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Abstract: Graphene is a powerful 2-D matter with the capability of extraordinary transparency, and
tunable conductivity is employed in emerging optoelectronics devices. In this article, the design of an
electrically tunable graphene-based perfect terahertz absorber is proposed and evaluated numerically.
The introduced structure is composed of two graphene layers with a sharp absorption peak in the
terahertz band. These graphene layers are combline and stripline separated by the insulator substrate.
The position of the absorption peak is tunable on the absorption band by means of manipulation in
geometric parameters of the combline graphene layer. Furthermore, the intensity and frequency of
the absorption peak can be flexibly modulated by varying Fermi potential of the combline graphene
layer, which can be controlled through external DC voltages without the need of changing the
geometry of the structure. It is shown that the absorption band can be tuned in the bandwidth from 5
to 15 in terahertz. The findings of this paper can promote a new perspective in designing perfect
ribbon absorbers based on graphene properties that can be utilized for future photodetectors, solar
cells, and thermal sensors with an absorption intensity above 2 × 105 (nm2) with narrow absorption
bandwidth of 0.112 THz.

Keywords: graphene; perfect absorber; plasmon; fermi energy; tunable

1. Introduction

In recent years, terahertz electronic devices have been significantly developed by
utilizing metamaterials properties, and many researchers are attracted to this field. Work-
ing on the metamaterial regime due to exotic features with an exceptional conductivity
leads to the creation of great high-tech achievements [1,2]. With the advent of the Surface
Plasmon Resonance(SPR) phenomenon, the fabrication procedure of equipment based on
terahertz technology is also revolutionized, especially manufacturing detectors and perfect
absorbers [3,4]. The various wide range of absorbers as polarization insensitive/dependent
absorbers [5,6], broad/narrowband absorbers [7–9], hyperbolic absorbers [10], plasmonic
absorber [11,12], and van der Waals (vdW) absorbers [13,14] have been engineered from
microwave [15], through terahertz [16], infrared [17], and also into the visible range [18].
Recently, perfect absorbers composed of graphene have demonstrated a satisfactory perfor-
mance due to its extraordinary electrical properties, optical transparency, flexibility, high
electric mobility, and controllable conductivity [19].

Graphene is a 2D nanomaterial comprising one monolayer of carbon atoms organized
in a honeycomb lattice [20,21]. Within infrared and terahertz frequency range, the surface
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plasmon polariton properties of graphene make this potential to generate the sharp peaks in
the broad spectral region undertaking interaction between the incident light and graphene
configuration, which can design such as nanostripes, nanoribbons, nanodisks, rings, and
L-shaped arrays [22]. On one aspect, the conductivity surface of graphene plays a crucial
role in setting the plasmonic resonance in the absorption band. The electrostatic control of
conductivity gives the potential to adjust peaks regarding plasmonic resonances in perfect
absorbers and detectors constructed by graphene [23–25]. Graphene can function as a
gate-voltage element whose optical features depend on chemical potentials that can be
varied using an external voltage. On this basis, the optical response in the absorption
band can be engineered through structures that are configured with graphene [26]. Recent
studies illustrate a particular attraction in the design of absorbing devices based on a
single graphene layer and investigations of design challenges in the near-infrared and
visible ranges [27,28]. For microwave range, the graphene layer is also interestingly used
to design an optically tunable absorber [29] and switchable radar absorbing surfaces [30].
One of the most straightforward configurations that can be utilized to design a tunable
terahertz absorber is combline architecture. Such structures have already been used to
design radiofrequency filters for wireless and mobile applications based on advantages as
small size, low cost of its fabrication, and high-quality factor [31,32].

This article proposes a unique absorber structure composed of graphene combline
layers and a stripline with a particular metal and insulator configuration, which can be
tuned independently by an external voltage bias. The results regarding the suggested
structure are established via highly numerical simulations in CST Microwave Studio.
Shifting the resonant peak of the presented absorber is demonstrated by applying voltage
bias as the Fermi level of graphene changes. Moreover, the effect of the size variation of the
graphene layers on the current configuration is evaluated. The electric field distribution on
the conductivity surface of graphene is to be revealed by finding a better understanding of
the involved physical mechanisms.

