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Abstract Congruous coronavirus drug targets and analogous lead molecules must be identified as

quickly as possible to produce antiviral therapeutics against human coronavirus (HCoV SARS

3CLpro) infections. In the present communication, we bear recognized a HIT candidate for HCoV

SARS 3CLpro inhibition. Four Parametric GA-MLR primarily based QSAR model (R2:0.84,

R2adj:0.82, Q2loo: 0.78) was once promoted using a dataset over 37 structurally diverse molecules

along QSAR based virtual screening (QSAR-VS), molecular docking (MD) then molecular dynamic

simulation (MDS) analysis and MMGBSA calculations. The QSAR-based virtual screening was

utilized to find novel lead molecules from an in-house database of 100 molecules. The QSAR-vS

successfully offered a hit molecule with an improved PEC50 value from 5.88 to 6.08. The benzene

ring, phenyl ring, amide oxygen and nitrogen, and other important pharmacophoric sites are

revealed via MD and MDS studies. Ile164, Pro188, Leu190, Thr25, His41, Asn46, Thr47, Ser49,

Asn189, Gln191, Thr47, and Asn141 are among the key amino acid residues in the S1 and S2

pocket. A stable complex of a lead molecule with the HCoV SARS 3CLpro was discovered using

MDS. MM-GBSA calculations resulted from MD simulation results well supported with the bind-

ing energies calculated from the docking results. The results of this study can be exploited to

develop a novel antiviral target, such as an HCoV SARS 3CLpro Inhibitor.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronaviruses are classified as RNA viruses. To date, seven
human coronaviruses (HCoVs) viz. SARS-CoV, Middle East

Respiratory Syndrome (MERS) -CoV, and SARS-CoV-2,
229E, Human coronavirus OC43, Human coronavirus NL63
(HCoV-NL63), and Human coronavirus HKU1

(HCoV-HKU1) have been discovered. First, three of the seven
coronaviruses, particularly SARS-CoV, MERS-CoV, and
SARS-CoV-2 are pathogenic species. Whereas the ultimate four,

namely 229E, OC43, NL63, and HKU1 cause mild diseases.
Coronaviruses belongs to the order Nidovirales, household
Coronaviridae, and subfamily Orthocoronavirinae. Amongst
the four coronavirus genera (Alphacoronavirus, Betacoron-

avirus,Gammacoronavirus,Deltacoronavirus),HCoVs are cate-
gorized below Alphacoronaviruses; HCoV-229E and NL63 and
Betacoronaviruses; MERS-CoV, SARS-CoV, HCoVOC43 and

HCoV-HKU1. SARS-CoV-2 from the Betacoronavirus genus
has fairly close relatedness with two bat-derived CoV-like coron-
aviruses, viz. bat-SL-CoVZC45 and bat-SL-CoVZXC21 (Malik,

2020) Coronaviruses are of sphere-shape with a diameter of a
hundred twenty-five nm with the club-shaped projections on
the floor that resemble a photo voltaic corona. Coronavirus has

fairly the greatest genome amongst each and every positive-
strand RNA viruses. (Lai et al., 2006)

An incredibly transmissible coronavirus to that amount
causes lethal respiratory harm was once in the beginning deter-

mined of China. The severity of the symptoms is characterized
by the increased nasal mucosal plasma exudation and inter-
feron c (IFNc) levels in nasal lavage specimens (Linden

et al., 1995). The advance peak of respiratory tract viral loads
seems within the preceding three days then infection or drops
off dramatically within a week, correlating including develop-

ment and raise within signs and symptoms stability.
Dramatically, there is a consequential considerable

vibrancy into the quantity of corona cases. To date, corona

infection has reached more than 29 lot humans international
with a mortality dimensions as high as 3.15 % (according in
accordance with World Health Organization’s (WHO’s)
report, September 2020). Despite the fact, potent hit in oppo-

sition to SARS-CoV-2 is still a dream durability (Konwar and
Sarma, 2020).

A 3C-like protease (3CLpro) additionally appear among

CoV-229E, the causative agent for the severe acute respiratory
sign (SARS) into human. CoV-229E and SARS-CoV exist in a
complex with the inhibitors were investigated in the several
crystal structures of 3Cpro from CVB3 and 3CLpro protein.

(Lee et al., 2009) In it concern, numerous investigators hold
utilized MD, MDS, quantitative structure–activity relationship
(QSAR) studies for virtual screening to to identify a new hit

for HCoV SARS 3CLpro inhibition.
QSAR techniques have been effectively implemented not

only In the development of a reliable statistics-based mathe-

matical correlation between physicochemical properties of
chemical substances and their desired biological activities but
also to forecast the biological activity of de novo molecules.

In the last couple of decades togetherwith the advances in the

computational field, wet-lab chemical experimentation has been
substituted by molecular modeling and virtual experimentation
that deploy fundamentals of basic sciences such as, mathemat-

ics, chemistry, physics, and algorithms (Gini, 2016).
Enriching the utility about QSAR methodologies among

the drug search yet development endeavor, especially into

the improvement on the doubtlessly potent fresh chemical enti-
ties then hit/lead together with diverse bioactivity is a captivat-
ing scientific research community. (Garro Martinez et al.,

2015) With the advances in computational sciences, QSAR
technologies are evolving rapidly and gaining potential makes
use of in regulatory science. Food and Drug Administration
(FDA) had invested a lot of efforts to facilitate the develop-

ment of reliable QSAR models in setting up chemical data-
bases using superb and protected experimental statistics
accompanied with the aid of the development of computa-

tional algorithms (Hong et al., 2016).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Successful application of high throughput screening (HTS)
to molecules’ libraries to find out the new lead for a particular
biological property is one of the core traits in drug discovery.

To set up the correlation of the undertaking of a molecule with
molecular descriptors, QSAR analysis is frequently used which
includes digital molecular filtering and screening based on a

mathematical model. This strategy reduces the cost in the fail-
ure of a drug candidate in superior (clinical) degrees by filter-
ing combinatorial libraries, rejecting these molecules with an

expected toxic effect, and disadvantaged pharmacokinetic pro-
files, thereby decreasing the number of experiments.

Molecular docking (MD) is one of the widely used, well-
established in-silico structure-based drug discovery methods.

Docking describes and/or predicts ligand-target interactions
at the molecular level, set up structure–activity relationships
(SAR) and enable the identification of new lead candidate of

therapeutic interest a priori information on the chemical struc-
ture of other goal modulators. MD techniques are largely used
to discover conformation adopted by means of ligands inside

the binding pocket(s) of the macromolecular targets. MD addi-
tionally evaluates the ligand-receptor binding free power by
way of assessing critical phenomena via a complicated inter-

molecular recognition system (Ferreira et al., 2015).
Hit identification and lead optimization are abundantly

tangled with computational modeling. In drug discovery,
structure-based virtual screening (VS) has been indispensable

for more than a decade with its drastically studied, underlying
computational technique, docking. The parameters for vS may
range with the objective, however the usual protocol is very

straightforward. Principally in vS a library of small molecules
are docked into the binding pocket of a macromolecule (target
receptor, protein, etc.). The system ends up by way of return-

ing various solutions per molecule, ranked in the order of
acceptance for similarly screening and the identification of
the fine possible hit(s) (Kontoyianni, 2017). vS is a time, cost,

resources, and labor saving approach and this has marked vS
as one of the effective computational techniques to display
libraries of small molecules for new hits to be experimentally
examined for desired property/activity. Among the vS

approaches, QSAR analysis is the most powerful method
due to its excessive and speedy throughput and desirable hit
rate. A QSAR model once developed and fully validated for

robustness and productiveness, can be utilized to the reliable
prediction of the biological property of novel compounds.
Although the experimental trying out of computational hits

is now not an inherent section of QSAR methodology, it is
exceptionally preferred and need to be carried out as an ulti-
mate validation of developed models, advisably.

