). This completes the proof. [

Corollary 4.6 Let A = (@) be a four-dimensional infinite matrix. Then the following
statements hold.
(i) A e(B(Cp):B(Cy)) if and only if (3.1)-(3.3), (3.6) and (3.7) hold with hy.y instead

Ofﬂmnkl'

(ii) A € (B(Cyp):B(Cy)) if and only if (3.1)-(3.3), (3.4) and (3.5) hold with hy,y instead
Ofﬂmnkl'

(iii) A € (B(C,):B(Cyp)) if and only if (3.1)-(3.3), (3.8) and (3.9) hold with hu instead
Ofﬂmnkl'

(iv) A € (B(Ly) : B(Cyp)) if and only if (3.2) and (3.10) hold for 0 < g <1 with hyuu
instead of @i
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(v) Ae(B(L,):B(Cp)) if and only if (3.2) and (3.11) hold for 1 < q < 0o with
instead of @i
(vi) A € (B(Ly): B(M,)) if and only if (3.10) holds for 0 < q < 1 with hy instead of
Ankl -
(vii) A € (B(Ly):B(M.,)) if and only if (3.11) holds for 1 < q < 00 with hyux instead of
Amnkl -
(viii) A € (B(M,,):B(Cyp)) if and only if (3.1), (3.3), (3.12), (3.13),(3.14) and (3.15) hold
With Ny instead of Ak
(ix) A e (B(WM,):B(Cp)) if and only if (3.2), (3.6) and (3.7) hold with hu instead of
Amnkl -

(x) A € (B(Cyp) : B(M,,)) if and only if (3.1) holds with hyu instead of aux.

Corollary 4.7 Let A = (auuu) be a four-dimensional infinite matrix. Then the following
statements hold.

(i) Ae(B(Cy):CSy) ifand only if (3.1)-(3.3), (3.6) and (3.7) hold with e(m, n) instead

0f“mnkl~

(ii) A € (B(Cyp):CSy) ifand only if (3.1)-(3.3), (3.4) and (3.5) hold with e(m, n) instead
0f“mnkl~

(ili) A € (B(C,):CSy) ifand only if (3.1)-(3.3), (3.8) and (3.9) hold with e(m, n) instead
Ofamnkl~

(iv) A € (B(Ly) :CSyp) if and only if (3.2) and (3.11) hold for 1 < q < 0o with e(m, n)
instead of @i
(v) Ae(B(L,):CSyp) if and only if (3.2) and (3.10) hold for 0 < q < 1 with e(m, n)
instead of @i
(vi) A € (B(Ly): BS) if and only if (3.10) holds for 0 < q < 1 with e(m, n) instead of @uni.
(vii) A € (B(Ly) : BS) if and only if (3.11) holds for 1 < q < oo with e(m, n) instead of
Amnkl -
(viii) A € (B(M,):CSyy) if and only if (3.1), (3.3), (3.12), (3.13),(3.14) and (3.15) hold
with e(m, n) instead of @i
(ix) A e (B(M,):CS,) if and only if (3.2), (3.6) and (3.7) hold with e(m, n) instead of
Armnki-

(x) A € (B(Cpp) : BS) if and only if (3.1) holds with e(m, n) instead of @y

We may also give the following results derived from Theorems (4.1), (4.2) and (4.3) of
Altay and Basar [17] by using relation (4.6).

Corollary 4.8 Suppose that the elements of the four-dimensional matrices A = (i) and
G = (gmnut) are connected with relation (4.6). Then A = (amn) € (CSpp : B(Cy)) if and only
if conditions (3.1) and (3.2) hold with Alﬁgmnkl instead of a,u,x and the following conditions

hold:
llim A'l‘égm,,kl =0 foreveryfixed k € N for all m,n € N, (4.9)
k]im A{;llgm,,kl =0 foreveryfixedleN forallm,neN, (4.10)
—00