2. Theoretical Background

The conductivity surface plays a major role in creating the resonant peak through
the absorption band for graphene-based absorbers. Graphene’s conductivity surface
is expressed by Kubo formula [33], where interband and intraband contributions are
as follows:
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where ω is the angular frequency, Ef describes graphene’s Fermi energy, T is the tempera-
ture, KB and e is Boltzmann constant and elementary charge respectively, and h̄ also depicts
the reduced Plank’s constant. It has been proved, when the Fermi energy becomes bigger
than photon energy(h̄ω/2), the interband part of Equation (1) can be ignored in comparison
with the amount of intraband part of the equation due to Pauli blocking [34]. Also, the
conductivity of graphene can be described by selecting the intraband contribution of the
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Drude model, as presented in Equation (2). On this basis, the plasma frequency of graphene
is obtained as below that tg is graphene layer’s thickness in the structure:

ωp =

[
2e2kBT
π}2ε0tg

ln
(

2cosh
E f

2kBT

)]1/2

=

√
α

ε0tg
(5)

On the other hand, the stimulation of graphene through external voltage bias and
then changing Fermi level counts as one of the popular features for graphene. It has
been established that if a DC bias voltage is applied to the structure positioned between
two graphene layers, the Fermi energy (chemical potential) can be tuned. Therefore, the
conductivity surface is adjustable. The approximated formula to estimate the relationship
between bias voltage and Fermi energy level (chemical potential), is given as follows [35,36]:

∣∣∣E f

∣∣∣ = }ν f

√
πεrε0VDC

ets
(6)

Here, εr and ε0 are the primitivity of spacer and vacuum, respectively. ts also define
spacer’s thickness, and VDC shows the external bias voltage. Furthermore, νf is the Fermi
velocity that is equivalent to 1.1 × 106 (m/s). The Fermi level can be set over a broad
range between −1 eV to 1 eV. As an example, a Fermi level is tunned between 0.2 eV to
0.6 eV by applying DC voltages between −240 V to 240 V, correspondingly. For these kinds
of absorbers with the spacer between the graphene layer to avoid dielectric breakdown,
silicon dioxide (SiO2) and Kapton are also suggested as appropriate insulators because of
high dielectric breakdown and low voltage bias.

3. System Design

The schematic demonstration and geometric parameters of the designed model are
illustrated in Figure 1. Three cube structures are stacked on each other, and from the top
of the configuration, there is an insulator with a thickness of 50 nm (h1) and permittivity
of 1.96 [22,37]. Beneath it, another insulator with a depth of 1.5 µm (h2) with identical
permittivity has been placed. In the third layer, a structure of gold with a thickness of 3 µm
(h3) is positioned, which functions as a mirror substrate for THz waves. Two additional
layers of graphene were added to the structure. One of these layers is located above
the insulator and has a nano-stripline, while the other one is embedded between the
first and the second insulator one and has a comb design. The combline patch on the
intermediate substrate is initially dimensioned according to Table 1. The length and width
of the square shape of the cell unit are equivalent to 400 nm. In simulations, the Drude
model is also employed for the gold substrate. On this model, the permittivity of bulk gold
is determined via ε∞ = 1, the plasma frequency ωp = 1.37 × 1016 s−1 and damping constant
ωr = 1.23 × 1014 s−1 [27].

In the case of the graphene layer, the conductive surface has opted for analysis
of construction, and the graphene layer’s thickness is 1nm in the model [38,39]. For
extraction of the desired conductivity concerning graphene by Equation (2), we consider
the temperature and relaxation time as 300 K and 1 ps, respectively [28,40]. Considering
the appropriate data related to temperature and relaxation time is essential for the structure
design because these parameters can change the conductivity and optical properties of
the graphene sheet. As mentioned earlier, the initial geometric values of the combline
graphene layer are demonstrated in Table 1. Accordingly, the number of ribbons of the
graphene layer in the initial design is 23 on each side.
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Table 1. Initial geometries of the combline graphene layer embedded for perfect absorber.

Parameter p (nm) s (nm) d (nm) t (nm) G (nm) L (nm) W (nm)

Size value 7.5 10 25 6.25 25 400 400
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Figure 1. Schematic diagram of terahertz graphene absorber. (a) 3D structure. (b) From the top view.