In the present scientific contribution, QSAR primarily based

virtual screening strategy is expected for the rapid and less
expensive development of medicines to deal with SARS-CoV-
2. This tactic is primarily based on discovering the anti-HCoV

SARS 3CLpro attainable of leverage molecules beforehand tes-
tified to have powerful inhibitory recreation for the same. Crit-
ical evaluations of present information onHCoVSARS3CLpro

inhibitors the use of QSAR based vS supported and enriched by
way of MD and MDS procedures have been carried out to per-
ceive novel HCoV-229E inhibitors with preferred properties.
2. Experimental

2.1. Preparation of data sets

To begin, we classified the complete Chembl information set
into two classes, with assays of each the wild kind and mutant

form of the target. As documented with the aid of Chembl, no
in-vitro assay was developed to evaluate Human Coronavirus
229E inhibitory activity towards mutant targets.

After removing structural duplicates, we used the median
EC50 value to create the QSAR models. The log-transformed
EC50 values were used for the QSAR models. All the com-
pounds test in vitro against Human coronavirus 229E were

used in this collection of inhibitor structures from the
ChEMBL database.In the end, 39 compounds representing
37 unique compounds were identified as having been tested

against Human Coronavirus 229E (see Table 1).
2.1.1. Modeling set preparation from ChEMBL data

ChEMBL’s trustworthily determining criteria were used to

prefilter the compounds and data in the database: (1) the con-
fidence score (a quantitative indicator of data quality in
ChEMBL) is greater than 8; (2) expert-based curation; (3) data

source (PubMed); is indicated; (4) EC50 is a parameter of activ-
ity measurement; (5) EC50 is precisely define (there is no ‘‘>”

or ‘‘*” signal before EC50); (6) We have not included the struc-

ture because it is not a multi-component complex or salt.
Therefore, only the compounds tested against the Human
Coronavirus 229E inhibition assay were extracted from
ChEMBL.
2.2. Structure optimization and molecular descriptor calculation

To create the structures, ACD Labs’ chemical sketch program

(www.acdlabs.com) was used. The structures were converted
into 3D structures using Open-Babel 2.4 and then optimized
with MMFF94 force fields.The 3D constructions were opti-

mized using TINKER default settings, and then they were
aligned using Open3DAlign.
2.3. Molecular descriptor pruning

Over 30,000 molecular descriptors have been created by way of
PyDescriptor and PaDEL for each molecule in all sets. This led
to molecular descriptor thinning as it eliminated vain molecu-

lar descriptors. As a way to keep away from multi-collinear
and counterfeit variables in the GAMLR (Genetic
Algorithm–Multi-linear Regression) model, molecular descrip-

tors with excessive co-linearity (|R|greater than0.90) and
tightly constant (greater than95 %) had been excluded the
usage of objective feature selection in QSARINS ver. 2.2.4.

Despite the limited variety of molecular descriptors, the con-
densed pool was once massive adequate to embody the area
of 1D to 3D descriptors (Davies et al., 2015; Masand et al.,

2018; Masand et al., 2017).



Table 1 showing Experimental end point (experimental pEC50 value in nm), Predicted fitting (Predicted pEC50 value) and Predicted

fit residual value (residual).

sn Status Exp. endpoint Pred. fitting Pred.Fit.Res. Pred. LOO Pred. LOO Res.

1 Training 6.699 6.4234 �0.2756 6.3412 �0.3578

2 Training 6.301 6.4887 0.1877 6.5641 0.2631

3 Training 6.222 5.8991 �0.3229 5.8629 �0.3591

4 Training 5.886 5.6832 �0.2028 5.6284 �0.2576

5 Training 5.824 5.5829 �0.2411 5.5531 �0.2709

6 Prediction 5.745 5.475 �0.27 PRED �0.27

7 Training 5.745 5.8673 0.1223 5.9219 0.1769

8 Prediction 5.745 5.8991 0.1541 PRED 0.1541

9 Training 5.602 5.8991 0.2971 5.9324 0.3304

10 Training 5.284 5.0159 �0.2681 4.9946 �0.2894

11 Training 5.268 5.1013 �0.1667 5.0908 �0.1772

12 Training 5.268 5.1013 �0.1667 5.0908 �0.1772

13 Training 5.268 5.2093 �0.0587 5.2047 �0.0633

14 Training 5.268 5.1013 �0.1667 5.0908 �0.1772

15 Training 5.268 5.6909 0.4229 5.746 0.478

16 Training 5.26 5.1239 �0.1361 5.1067 �0.1533

17 Training 5.102 5.1293 0.0273 5.1346 0.0326

18 Training 5.102 5.1293 0.0273 5.1346 0.0326

19 Training 5.102 5.0213 �0.0807 5.0119 �0.0901

20 Prediction 5.102 5.0866 �0.0154 PRED �0.0154

21 Training 5.102 5.3523 0.2503 5.3728 0.2708

22 Training 5.073 4.9786 �0.0944 4.9689 �0.1041

23 Training 5.051 4.9934 �0.0576 4.985 �0.066

24 Training 5.051 4.765 �0.286 4.7031 �0.3479

25 Prediction 5.051 4.9079 �0.1431 PRED �0.1431

26 Training 5.051 5.2093 0.1583 5.2217 0.1707

27 Training 5.051 4.9786 �0.0724 4.9712 �0.0798

28 Prediction 5.048 4.7402 �0.3078 PRED �0.3078

29 Training 5.025 4.7627 �0.2623 4.6986 �0.3264

30 Prediction 5.025 4.8481 �0.1769 PRED �0.1769

31 Training 4.928 5.3321 0.4041 5.3673 0.4393

32 Training 4.923 5.0415 0.1185 5.0826 0.1596

33 Training 4.609 4.5289 �0.0801 4.5015 �0.1075

34 Training 4.403 4.4822 0.0792 4.5994 0.1964

35 Training 4.357 4.7999 0.4429 4.9401 0.5831

36 Training 4.347 4.5491 0.2021 4.5866 0.2396

37 Training 4.222 4.4209 0.1989 4.4861 0.2641
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2.4. Splitting the data set into training and external sets and
subjective feature selection (SFS):

A precise way to avoid statistics leakage is to split the data set
into training, prediction, and external/test sets with the appro-

priate composition and parts prior to exhaustive subjective fea-
ture selection (Masand et al., 2017). For bias-free analysis, the
dataset was randomly split up into training (80 % = 30 mole-

cules) and prediction (20 % = 7 molecules) sets. To choose a
set of molecular descriptors, a training set was used alone, and
a prediction/external set was used solely to perform external

validation of the model (Predictive QSAR) (See Fig. 1).
We employed QSARINS-2.2.40s GA-MLR method to pick

out relevant descriptors for subjective feature decision the

usage of Q2
LOO as a fitness parameter. The variety of molecular

descriptors in the model is an essential factor in growing a
profitable QSAR model without excessive over-fitting. Using
breaking point values drawn from R2

tr and Q2
LOO values, a

design (see Fig. 2) was plotted between the wide variety of
molecular descriptors involved in the QSAR model and the
number of molecular descriptors involved in the model. The
breaking point used to be consequently viewed to be the opti-

mal number of the molecular descriptors. According to Fig. 2,
there are four variables that determine the breaking point. As a
result, we excluded QSAR models with more than 4

descriptors.