3gu € C> bp- lim Z|A]1((l)gmnkl| = Z |gxe!- (4.11)
’ I k
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Corollary 4.9 Suppose that the elements of the four-dimensional matrices A = (@) and
G = (gunni) are connected with relation (4.6). Then A = (amuu) € (CS, : B(Cy)) if and only if
condition (3.1) holds with A® 118mnkl instead of ayi and the following conditions hold:

(@mnko)keNs (@mnot)ien € bv  forall m,n € N, (4.12)

dLeN> Alf{gm,,kl =0 forall k € N whenever m,n,[> L, (4.13)

dK eN> Augmnkl 0 foralll e N whenever m,n,k > K, (4.14)

g € C3p- lim D | AR gmi| =Y lgul- (4.15)
I k

Corollary 4.10 Suppose that the elements of the four-dimensional matrices A = (Gyux)
and G = (gunii) are connected with relation (4.6). Then A = (@) € (CS, : B(C,)) if and
only if condition (3.1) holds with A 118mnk1 instead of i and (4.12) holds, and the following
conditions also hold.:

r—m’lnigoo Alf{gm,,kl =gu foralllyeN, (4.16)
r-mly}goo Z Angmnkl uy, foralllyeN, (4.17)
r-mlggoo 2;: A’ﬁgmnkz =uy, forallkyeN, (4.18)
r- lim Z AN Gt = (4.19)

Theorem 4.11 A = (a,uu) € (B(Cy) : Cp; p) if and only if

p- lim e,u=0 forallkleN, (4.20)
p- lim > e =1, (4.21)
K
p- lim Z lemnkt| =0 foralll e N, (4.22)
m,n— 00 X
p- lim Z lemnki| =0 forall k e N, (4.23)
m,n—> 00 ;
JveCop- lim Z lemki| = v foralll eN, (4.24)
m,n—> 00 o
SUp Y [epmii < 0. (4.25)
KeNy ok

Corollary 4.12 Let A = (a,uu1) be a four-dimensional infinite matrix. Then the following
statements hold.
() A e(Cp:B(Cp)sp) if and only if (4.20)-(4.25) hold with fiuux instead of @mnk.
(ii) A € (B(Cp):B(Cp);p) if and only if (4.20)-(4.25) hold with hyuq instead of apui.
(iii) A € (B(Cp): CSp,p) if and only if (4.20)-(4.25) hold with e(m, n) instead of ayu.
) A

(iv € (CS, : B(Cp); p) if and only if (4.20)-(4.25) hold with Aﬁgm,,;d instead of @i
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5 Conclusion
Zeltser [18], in her PhD thesis, studied both the theory of topological double sequence
spaces and the summability theory of double sequences.

Altay and Basar [17] have recently studied the double series spaces BS, BS(¢), CS» and
BY whose sequences of partial sums are in the spaces M,,, M,,(¢), Cy and L, respectively,
where ¥ € {p, bp,r}. They studied some topological properties of those spaces and com-
puted the a-duals of the spaces BS, CSy, and BV and the §(¢)-duals of the spaces CSy,
and CS, of double series. Furthermore, they gave the conditions which characterize the
classes of four-dimensional matrix transformations defined on the spaces CS,, CS, and
CS,.

Basar [15], Chapter 7, p.277, studied the fundamental results on double sequences and
related topics. Bagar and Sever [4] deeply studied the Banach space £, of absolutely g-
summable double sequences and examined the topological properties. Moreover, they
determined the -, 8(¢#)- and y-duals of L,, where 1 < g < oo and ¢ € {p, bp,r}.

The concept of matrix domain was examined by several researchers on some single se-
quence spaces by using some special matrices. Recently some significant studies have been
done by several mathematicians for double sequence spaces and four-dimensional matri-
ces (see [19-22]). In this work, I have studied the domain of four-dimensional generalized
difference matrix B(r, s, t, u) on some double sequence spaces and examined some topolog-
ical properties. Furthermore, I determined the «-, 8(})- and y -duals of some new double
sequence spaces and characterized some classes of four-dimensional matrix transforma-
tions related to the new double sequence spaces. As a natural continuation of Yesilkayagil
and Basar [23], one can obtain certain new topological properties concerning the space
B(Cy) of all almost B summable double sequences.
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