In order to evaluate the proposed structures in terms of functionality, the absorption
cross-section (ACS) parameter as a measure of the absorption process is obtained, and its
relationship with the absorption efficiency is defined by [41]:

Qabs = σabs/A (7)

Where σabs, Qabs and A are the absorption cross-section (ACS) normalized, absorption
efficiency, and cross-sectional area, and the absorption efficiency corresponds to the cross-
section normalized to the geometrical area of the structure. The simulations are carried out
by numerical computations based on finite integration technique (FIT) in CST Microwave
Studios. We employ a time domain solver of CAD to extract the spectral response of
the introduced perfect absorber in the absorption band. Further, the graphene used in
the proposed combline structure is defined as a thin layer, and boundary conditions are
considered open and space in different directions of the CAD environment around the
implemented configuration. We utilize the default option of CAD in the meshing process
of the simulation structure.

4. Simulation Results

First, the proposed absorber is implemented via the dimensions as mentioned above.
A plane wave as an incident wave with the intensity of 1 v/m shines to structure from
the top, whereas the incidence vector is aligned with the normal vector of the combline
conductive surface of graphene. The transmission parameter concerning the proposed
structure is negligible due to the thickness of the gold substrate and its high refractive
properties; hence absorption and reflection factors count as the key parameters to affect the
optical characterizations of configuration. In addition, the initial Fermi energies considered
for graphene layers are Ef = 0.43 eV for the nanostripe line, Ef = 0.7 eV for combline con-
figuration. These Fermi levels can be provided by applying DC bias voltage separately to
each graphene layer available in the absorber configuration. Based on the initial geometry
of the modeled absorber, Absorption Cross-Section (ACS) of the structure is computed
numerically in the considered absorption band, as demonstrated in Figure 2. The simulated
result shows that the proposed absorber’s absorption peak happens on 11.348 THz in the
absorption band with an absorption rate of 2.366 × 105 nm2. Electromagnetic field distri-
butions of the developed model for transverse electric (TE) and transverse magnetic (TM)
modes in absorption peak indicate that the combline graphene layer of the model plays
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the leading role in the creation of an absorption peak and stimulate plasmon polaritons,
and the coupling effect on the nano stripline is trivial, as shown in Figure 3. This means
that electron density on the nano stripline in this state is minor due to the small width of
the graphene stripline. In the following, this can be outlined that manipulating the Fermi
level in the combline layer can shift absorption peak in the spectral characterization, and
TE mode plays a predominant role in the radiation profile of the proposed structure. In
detail, the electron concentration over the combline sheet embedded between two insula-
tors under interaction with incident light provides a powerful plasmonic scattering that
maximum value of the electric field can be seen in the gap between combline’s ribbons. As
a theoretical point, TE and TM modes are introduced as indicators for polarization inside a
device in which only electric field for TE mode and magnetic field only for TM mode are
considered along the direction of propagation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 13 
 

ture is negligible due to the thickness of the gold substrate and its high refractive proper-
ties; hence absorption and reflection factors count as the key parameters to affect the op-
tical characterizations of configuration. In addition, the initial Fermi energies considered 
for graphene layers are 𝐸 = 0.43 eV for the nanostripe line, 𝐸 = 0.7 eV for combline 
configuration. These Fermi levels can be provided by applying DC bias voltage separately 
to each graphene layer available in the absorber configuration. Based on the initial geom-
etry of the modeled absorber, Absorption Cross-Section (ACS) of the structure is com-
puted numerically in the considered absorption band, as demonstrated in Figure 2. The 
simulated result shows that the proposed absorber’s absorption peak happens on 11.348 
THz in the absorption band with an absorption rate of 2.366 × 10ହ nmଶ. Electromagnetic 
field distributions of the developed model for transverse electric (TE) and transverse mag-
netic (TM) modes in absorption peak indicate that the combline graphene layer of the 
model plays the leading role in the creation of an absorption peak and stimulate plasmon 
polaritons, and the coupling effect on the nano stripline is trivial, as shown in Figure 3. 
This means that electron density on the nano stripline in this state is minor due to the 
small width of the graphene stripline. In the following, this can be outlined that manipu-
lating the Fermi level in the combline layer can shift absorption peak in the spectral char-
acterization, and TE mode plays a predominant role in the radiation profile of the pro-
posed structure. In detail, the electron concentration over the combline sheet embedded 
between two insulators under interaction with incident light provides a powerful plas-
monic scattering that maximum value of the electric field can be seen in the gap between 
combline’s ribbons. As a theoretical point, TE and TM modes are introduced as indicators 
for polarization inside a device in which only electric field for TE mode and magnetic field 
only for TM mode are considered along the direction of propagation. 