2.5. QSAR model building and their validation:

The set of information used to be arbitrarily split using ran-
dom splitting in QSARINS into a training set and a prediction
set (80 % training and 20 % prediction, respectively). After
creating the model, the training set was used for external val-

idation, that is, to reveal the model’s potential to predict fresh
chemical entities (Masand et al., 2016; Masand et al., 2015;
Masand et al., 2015; Gramatica, 2020).

With default settings, QSARINS used to be used to create
GA-MLR primarily based QSAR models. In GA, the selected
fitness purpose to maximize used to be Q2, which also covered

the double cross-validation. During the improvement of the



Fig. 1 Depiction of 37 dataset molecules used in QSAR study.

Fig. 2 Plot of number of descriptors against Coefficient of Determination R2 and Leave-One out Coefficient of Determination Q2 to

identify the optimum number of descriptors.
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model, it was once found that the value of Q2 extended up to 4

variables, but then dropped significantly. To avoid overfitting
and construct simple and informative QSAR models, the
molecular descriptor vary was once confined to a set of 4

descriptors (Fujita and Winkler, 2016; Gramatica, 2014).
Values for molecular descriptors used in QSAR models can

be determined in the extra information for every molecule.
Because one of the OECD guidelines advises methodically val-
idating a QSAR model, all of the fashions had been subjected

to inside and external validation, Y-scrambling, and
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QSARINS model applicability domain (AD) analysis. A GA-
MLR based QSAR model’s statistical agreeable and strength
have been assessed the use of the following criteria: (a) Internal

validation primarily based on leave-one-out (LOO) and leave-
many-out (LMO) system (i.e. cross-validation (CV)); (b) the
usage of External validation; (c) Y-randomization (or Y-

scrambling) and (d) fulfilling of precise threshold value for
the statistical limits (Consonni et al., 2019; Huang and Fan,
2011) : R2

tr � 0.6, Q2
loo � 0.5, Q2

LMO � 0.6, R2 > Q2,

R2
ex � 0.6, RMSEtr < RMSEcv, DK � 0.05, CCC � 0.80,

Q2 -Fn � 0.60, r2m � 0.6, (1-r 2/ro2) < 0.1, 0.9 � ok � 1.1
or (1-r 2/r’o2) < 0.1,0.9 � k’ � 1.1,| ro2 � r’o2| < 0.3 with
RMSE and MAE shut to zero. As a result, any QSAR model

that did no longer meet the above-mentioned criteria was once
eliminated. The formulae for calculating these statistical
parameters are accessible in the supplementary material.

2.6. Molecular docking analysis

The protein data bank provided the pdb file for SARS-CoV

229e 3CLpro (pdb id-2zu2). The pdb 2zu2 was carefully chosen
for its X-ray resolution and sequence completion. For docking
analysis, the optimised protein is suitable (see Fig. 7). The

native ligand (zinc-coordinating and peptidomimetic chemi-
cals) was eliminated before docking study. The binding site
for native ligand has been considered as the active site in the
present work. Consequently, all the compounds were docked

into the active site, where native ligand was bound with
SARS-CoV 229e 3CLpr, the docking pose for the most active
molecule as a representative is presented here for convenience.

The software NRGSuite was utilized to perform the molec-
ular docking study. (Gramatica, 2007) This is a free and open
source software that may be used as a PyMOL plugin. With

the help of FlexAID, it can detect surface holes in a protein
and use them as target binding sites for docking simulations.
It uses a genetic algorithm to operate conformational search,

model ligand and side-chain flexibility, and allows for covalent
docking simulation. To acquire the great performance using
NRGSuite, the flexible–rigid docking method was used with
the following default settings: input method for binding

sites—spherical shape (diameter: 18 Å); spacing of three
dimensional grid—0.375 Å; side chain flexibility-no; ligand
flexibility-yes; ligand pose as reference-no; constraints-no; Het-

ero groups-included water molecules; van der Walls
permeability-0.1; solvent types-no type; number of
chromosomes-1000; number of generations-1000; fitness

model-share; reproduction model-population boom; and num-
ber of top complexes-5 . For validation of molecular docking,
the molecule TG-0204998, a recognized peptidomimetic inhibi-
tor of SARS-CoV 229e 3CLpro, was used to validate the dock-

ing protocol.

2.7. MD simulation analysis

The virtual screening results are used to analyze the Hit Mole-
cule 97 with a docking score of �8.043 kcal/mol and Molecule
4 the usage of the Schrodinger Desmond module in molecular

dynamics and simulation (MD simulation). Using Hit Mole-
cule 97 and Molecule 4 docking complexes, the SPC (Simple
point charge) model used to be employed to bind protein

ligands. The OPLS-2005 pressure subject (Gaudreault et al.,
2015) and explicit solvent model with the SPC water molecules
have been used in this system (Lee et al., 2009). Na + ions had
been introduced to neutralize the charge. 0.15 M, NaCl

options delivered to the machine to simulate the physiological
environment. The NPT ensemble was set up by the use of the
Nose-Hoover chain coupling scheme (Jorgensen et al., 1996)

with temperature 300 K, leisure time of 1.0 ps and pressure
1 bar was once maintained in all the simulations. A time step
of 2 fs used to be used. The Martyna-Tuckerman–Klein chain

coupling scheme barostat technique was used for pressure con-
trol with a leisure time of 2 ps.

Long-range electrostatic interactions were calculated the
use of the particle mesh Ewald technique (Martyna et al.,

1992) with a radius of 9 Å for Coulomb interactions. The
non-bonded forces have been calculated using the RESPA
integrator. To have a look at the balance of the complex in

MD simulations, the root mean square deviation (RMSD),
root mean square fluctuation (RMSF), radius of gyration
(Rg), and protein ligand interactions had been measured.�

2.8. Molecular mechanics generalized Born and surface area

(MMGBSA) calculations

During MD simulations of 2zu2 complexed with dataset com-
pound 4, most active hit molecule 97 and least active hit mole-
cule 70, the binding free energy (Gbind) of docked complexes
was calculated using the premier molecular mechanics general-

ized Born surface area (MM-GBSA) module (Schrodinger
suite, LLC, New York, NY, 2017–4). The binding free energy
was calculated using the OPLS 2005 force field, VSGB solvent

model, and rotamer search methods (Lai et al., 2006). After the
MD run, 10 ns intervals were used to choose the MD trajecto-
ries frames. The total free energy binding was calculated using

Eq. (1):

DGbind ¼ Gcomplex� GproteinþGligandð Þ ð1Þ
Where,
DGbind = binding free energy,

Gcomplex = free energy of the complex,
Gprotein = free energy of the target protein, and
Gligand = free energy of the ligand.