 
(a) 

 
(b) 

5 6 7 8 9 10 11 12 13 14 15
Frequency(THz)

0

0.5

1

1.5

2

2.5

AC
S(

nm
2)

105

Figure 2. (a) the implemented configuration of THz combline perfect absorber, (b) Absorption Cross
Section (ACS) of the proposed absorber.



Appl. Sci. 2021, 11, 10961 6 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 13 
 

Figure 2. (a) the implemented configuration of THz combline perfect absorber, (b) Absorption Cross 
Section(ACS) of the proposed absorber. 

  

Figure 3. Electromagnetic field distribution for TE and TM modes in the peak of absorption. 

To explore the concept with the change effect of geometric specifications of the com-
bline graphene layer on spectral characterization of the absorber is investigated by focus-
ing on the size and number of nanoribbons and the distance between them from each 
other. In the first step, the ribbon width of the combline graphene layer is manipulated. 
On this basis, the variation of the initial parameters of the ribbon layer is categorized as 
Table 2. It is clear that absorption characteristics of the proposed absorber change under 
the impact of size variation of combline graphene layer because the surface plasmon on 
this layer has a decisive role in determining absorbance rate. With this in coordination, 
simulation results in Figure 4a also indicate variations of absorption parameters as de-
picted earlier. Table 3 shows the changes in absorption parameter numerically. 

In the continuation of this work, the width of the upper layer of graphene is changed 
from 25 nm to 5 nm, 65 nm, 100 nm, 140 nm to evaluate the impact of the graphene 
stripline existence on the absorption peak. The electric field distribution of structure in 
Figure 3 indicates the weak couplings of stripline; however, widening the stripline can 
influence the absorption characterization by providing a good scattering effective area 
and altering the scattering profile of the structure. In other words, an increase in nano-
stripline width leads to creating a broader surface with the potential for more electron 
concentration; consequently, interaction incident light with graphene stripline manipu-
lates localized surface plasmon of graphene, which shifts plasmonic resonance upon ab-
sorption band. In addition, an enhancing trend happens, which is due to increased elec-
tron density. Figure 4b and Table 4 demonstrate the simulation results related to the ma-
nipulations as mentioned above. 

Table 2. Manipulation of size parameters on the combline graphene layer. 

Geometric Specification s (nm) t (nm) p (nm) 
Variation.I 8 8.25 9.5 
Variation.II 12 4.5 7.5 
Variation.III 6 10.25 11.5 

Figure 3. Electromagnetic field distribution for TE and TM modes in the peak of absorption.

To explore the concept with the change effect of geometric specifications of the
combline graphene layer on spectral characterization of the absorber is investigated by
focusing on the size and number of nanoribbons and the distance between them from each
other. In the first step, the ribbon width of the combline graphene layer is manipulated. On
this basis, the variation of the initial parameters of the ribbon layer is categorized as Table 2.
It is clear that absorption characteristics of the proposed absorber change under the impact
of size variation of combline graphene layer because the surface plasmon on this layer has
a decisive role in determining absorbance rate. With this in coordination, simulation results
in Figure 4a also indicate variations of absorption parameters as depicted earlier. Table 3
shows the changes in absorption parameter numerically.

Table 2. Manipulation of size parameters on the combline graphene layer.

Geometric Specification s (nm) t (nm) p (nm)

Variation.I 8 8.25 9.5
Variation.II 12 4.5 7.5
Variation.III 6 10.25 11.5

In the continuation of this work, the width of the upper layer of graphene is changed
from 25 nm to 5 nm, 65 nm, 100 nm, 140 nm to evaluate the impact of the graphene
stripline existence on the absorption peak. The electric field distribution of structure in
Figure 3 indicates the weak couplings of stripline; however, widening the stripline can
influence the absorption characterization by providing a good scattering effective area
and altering the scattering profile of the structure. In other words, an increase in nano-
stripline width leads to creating a broader surface with the potential for more electron
concentration; consequently, interaction incident light with graphene stripline manipulates
localized surface plasmon of graphene, which shifts plasmonic resonance upon absorption
band. In addition, an enhancing trend happens, which is due to increased electron density.
Figure 4b and Table 4 demonstrate the simulation results related to the manipulations as
mentioned above.
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Table 3. Variations of absorption characteristics due to size manipulations.

Geometric Specification Plasmonic Resonant
Frequency (THz)

Absorption Intensity (×105

nm2)

Initial size 11.348 2.366
Variation I 8.77 1.732
Variation II 9.622 0.9014
Variation III 12.456 1.24

Table 4. Variations of absorption characteristics due to stripline’s width manipulations.

The Width of Graphene
Stripline (nm)

Plasmonic Resonant
Frequency (THz)

Absorption Intensity (×105

nm2)

5 11.386 2.299
25 11.346 2.366
65 11.2 2.4

100 11.052 2.521
140 10.92 2.704



Appl. Sci. 2021, 11, 10961 8 of 13

In general, it can be understood from the results in Figure 4a,b, and Tables 3 and 4, the
resonant frequency and absorption peak on the spectral response of the structure are
shifted by changing the size of ribbons. In further detail, manipulating the ribbon area
causes the effective permittivity of configuration to vary due to change in effective area for
electron concentstion [42,43]. Thus, the plasmon mode of the structure changes, and a new
electromagnetic field profile is generated. Accordingly, the proposed model’s absorption
amplitude and resonant frequency are altered in each term of variations; that is why
absorption intensity goes up and down due to the constructive and destructive effects
of the scattering profile. The impact of stripline width (str.w) change on the absorption
spectrum appears a redshift on the absorption band. An increase in absorption amplitude
in both size variations because of enlarging the effective conductive area was observed.

Then, we focus on the number of available teeth of the combline graphene layer,
considering 23 on each side of the initial design. To understand the effect of combline’s
teeth, the number of ribbons is first decreased to 17 on each side while the dimensions
of the ribbons are fixed (s = 10 nm). In this state, the initial geometries of the combline
configuration are turned into t = 12.25 nm and p = 9 nm. The simulated results in Figure 5
and Table 5 demonstrate, a redshift happens on the absorption band. Also, the absorption
amplitude experiences a lower intensity rather than the absorption value of the initial
architecture. Next, the teeth number of the graphene layer of the configuration is increased
to 26 ribbons on each side. On this basis, the original specifications of the graphene layer
are converted to t = 4.25 nm, p = 8.75 nm. An increase in the number of ribbon teeth
enhances the absorption amplitude in addition to blueshift. It is mainly because more
surfaces of the combline graphene layer are subjected to the incident wave that means
more electron density on the graphene surfaces, and absorption intensity is enhanced.
Also, shifting absorption peak over frequency is due to altering the surface plasmons in
size manipulation. As a notable point, it is worth mentioning that the ribbons play a
determining role in the frequency assignment of plasmonic modes over the absorption
band and function as a frequency selective surface (FSS). In addition, a nano strip on the top
of the insulator can present a tunability potential for plasmonic resonance due to coupling
that directly affects the plasma frequency.
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Table 5. Variations of absorption characteristics under change of teeth number of combline structure.

The Number of Ribbon Teeth Plasmonic Resonant
Frequency (THz)

Absorption
Intensity (×105 nm2)

N = 17 9.246 1.784
N = 23 11.346 2.366
N = 26 12.556 2.823

For more study, the size influence of the g-distance of the designed configuration
on the absorbance factor is assessed. In this regard, the g parameter is scaled to 10 nm,
20 nm, 30 nm, 40 nm, 50 nm while the stripline width is fixed at 25 nm, and then the
corresponding absorption characteristic is simulated numerically. As shown in Figure 6
and Table 6, it is well-recognized that g-distance can adjust the amplitude and frequency
of absorption on the spectral response of the designed perfect absorber. By size increase
in the gap of g, the activated combline surface of the graphene layer becomes smaller,
which means dropping in absorption intensity. Moreover, a blueshift is detected over the
spectra presented in Figure 6. As an overall result, manipulating the developed model’s
geometric specification allows the perfect absorber’s plasmon peak position and absorption
amplitude to be tunned on the absorption band.
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Table 6. Variations of absorption characteristics under change of the distance two ribbons in two
sides of the structure (g-distance).

g-Distance (nm) Plasmonic Resonant
Frequency (THz)

Absorption
Intensity (×105 nm2)

10 8.477 2.929
20 10.45 2.56
25 11.348 2.366
30 11.89 2.122
40 12.891 1.899
50 13.66 1.822

Outstandingly, one of the unique properties of graphene layers is that they can be
controlled via Fermi energies change. As previously mentioned, the Fermi levels of
graphene layers can be tunned by an external DC source. In the developed structure, two
layers of graphene with different Fermi levels, including Ef = 0.7 eV for combline layer
and Ef = 0.43 eV for nano stripline are embedded. Since the coupling effect of the upper
graphene layer in interaction with light was negligible due to its small width in the initial
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structure. The results from Figure 3 show that the combline graphene layer was introduced
as an active surface for the stimulation of plasmon modes; thus, we are intended to evaluate
the impact of Fermi potential change on the absorbance rate of the model in the absorption
band. It is important to note that wider graphene stripline exhibits an influential role, and
changes in its Fermi level alter the absorption response.