3. Result

In this paper, QSAR and Molecular docking studies were
employed to uncover hidden structural information responsi-

ble for SARS-CoV 229e 3CLpro inhibition. The QSAR model
is created using PyDescriptor, which is simple to understand
and link with biological activity. With the availability of easily

accessible chemical descriptors and interpretation in terms of
structural properties, the four-parameter GA–MLR model
shows strong external prediction ability. Even though the cur-

rent analysis used a straight evaluation of EC50 values of the
molecules in the dataset to describe the influence of a precise
descriptor, it is important to note that the combined or oppo-

site effect of unknown factors or other molecular descriptors
could have a significant impact on the molecule’s EC50 value.
(See Table 1)

The present QSAR analysis is performed using a data set

comprising structurally assorted 37 compounds with experi-
mentally determined EC50 value ranging from 200 to



Fig. 3 Display of Descriptor fnotringNsp3C3B exclusively for

the molecule 1 and 37.
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60,000 nM. Therefore, it encompasses acceptable as well as
comprehensive chemical space and data range. This will be uti-
lized for the development of properly validated genetic algo-

rithm combined multilinear regression (GA-MLR) model to
assemble or outspread exhaustive evidence about the pharma-
cophoric features that govern desired bio-activity (Descriptive

QSAR) and having adequate external predictive capability
(Predictive QSAR). The four variable based GA-MLR QSAR
model along with the selected internal and external validation

parameters (see supplementary material for additional param-
eters) is as follow:

3.1. QSAR model

To accomplish a better knowledge about structural features
determining the SARS-CoV 229e 3CLpro inhibitory activity,
we have used interpretable molecular descriptors (as structural

features) for model development. The GA-MLR QSAR four
parametric model with its selected internal and external valida-
tion parameters (see supplementary material for additional

parameters), is as follow:
QSAR Model: Training set: 30 (80 %) and Prediction set: 7

(20 %)

pEC50 = 5.343 (±0.516) + 0.567 (±0.562) *
fnotringNsp3C3B + -0.043 (±0.198) * faccH4B + -0.108
(±0.352) * com_lipohyd_3A + -0.208 (±0.555) *
ringC_sp3N_2B

Validation parameters for QSAR model: R2: 0.8425, R2
adj:

0.8183, Q2
loo: 0.7762, R2-Q2

loo: 0.0663, R2-R2
adj: 0.0242, Kxx:

0.2178, Delta K: 0.1545, RMSE tr: 0.2203, RMSE cv: 0.2626,

RMSE ex: 0.2014, Sy: 0.2405, F: 34.7785, Q2-F1: 0.6342,
Q2-F2: 0.6168, Q

2-F3: 0.8683, CCC tr: 0.9145, CCC cv: 0.8776,
CCC ex: 0.8584, r2m av: 0.6534, r2m de: 0.1706, MAE tr:

0.1896 , MAE cv: 0.2272, MAE ex: 0.1779, RSS tr: 1.5043,
PRESS cv: 2.1379, PRESS ex: 0.2434 , R2

LMO: 84.6802, Q
2
LMO:

73.6421, R2
Yscr: 13.6730, Q

2
Yscr: �25.4536

In the present QSARmodeling work, various statistical val-
idation parameters were suggested to justify the internal and
external robustness and have typical meaning (see supplemen-
tary material for detailed descriptions and formulae). The high

value of unlike statistical parameters like R2
tr (coefficient of

determination), R2
adj. (adjusted coefficient of determination),

and R2
cv (Q

2loo) (cross-validated coefficient of determination

for leave-one-out), R2
ex (external coefficient of determination),

Q2�Fn andCCCex (Concordance CorrelationCoefficient) etc.
and low value of LOF (lack-of-fit), RMSEtr (Rootmean square

error), MAEtr (Mean absolute error), R2
Yscr (R2 for Y-

scrambling), etc. alongside different graphs obtained in the
developed QSAR model explain the statistical robustness as
well as excellent internal and external predictive ability with

no chancy correlation. Furthermore, the Williams plot speci-
fies that the model is statistically satisfactory (see Fig. 5). Thus,
the developed QSAR model satisfies all the Organisation for

Economic Co-operation and Development (OECD) suggested
guidelines. (See supplimentary material section 1.3.1 for

explanation and calculation method of various statistical

parameters)

3.2. Discussion

A properly developed and validated QSAR model successfully
established a correlation between a salient pharmacophoric
traits presented by molecular descriptors and their biological
activity, that extend hidden information about mechanistic

features of molecule, specificity of particular substituents and
even presence or absence of various pharmacophoric aspects
critical for SARS-CoV 229e 3CLpro inhibition. Although, in

the developed QSAR model, we have compared the EC50 value
of diverse dataset molecules in correlation and as an effect of
certain molecular descriptor, however a similar or opposite

effect of other molecular descriptors or unknown features hav-
ing a prevailing influence in determining the general EC50

value of a molecule cannot be ignored. Moreover, In other
words, a single molecular descriptor is not sufficiently expert

of fully clarifying the experimental EC50 value for such a
diverse set of molecules. That is, the successful application of
the established QSAR model depend on the simultaneous

usage of constituent molecular descriptors.

3.2.1. Mechanistic interpretation of descriptor

3.2.1.1. FnotringNsp3C3B. The descriptor fnotringNsp3C3B
point out closer to the frequency of prevalence of sp3 hybri-
dized carbon atom precisely at three bonds from non-ring

nitrogen atom. The descriptor fnotringNsp3C3B has nice core-
lationship with the pEC50, therefore increase in the wide vari-
ety of such combination in molecule, and may similarly

enhances the SARS-CoV 229e 3CLpro inhibition.
The calculation of the fnotringNsp3C3B descriptor was dis-

allowed if the same sp3 hybridized carbon atom was once

simultaneously present at one or two bonds from any different
non-ring nitrogen atom. This statement supports, when we
have compared the structures of molecule 1(pEC50 = 6.69,

fnotringNsp3C3B = 3) and 37(pEC50 = 4.22,
fnotringNsp3C3B = 0). If, we amplify the value of the descrip-
tor fnotringNsp3C3B from 1 for the molecule 37 to 3 resulted
into increase in the pEC50 by means of about 2.47 unit (about

20-fold expand in the SARS-CoV 229e 3CLpro inhibition).
Furthermore, the presence of a sp3 hybridized carbon atom
at 3 bonds from a non-ring nitrogen atom performs a neces-

sary role in SARs covid viral inhibition when we consider that
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it increases hydrophobicity and offers an electrostatic function
to the molecule 1. Molecular 37, on the different hand, lacks
the same property, which ought to be the reason of the discrep-

ancy in pEC50 of these molecules. (See Fig. 3), Similar obser-
vation is revealed when we have in contrast molecule 2
(pEC50 = 6.30 nm, fnotringNsp3C3B = 3) with molecule 34

(pEC50 = 4.43 nm, fnotringNsp3C3B = 0).

3.2.1.2. FaccH4B. The descriptor faccH4B highlights the fre-

quency of hydrogen atoms precisely at four bonds from the
acceptor atoms. Because the descriptor has a negative correla-
tion with pEC50, adding greater nitrogen atoms at four bonds
from the acceptor atom might also decrease the pEC50 value of

these molecules. If the identical Hydrogen atom is simultane-
ously existing at two to three bonds from any acceptor atom,
then it was once excluded at some stage in the calculation of

faccH4B.
The poor pEC50 for the molecule 33(pEC50 = 4.60) and 37

(pEC50 = 4.22) could be attributed to the frequency of occur-

rence of such hydrogen atoms exactly at 4 bonds from the
acceptor atoms. (faccH4B = 14). This ought to be the possible
reason for the variation in the biological activity of the mole-

cule1 (pEC50 = 6.69, faccH4B = 12), 37(pEC50 = 4.22,
faccH4B = 14) resp (See Fig. 4). If, we limit the value of the
descriptor faccH4B from 14 for the molecule 37 to the 12
resulted into increase in the pEC50 by about 2.47 unit (about

20-fold amplification in the SARS-CoV 229e 3CLpro inhibi-
tion) (see Fig. 5).

Because this descriptor has a negative coefficient in the gen-

erated models, the number of hydrogen atoms close to the 4
bonds acceptor atom is a proper combination to hire for
SARS-CoV 229e 3CLpro lead/drug optimization. Because

hydrogen is the smallest element, it suggests that the bulk in
the vicinity of ring Nitrogen atoms be stored to a minimum.
To enhance SARS-CoV 229e 3CLpro inhibition, steric bulk

close to acceptor atom inside four bonds atoms be decreased
or averted in future changes.

3.2.1.3. Com_lipohyd_3A. This descriptor signify the preva-

lence of hydrophobic atoms inside 3A0 from the center of mass
Fig. 4 Presentation of the descriptor faccH4B for the molecules

1 and 37 only.
of the molecule. It has a negative coefficient in the developed
QSAR model; therefore, growing the number of such
hydrophobic atoms may want to end result in the reduced

EC50 value for a molecule for SARs covid virus. The under-
privileged pEC50 values for the molecules 35(pEC50 = 4.35,
com_lipohyd_3A = 4), 36(pEC50 = 4.34, com_lipo-

hyd_3A = 3) and 37(pEC50 = 4.22, com_lipohyd_3A = 3)
may want to be associated with the occurrence of hydrophobic
atoms inside 3A0 from the center of mass of the molecule. This

observation supported, when we have compared another pair
of molecules, 25 (pEC50 = 5.05, com_lipohyd_3A = 3) with
3 (pEC50 = 6.22, com_lipohyd_3A = 1). If, we limit the value
of the descriptor com_lipohyd_3A from 3 for the molecule 25

to 1 will give upward thrust to the 2 expand in the pEC50 via
about 1.17 unit (about eleven fold increase in the SARS-CoV
229e 3CLpro inhibition). Furthermore, in some molecules

namely; 1(pEC50 = 5.10, com_lipohyd_3A = 0), 18
(pEC50 = 5.10, com_lipohyd_3A = 0) and 20
(pEC50 = 5.10, com_lipohyd_3A = 0), lipo-hydrophobic

atom is absent therefore, it is exhibits that there is a require-
ment of only one lipo-hydrophobic atom inside 3A0 from the
center of mass of the molecule. This statement is supported,

when we have in contrast the activity of molecule 1
(pEC50 = 6.69, com_lipohyd_3A = 1) with the molecule
17, 18 and 20.

3.2.1.4. RingC_sp3N_2B. The presence of a sp3 hybridized
nitrogen atom within two bonds from ring carbon atoms is
represented by this description. In the mounted QSAR model,

this descriptor has a negative coefficient; thus, an amplification
in the number of such sp3 hybridized nitrogen atoms should
result in a decrease in the EC50 value for the molecule for

SARS-CoV 229e 3CLpro. The poor EC50 for the molecules
34 (pEC50 = 4.40, ringC_sp3N_2B = 3), 35 (pEC50 = 4.35,
ringC_sp3N_2B=4), 23 (pEC50= 5.05, ringC_sp3N_2B=3),

25 (pEC50 = 5.05, ringC_sp3N_2B = 3) and 26
(pEC50 = 5.051, ringC_sp3N_2B = 1) may additionally
attributed to the high frequency of occurrence of such sp3
hybridized nitrogen atoms. In the existing dataset, there are

around 14 molecules which have 3 to 1 such sp3 hybridized
nitrogen within 2 bonds from the ring carbon atoms. Based
on this analysis, it is rationale to say that, close combination

of such nitrogen atom and ring carbon atom should be eluded
in future to have higher EC50 for SARS-CoV 229e 3CLpro
inhibition. Alongside, molecule 1(pEC50 = 6.69,

ringC_sp3N_2B = 0), 2(pEC50 = 6.3, ringC_sp3N_2B = ),
3(pEC50 = 6.2, ringC_sp3N_2B = 0), 7(pEC50 = 5.74,
ringC_sp3N_2B = 0), 8(pEC50 = 5.74, ringC_sp3N_2B = 0),
and 9(pEC50 = 5.60, ringC_sp3N_2B = 0) show absence of

such Sp3 hybridized nitrogen atoms, that ought to be the pos-
sible cause for the decrease in the activity of these molecules.

The constituent molecular descriptors obtained in the GA–

MLR QSAR model have presented visible and hidden records
about the structure landscapes linked to a various set of mole-
cules investigated for their activity against SARS-CoV 229e

3CLpro inhibition in the current QSAR study. It is essential
to recognize that no single molecular description can totally
explain the supported EC50 distribution for such a numerous

set of molecules. That is, the performance of the built QSAR
model is dependent on the employment of constituent molecu-
lar descriptors at the equal time.



Fig. 5 Different graphs associated with the developed Quantitative Structure � Activity Relationship (QSAR) model: (a) experimental

vs predicted pEC50 and (b) Williams plot to assess applicability domain of model, and (c) Insubria Plot.
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3.3. QSAR-Based virtual screening

Supplementary Materials include SMILES notations, calcu-

lated molecular descriptor values, pEC50, and EC50 for a
100-compound in-house library utilized for virtual screening.
We’ve included the five most active and five least active hit

molecules from the in-house library, as predicted through the
created QSAR model, for the sake of convenience. (See Fig. 2)
3.3.1. Docking analysis

SARS-CoV 3CLpro is a dimeric protein with three domains in

each subunit. 3CLpro has a massive loop between -strands C1
and D1, in accordance to structure-based sequence alignment.
SARS-CoV 3CLpro’s C1–D1 loop keeps the P2 facet chain in
the S2 hydrophobic pocket. The C1–D1 loop of SARS-CoV

3CLpro secures the S2 hydrophobic pocket for the P2 side
chain. Gln as the P1 residue, a hydrophobic residue at the



Fig. 5 (continued)
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P2 position, and a brief amino acid residue at the P1 position
are all identified by means of 3CLpro with similar substrate

specificity. (see Fig. 6).
To unfold binding mode and interactions, the dataset mole-

cule 4 and a known inhibitor such as TG-0204998 were docked

into the active binding pocket of SARs Cov 229e 3CLpro in this
study.

The substrate binding subsites are chosen as S1, S1, S2, S3,
and S4. with preserved water molecules. The catalytic dyad of

His-Cys is located in the active site in the cleft between
Fig. 6 Depiction of Molecule 4 orientation within the bin
domains I and II, whereas domain III participates in the pro-
tease dimerization. TG-0204998, the unsaturated ethyl ester

occupies the S1site, which is in close proximity to the catalytic
center. Therefore, we have selected native binding site of
known inhibitors, TG-0204998 as an active site in the docking

protocol.
The TG-0204998 is the peptidomimetic inhibitors of SARs

Cov 229e 3CLpro, whose X-ray resolution shape is used to val-
idate the docking protocol. The alignment of SARs Cov 229e

3CLpro with the TG-0204998 and the molecule four is
ding pocket of SARS-CoV 229e 3CLpro (pdb id-2zu2).