Nevertheless, the Fermi potential of the combline graphene layer is tuned between
0.4 eV and 0.9 eV. Interestingly, the simulation results indicate that the resonant peak of
the absorber linearly follows an increasing trend on the absorption spectrum, and a blue
shift occurs, as shown in Figure 7. Also, the absorption intensity of the designed absorber
is regularly enhanced with the increase in Fermi energy. In other words, the absorption
spectra of structure move upon the absorption band by adjusting Fermi potential without
manipulating absorber geometries.
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Given that the Fermi level is adjustable with external DC voltages, it can be a practical
procedure to manufacture a tunable combline graphene perfect absorber based on the
presented design. Blueshift and enhancement of absorption intensity are well highlighted
in Figure 7 and Table 7 when the Fermi potential of the combline graphene layer changes.
In detail, the Fermi level lies in the forbidden gap between the valence and conduction
bands from the electronic physics point of view. Therefore, increasing the Fermi energy
leads the electrons from the valance band to move to the conduction band. In this state,
the Fermi potential increases and becomes close to the conduction band in terms of energy
levels and electron density increases, resulting in a plasmonic modes shift [44].

Table 7. The variation of absorption parameters under changisng in combline’ Fermi potential.

Fermi Potential (eV) 0.4 0.5 0.6 0.7 0.8 0.9

Plasmonic resonant
frequency(THz) 8.644 9.647 10.55 11.353 12.09 12.79

Amplitude of absorption
peak(×105 nm2) 1.3285 1.671 1.959 2.314 2.584 2.871
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The most important advantage of the proposed combline absorber can be mentioned
to the ease of practical implementation and simplicity of fabrication. The designed structure
has the potential for simple structure fabrication, high absorption efficiency, and stability,
with a bandwidth around 112 GHz, and small size. For the implementation of the proposed
structures, it is clear that the standard microelectronic fabrication planar method can
be used. Optical lithography at a submicron level and electron beam lithography at a
nanoscale or deep submicron level can be used to image the combline layer in the proposed
perfect absorber [45]. In further detail, first, an appropriate insulator is prepared, and
then a graphene sheet can be implemented by large-scale transfer techniques, and so
the photoresist is spin-coated on the graphene sheet. After doing the standard steps in
photolithography, a mask is prepared for the combline layer, and then, by photoimaging,
the pattern is shaped on the resist. After removing the resist on the graphene layer and
developing a suitable solvent, the combline graphene pattern appears on the top of the
substrate. Based on the available technologies of Electron Beam lithography(EBL), there
is the potential for size miniaturization to reduce down about 5 nm [46]. The proposed
perfect absorber can be introduced as a pioneering candidate in terms of application like a
refractive index sensor, thermal emission sensor, or a nanosensor to detect bacterial and
viral particles.

5. Conclusions

In summary, we have proposed a new design of the solid tunable absorber comprising
of an embedded combline graphene layer and a nano stripline that an insulator inserted
between them. The results reveal, by changing the geometrical parameters of ribbons in
the combline graphene layer, redshift and blueshift happen that lead to shifting absorption
peak on the spectral response of the absorber, and absorption intensity is also altered. A
unique feature of our developed perfect absorber is that its absorption peak had the flexible
potential to tune on the absorption band by adjusting the Fermi level of the combline
layer of graphene instead of refabrication and manipulation of absorber’s geometries.
In other words, the desired absorption peak can be attained by setting a specific Fermi
level that correlates with external DC voltage, as described in our model. We highlighted
shifting absorption peak using variations of Fermi level on a 3D diagram similar to the
frequency sweep. These results imply that the designed simple perfect absorber based on
the combline graphene layer can be an applicable candidate for a wide range of photonic
devices and sensory equipment.
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