Fig. 7 Display of Superimposed structures of Molecule 4 (Green colored) with Molecule TG-0204988 (Cyan Colored) within the binding

pocket of SARS-CoV 229e 3CLpro (pdb id-2zu2).
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depicted in Fig. 7, which mean that the docking protocol is
agreeable (see Fig. 7). Table 2 divulges the docking scores
for the 5 most active and 5 least active dataset molecules.

In this paper, we have identified a novel class of SARs Cov
229e 3CLpro inhibitor by performing a computer aided drug-
design protocol. Our experiment contain selection of the data-

set containing 37 structurally diverse compounds whose activ-
ity was predicted by using QSAR modelling. Further, the
developed QSAR model was once used to predict the biologi-

cal activity of in-house library undertaking of 100 numerous
compounds. Successively, we have docked all the hundred
compounds into the SARs Cov 229e 3CLpro. On the founda-
tion of docking simulation outcomes (docking score), we have

chosen 5 most active and 5 lease active hit compounds accom-
panied through molecular dynamic simulation and binding
free energy calculations.

Amongst the five most active molecules, molecule 4 (-
8.473 kcal/mol) and molecule 5 (-9.605 kcal/mol) achieved
good docking score but, RMSD value become less for the

molecule 5; therefore. Molecule four is chosen for the docking
analysis. The molecule four with the RMSD value of 1.609 dis-
play better fit into the binding pocket of SARS-CoV 229e

3CLpro. The 2D and 3D interactions of molecule 4 with
SARS-CoV 229e 3CLpro is presented in Figs. 2 and 3 Even
though, some inactive molecule namely, molecule 35 collect a
docking score of �10.147 kcal/mol with the RMSD value of

2.53, that should be attributed to the large size of the molecule
10, as in contrast to molecule 4.

3.3.2. Docking pose analysis of the most active molecule 4

The molecule 4 bind to the active site of SARS-CoV 229e
3CLpro as that of the TG-0204998 in the similar manner.
Chemically, molecule 4 is a (S)-N-benzyl-3-((S)-2-cinnama

mido-3-cyclopropylpropanamido)-2-oxo-4-((S)-2-oxopyrroli
din-3-yl) butanamide. The terminal benzyl substituent
anchored with hydrophobic residue ALA: 1 thru pi-cation

interactions. Likewise, 2-cinnamamido moiety subsequent to
the benzyl moiety structure a hydrogen bond with the nega-
tively charged residue GLU165 through the involvement of a
water molecule, while cinnamamido nitrogen form a hydrogen
bonding contact with polar residue ASN B:14. Here, Glu165 is
a necessary residue for keeping the enzyme in proper confor-

mation. (See Fig. 8)
Further, the cyclopropyl substituent show exposure to the

solvent whilst adjoining carbonyl oxygen bind with water

molecule by hydrogen bonding interactions. Concurrently,
oxygen atom of 2-oxopyrrolidin bind with negatively charged
residue GLU165 through means of hydrogen bonding interac-

tion whereas, terminal 2-oxo oxygen attached with Gly143
residue the usage of hydrogen bond. At the same time, adja-
cent benzamide oxygen anchored hydrogen bond with the
hydrophobic residue Cys144, which form the S2 pocket of

the SARS-CoV 229e 3CLpro. Moreover, pyrrolidine ring form
a close contact with the catalytic polar residue His B: 41 Here,
it show off Pi-alkyl contact with the His B: 41 which signify the

inhibitory impact of SARS-CoV 229e 3CLpro.
The identical observation is indicated by using the descrip-

tor fnotringNsp3C3B, highlight the significance of sp3 hybri-

dized carbon atom exactly at three bonds from non-ring
nitrogen atom. In the molecule 4, cinnamamido nitrogen struc-
ture hydrogen bonding with the polar residue Asn141 while

Sp3 hybridized C1 carbon atom of cyclopropyl flexibly
exposed the molecule 4 to the solvent accessible surface area
of the receptor. Thus, QSAR and molecular docking results
are analogous and are complimentary. Further, the descriptor

faccH4B signify that, the presence of least quantity of hydro-
gen atom precisely at four bonds from acceptor atom in the
ligand molecule is recommended for biological activity. The

much less density of hydrogen atoms in the close proximity
of the acceptor oxygen atom in the molecule 4 leads to the less
steric bulk, which facilitate the desirable binding and align-

ment of molecule into the active pocket. This justify that,
QSAR analysis showed right correlation with the docking
results. Subsequently, the descriptor com_lipohyd_3A mean
the prominence of the lipo-hydrophobic atoms within 3A0

from the center of mass of the molecule. Herein, center of mass
of the molecule 4 is located near cyclopropylamido nitrogen
atom, where no bulky hydrophobic substituent is present



Table 2 Portrayal of Structures, Docking Score (kcal/mol) and RMSD values for the five most active and five least active dataset

molecules.

Molecule Structures Docking Score RMSD

1 �7.1447477 2.7707791

2 �7.8803358 1.7312964

3 �7.3945093 2.4114711

4 �8.4731464 1.6090333

5 �9.605979 2.440057

33 �7.4059458 1.5316099

34 �6.7014847 2.1337159

35 �10.147323 2.534488

36 �6.8096747 2.0087693

37 �7.909008 1.5497004
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within the vicinity of 3A0; therefore, it flexibly align the mole-
cule four in the S2 pocket of the SARS-CoV 229e 3CLpro.

This implies that, docking outcomes are in good agreement
with QSAR analysis. Finally, the descriptor ringC_sp3N_2B
gives an idea about the prevalence of sp3 hybridized nitrogen

atom within 2 bonds from ring carbon atoms. In this, molecule
four don’t have such kind of combination which may addition-
ally drop the binding affinity against SARS-CoV 229e 3CLpro.

This exhibits that, QSAR analysis correctly identified con-
cealed and hidden structural characteristic decisive for
SARS-CoV 229e 3CLpro inhibition.

3.3.3. Docking pose analysis of the most active hit molecule 97

Table 3 shows the molecular docking scores for the six most
active and six least lively hit molecules. With a docking score

of �8.043 kcal/mol and an RMSD of 1.53257, hit no. molecule
97 emerged as the most active of the 100 hit molecules. It
reveals a 6.089 predicted EC50. Although various hit



Fig. 8 Presentation of 2D interaction of molecule 4 with SARS-CoV 3CLpro (pdb id-2zu2).
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molecules, such as 19, 6, 39, 91, and 38, exhibited robust pre-
dictive activity, but they did now not have top binding charac-

teristics, consequently hit molecule 97 was chosen as the most
outstanding hit for the analysis.

Chemically, hit molecule 97 is (S)-3-(2-((2-(sec-

butylamino)-2-oxoethyl) thio)-4-oxoquinazolin-3(4H)-yl)-N-(
3, 4-dimethoxyphenethyl) propenamide). To verify the binding
mode of hit molecule 97, we have docked it into the SARS-

CoV 3CLpro. The docking pose analysis exhibits that, hit
molecule ninety-seven bind with the SARS-CoV 3CLpro via
hydrogen bonding and hydrophobic contacts with the involve-
ment of water molecules. The drug receptor interaction give

rise to the docking score of �8.043 with the RMSD of 1.53.
This results support that, the molecule 97 have very good fit-
ting and affinity for SARS-CoV 3CLpro. (See Figs. 9, 10

and 11)
In the molecule 97, the 2-oxo-ethylthio oxygen form a

hydrogen bonding interaction with the key amino acid residue

His B: 41, which form a catalytic dyad of SARS-CoV 3CLpro
and an important amino acid residue in the S1 pocket (See
Fig. 10). Further, the terminal side chain substituent di meth-

oxy substituted phenyl ring structure a pi-cation contact with
the hydrophobic residue Ala: 1 of S2 hydrophobic pocket.
Next, 4-oxoquinazolin oxygen atom bind with Thr B: 7 residue
through hydrogen bonding interaction with the involvement of

water molecule. Moreover, propanamide oxygen in amide
linkage joining quinazoline and dimethoxy phenyl ring, form
a contact of hydrogen bond with the negatively charged Glu

B:165 residue, while amide nitrogen anchored a hydrogen
bond with the Asn B:141 residue. Here, binding of hit molecule
97 into the respective S1 and S2 binding pocket of SARS-CoV

3CLpro give an explanation for its binding specificity. Our
docking evaluation outcomes provide a structural basis for
the optimization of the Hit molecule 97 and development of
potential candidate for the antiviral therapies.

3.4. Molecular dynamic simulation based analysis for the

molecule 4 and hit molecule 97

Root mean square deviation (RMSD) of the C-a backbone of
229e with ligand coupled complex confirmed a fairly stable
structure, with a fluctuation of 80 Å denoted as a pink colored

line. However, the ligand Hit Molecule 97, RMSD was once at
first slightly distorted until 40 ns, after which it grew to be
steady from 70 ns to 100 ns with no in addition variations.
The RMSD of the C-a spine of HcoV 229e with ligand bound

complex, on the other hand, confirmed a relatively stable struc-
ture with a fluctuation of 80, as proven by the green colored
line. However, the ligand Molecule 4, RMSD exhibited minor

distortions until 50 ns, after which it became stable from 60 ns
to a hundred ns, with no similar fluctuations. (See Fig. 12)

On the other hand, root mean square fluctuations of respec-

tive amino acids of C-a spine of 2 displayed least fluctuations
signifying the stable protein structure (Fig. 13).

Ligand-protein interactions might also be tracked for the

duration of the simulation. There are 4 sorts of interactions:
additive, multiplicative, functions, and symmetric. Hydrogen
bonds, hydrophobic, ionic, and water bridges are classifica-
tions of protein–ligand interactions. Ligand interaction of

Hit Molecule 97 with the binding site residues of 229e and
molecule 4 with the binding site residues of Hcov_229e; dis-
played the formation of non-bonded interactions such as

hydrophobic interaction as shown in Fig. 14(A) & (B).
The radius of gyration (Rg) is the indicator of the size and

compactness of the protein in the ligand-bound state displayed

in Fig. 12. We have observed the Rg plot of Ca-backbone of



Table 3 Presentation of Structures, Docking Score (kcal/mol), RMSD and PEC50 values for the five most active and five least active

Hits obtained in QSAR Modeling Based Virtual Screening.

sn Molecule Structure Docking score RMSD PEC50 status

1 19 �6.960 1.368 6.872 Most active

2 6 �7.126 2.978 6.743 Most active

3 39 �7.126 1.598 6.678 Most active

4 91 �6.728 2.3425 6.175 Most active

5 97 �8.043 1.53257 6.089 Most active

6 38 �7.335 1.666 6.025 Most active

7 4 �6.627 2.1068397 3.937 Least active

8 9 �7.485 1.298 3.921 Least active

9 59 �6.756 1.814 3.743 Least active

10 98 �6.948 0.9944 3.657 Least active
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Table 3 (continued)

sn Molecule Structure Docking score RMSD PEC50 status

11 94 �7.533 1.638 3.635 Least active

12 70 �7.042 2.106 3.592 Least active

Fig. 9 Presentation of 2D interaction of Hit molecule 97 with SARS-CoV 3CLpro (pdb id-2zu2).
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229e- Hit Molecule 97 (red) and Hcov_229e-complex molecule
4(black) bound protein complex in Fig. 12 having significant
compactness well after the last 40 ns with an average of

25.8 Å deviation indicating the significant convergence. We
observed less Rg score in complex molecule 4 bound 229e com-
plex with 25.6 Å throughout the simulation (Figure S1, black,
See Supplimentary material). But we observed the high lower-

ing of Rg in Hcov_229e- Hit Molecule 97 bound complex (Fig-
ure S1, red, see Supplimentary material), which signify less
compactness and lesser stability comparatively.
We have also recorded the average hydrogen bonds formed
between complexes Hcov_229e- Hit Molecule 97 (red) & 229e-
complex molecule 4(black), during the 100 ns simulation in

(Figure S2, see Supplimentary material). The average hydrogen
bond formed for complex Hcov_229e- Hit Molecule 97 (red) is
1 and for complex 229e-complex molecule 4(black) is 2.

A chronology of the interactions and contacts that were

listed on the preceding page. The (Figure S3, See Supplimen-

tary material) displays the total number of distinct interactions
the protein makes with the ligand during the journey. Ligand-



Fig. 10 Depiction of Hit Molecule 97 orientation within the binding pocket of SARS-CoV 229e 3CLpro (pdb id-2zu2).

Fig. 11 Display of Superimposed structures of Hit Molecule 97 (Green colored) with Molecule TG-0204988 (cyan Colored) within the

binding pocket of SARS-CoV 229e 3CLpro (pdb id-2zu2).

Fig. 12 Root mean square deviation (RMSD) of C-a backbone

of 229e (red) with Hit Molecule 97and Hcov_229e(green) with

ligand compound 4 for 100 ns simulation exhibiting a stable

configuration of 229e-hit6 & Hcov_229e-compound4.

Fig. 13 Root mean square fluctuation of C-a backbone of 229e

(red) & Hcov_229e (green) at its respective amino acid residues for

100 ns simulation exhibiting a stable configuration.
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Fig. 14 The types of bonds and the amino acid residues that participated during 100 ns of simulation; (A)229e- Hit Molecule 97, (B)

Hcov_229e-complex molecule 4.
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interacting residues are shown on the bottom panel in Fig-

ure S4 in Supplimentary material. Some residues make several
specific contacts with the ligand, which is shown by a deeper

shade of orange on the y-axis.The range of distribution of dis-
tinct forms of the molecule is determined by the RMSD of a
ligand to the reference conformation. Calculate the radius of
gyration using the ligand’s ‘‘extendedness,” which is equal to

the ligand’s moment of inertia. In a ligand molecule, the num-
ber of intramolecular hydrogen bonds (intramolecular HB).

Use a probe radius of 1.4 to estimate the molecular surface

area. This is the van der Waals area. Use the formula with the
oxygen and nitrogen atoms acting as the entire composition to
get the PSA. Figure S5 (See Supplimentary material) highlights

the ligand characteristics such as RMSD, radius of gyration
(rGyr), intramolecular hydrogen bond, molecular surface area
(MolSA), solvent accessible surface area (SASA), and polar
surface area (PSA). Both the ligands possess an intramolecular
hydrogen bond.

A detailed molecular structure drawing that depicts the
ligand molecules’ molecular structure as well as specific amino
acid residue interactions with protein residues. Interactions
that occur 12.0 % or more of the simulation time are reported

if the simulation lasts from 0.00 to 100.00 nsec. Some residuals
are capable of interacting with the same ligand atom via a vari-
ety of interactions. From the Fig. 15(A) it can be concluded

that Glu165 is charge negatively; Ile164, Pro188, Leu190 are
having hydrophobic interactions; while Thr25, His41, Asn46,
Thr47, Ser49, Asn189, Gln191 are showing polar interactions

with the ligand Hit Molecule 97. While from the Fig. 15 (B)

it can be concluded that Pro188 is showing hydrophobic



Fig. 15 2D interaction plots showing ligand interactions of 229e with (A) Hit Molecule 97 & (B) complex molecule 4 with the binding

cavity residues of SARS-CoV 3CLpro.
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interactions; Asp186 is negatively charged; Gly142 is showing

a hydrophilic interaction; while His41, Thr47, Asn141, Gln163
are having a polar interaction with the ligand complex mole-
cule 4. (see Figs. 16 and 17 for 2D and 3D depiction of hit

molecule 97 and molecule 4)

3.5. Molecular mechanics generalized Born and surface area
(MMGBSA) calculations

MMGBSA is a popular method in calculating the binding
energy of ligand to protein molecules. The estimation of the
binding free energy of each of the protein–ligand complexes,

as well as the role of other non-bonded interactions energies
were estimated. The average binding energy of the ligands
dataset compound 4 (229e-complex4), most active hit molecule

97 (229e-hit6) and least active hit molecule 70 with SARS
CoV-229E 3CLpro were found to be –32.2 ± 7.6, �53.81 ± 6
.7 and �7.2 ± 3.4, respectively (Table 4). The DGbind is influ-
enced by of various types of non-bonded interactions, includ-

ing DGbind Coulomb, DGbindCovalent, DGbindHbond,
DGbindLipo, DGbindSolvGB and DGbindvdW interactions.
Among all the types of interactions DGbindvdW, DGbindLipo

and DGbindCoulomb energies contributed most to achieve the
average binding energy. In contrast, DGbindSolvGB and
DGbind covalent energies contributed the lowest to attain
the final average binding energies (see Fig. 18).

3.5.1. Results presented in Mean ± SD

In addition, the values of DGbindHbond interaction of hit

molecule 97, dataset compound 4 and 70-inactive protein com-
plexes showed the stable hydrogen bonds with the amino acid
residues. In all the complexes DGbindSolvGB and
DGbindCovalent showed unfavorable energy contributions

and thus opposed binding. It is observed from Fig. 18, at
pre-simulation (0 ns) dataset compound 4, most active hit
molecule 97 and least active hit molecule 70 at the binding



Fig. 16 Presentation of 3D and 2D interaction of Hit Molecule 97 in complex with SARS-CoV 3CLpro.

Fig. 17 Presentation of 3D and 2D interaction of Molecule 4 in complex with SARS-CoV 3CLpro.

Table 4 MMGBSA binding energy contribution by non

bonded interactions by 229e-complex4, 229e-hit6 and 70-

inactive molecules with the target protein.

Energies

(kcal/mol)

229e-

complex4

229e-hit97 70-inactive

DGbind –32.2 ± 7.6 �53.81 ± 6.7 �7.2 ± 3.4

DGbindLipo �13.8 ± 2.9 �19.5 ± 2.4 �5.6 ± 1.1

DGbindvdW �38.1 ± 7.7 �52.2 ± 7.2 �4.8 ± 6.0

DGbindCoulomb �8.1 ± 7.9 �14.0 ± 9.1 �2.8 ± 0.9

DGbindHbond �0.14 ± 0.2 �0.95 ± 0.1 �0.49 ± 0.3

DGbindSolvGB 23.6 ± 9.1 30.6 ± 5.4 2.2 ± 0.7

DGbindCovalent 4.9 ± 2.3 2.8 ± 1.9 3.1 ± 3.5
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pocket of SARS CoV-229E 3CLpro undergone substantial
angular movement of the pose (curved to straight) after post

simulation (100 ns). These conformational changes conse-
quences the better acquisition at the binding pocket as well
as the interaction with the residues for higher stability and bet-

ter binding energy.
Thus MM-GBSA calculations resulted, from MD simula-

tion trajectories well corroborated with the binding energies
calculated from the docking results. Therefore, it can be sug-

gested that the dataset compound 4, most active hit molecule
97 has good affinity for the major target SARS CoV-229E
3CLpro. However, least active hit molecule 70 displayed least



Fig. 18 MMGBSA trajectory (0 ns, before simulation and 100 ns, after simulation) exhibited conformational changes of dataset

compound 4(a), most active hit molecule 97(b) and least active hit molecule 70 upon binding with the protein SARS CoV-229E 3CLpro.

The arrows indicating the overall positional variation (movement and pose) of dataset compound 4, most active hit molecule 97 and least

active hit molecule 70 at the binding site cavity.
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binding energy with SARS CoV-229E 3CLpro. The
MMGBSA trajectories displayed the conformational changes
in the dataset compound 4, most active hit molecule 97 and

least active hit molecule 70 to achieve the best fitting in the
binding cavity of the protein.

4. Conclusion

Throughout of this paper, QSAR modelling, QSAR-based vir-
tual screening, molecular docking, and MD simulation reality

findings are used to uncover the new molecule as a SARS-CoV
229e 3CLpro inhibitor. Expending four descriptors, a GA-
MLR based QSAR model is invented to understand the essen-

tial pharmacophoric prospect accountable for the SARS-CoV
3CLpro inhibition. Ensuing OECD directions, the QSAR
model was once appraise for both internal and external valida-

tion measures. Pharmacophoric characters counting fno-
tringNsp3C3B, faccH4B, com_lipohyd_3A, and
ringC_sp3N_2B seems as prominent aspects that deliver
SARS-CoV 3CLpro inhibition, concurrent to the cutting-

edge investigation. Internal and external validation specifica-
tion in the derived model have a high value. In addition,
QSAR-based virtual screening yielded a compound with a

lower PEC50 value of 5.88 nm and a higher PEC50 value of
6.08. Furthermore, molecular docking investigation of mole-
cule 4 into the SARS-CoV 3CLpro proclaim the key pharma-

cophoric moieties implicated in the binding interactions that
are accountable for the inhibitory potential. The MD simula-
tion and Molecular Docking evaluation divulge the imperative
pharmacophoric centers like benzene ring, phenyl ring, amide

oxygen and nitrogen etc. plays vital position in executing
hydrogen bonding and hydrophobic interactions with the key
amino acide residues namely; Ile164, Pro188, Leu190, Thr25,

His41, Asn46, Thr47, Ser49, Asn189, Gln191, His41, Thr47,
Asn141. In order to produce effective and selective SARS-
CoV 3CLpro inhibitors, QSAR and molecular docking yielded

a consensus as well as complimentary pharmacophoric fea-
tures, which should be kept in the future. Finally, the extraor-
dinary high docking score of hit molecule 97 with SARS-CoV

3CLpro explains the higher affinity and opens up new domain
for a novel SARS-CoV 3CLpro inhibitor drug.
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� See supplimentary material section 1.3.1 for explanation

and calculation method of various statistical parameters.
� Section 1.3.3 Figure S1, S2, S3, S4, S5.

� Excel file contains smiles for dataset compound along with
EC50 & PEC50,Calculated descriptors for dataset molecule
and Smiles notation for 100 in house library of compounds

used in QSAR based Virtual Screening and their Predicted
pEC50 values.

Supplementary data to this article can be found online at
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