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ABSTRACT
Accurate prediction of water level (WL) is essential for the optimal management of different water
resource projects. The development of a reliablemodel forWL prediction remains a challenging task
in water resources management. In this study, novel hybrid models, namely, Generalized Structure-
GroupMethod of DataHandling (GS-GMDH) andAdaptiveNeuro-Fuzzy Inference Systemwith Fuzzy
C-Means (ANFIS-FCM)were proposed to predict the dailyWL at TelomandBertam stations located in
Cameron Highlands of Malaysia. Different percentage ratio for data division i.e. 50%–50% (scenario-
1), 60%–40% (scenario-2), and 70%–30% (scenario-3) were adopted for training and testing of these
models. To show the efficiency of the proposed hybridmodels, their results were comparedwith the
standalonemodels that include theGene Expression Programming (GEP) andGroupMethod of Data
Handling (GMDH). The results of the investigation revealed that thehybridGS-GMDHandANFIS-FCM
models outperformed the standalone GEP and GMDHmodels for the prediction of daily WL at both
study sites. In addition, the results indicate the best performance for WL prediction was obtained in
scenario-3 (70%–30%). In summary, the results highlight the better suitability and supremacy of the
proposed hybrid GS-GMDH and ANFIS-FCM models in daily WL prediction, and can, serve as robust
and reliable predictive tools for the study region.
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1. Introduction

Prediction of river water level is a critical process in
river discharge estimation and it is required for better
water resourcesmanagement (Dingman&Bjerklie, 2005;
Tsujikura et al., 2016; Vachtman & Laronne, 2014). The
accurate prediction of a river water level improves flood
prediction systems and can act as a warning alarm for
early decision-making and planning to reduce the effect
of flood events which is considered as one of the most
damaging natural hazards on life and property (Het-
tiarachchi & Thilakumara, 2014; Morales-Pinzón et al.,
2015; Tsujikura et al., 2016; Xu et al., 2019). In Malaysia,
floods and flash floods are often happened due to pro-
longed heavy rainfall; however, the possibility of floods
may increase as a result of climate change and global
warming (Arbain & Wibowo, 2012; Buslima et al., 2018;
Suri et al., 2014). To deal with the flood phenomena,
three categories of critical river water levels have been
introduced by theDepartment of Irrigation andDrainage

CONTACT Saad Sh. Sammen Saad123engineer@yahoo.com

(DID) Malaysia, namely, normal, alert, and danger lev-
els (Gasim et al., 2007). The three categories have been
identified by analyzing the characteristics of floods in
Malaysia, such as water level, peak discharge, inundated
area, the volume of flow, and flood duration, for many
years.

Water level prediction in rivers is usually conducted
using empirical models. These empirical models are
developed based on accumulating long-time-series data
using in situ sensors that are expensive, hard to maintain,
and available in specific areas (Rigos et al., 2020). How-
ever, as per (Hettiarachchi & Thilakumara, 2014) pre-
diction of river water level using non-linear models that
includes many environmental parameters (e.g. catch-
ment area and flow rates) imperfectly agreed with the
realistic observation data; this may due to the complex
nature of the dynamic and rapidly water level fluctuations
or due to ignoring some important parameters in the the-
ory (See & Openshaw, 1999). Moreover, modeling these
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complex processes by differential equations has little use
in practice as it results in complex, time-consuming, and
mathematically intractable non-linear models.

Soft computing techniques have successfully used in
the last three decades to solve different complex hydro-
logical problems (Daliakopoulos et al., 2005; Ehteram
et al., 2021; Hadi et al., 2019; Kaloop et al., 2017; Malik
et al., 2020b; Parsaie et al., 2015; Sammen et al., 2017;
Singh et al., 2018; Tikhamarine et al., 2020c; Yaseen et al.,
2020b; Young et al., 2015). For water level prediction,
several techniques have been used such as Artificial Neu-
ral Networks (ANN) (Alvisi et al., 2006), Autoregressive
Integrated Moving Average (ARIMA) (Reza et al., 2018;
Sihag et al., 2020; Xu et al., 2019), and Support Vec-
tor Machine (SVM) (Khan & Coulibaly, 2006; Liong &
Sivapragasam, 2002). Thesemodels have been applied for
flowandwater level prediction of some rivers inMalaysia,
such as Muda River, Kedah (Khairuddin et al., 2019),
Dungun River, Terengganu (Gasim et al., 2007), Langat
River, Selangor (Toriman et al., 2009). Evaluation of soft
computing performance conducted by Firat (2008), Tori-
man et al. (2009), and Khairuddin et al. (2019) acknowl-
edged superiority over statistical and time series meth-
ods for flood forecasting. Besides, the soft computing/
machine learning (ML) models received several practical
applications in diverse fields like the prediction of solar
radiation (Qin et al., 2018; Wang et al., 2016, 2017b),
evaporation modeling (Adnan et al., 2019; Ashrafzadeh
et al., 2020; Malik et al., 2017, 2018; Wang et al., 2017a,
2017c), rainfall-runoff forecasting (Malik et al., 2020b;
Singh et al., 2018; Tikhamarine et al., 2020c), refer-
ence evapotranspiration estimation (Malik et al., 2019a;
Mohamadi et al., 2020; Tikhamarine et al., 2019, 2020a,
2020b), meteorological and hydrological drought predic-
tion (Malik et al., 2019c, 2020a, 2021a, 2021b, 2021c;
Malik & Kumar, 2020), and simulation of seepage flow
through embankment dam (Rehamnia et al., 2021).

Moreover, a comparison among ANN, ARMA (Auto-
regressive Moving Average), and SVM models that were
conducted by Lin et al. (2006) revealed that the SVM
model can give a more accurate prediction of long-term
flow discharges than the others. A comprehensive review
of the applications of genetic programming (GP) in the
analysis of water resources systems was conducted by
Mohammad-Azari et al. (2020). The review indicates
the capability and superiority of the model for solving
a wide variety of water-related problems such as mod-
eling rainfall-runoff, streamflow, sedimentation, flood,
evaporation, water quality, water demand, and water dis-
tribution systems. Moosavi et al. (2017) evaluated the
performance of GMDH and wavelet-GMDH models for
daily runoff forecasting from Darian-Chay, Ghale-Chay,
and Lilan-Chay Rivers in East Azerbaijan (Iran). The

evaluation indicates that the performance of the GMDH
model was efficiently enhanced when the wavelet-based
analyzed data was added to the model to deal with the
non- stationarities in the data.

In this study, two hybrid models, namely, Generalized
Structure-GroupMethod ofDataHandling (GS-GMDH)
and Adaptive Neuro-Fuzzy Inference System with Fuzzy
C-Means (ANFIS-FCM) were developed by using data
obtained from two water level stations located in Perak
River, Malaysia. The study also compared the efficiency
and performance of the hybrid models (i.e. GS-GMDH
and ANFIS-FCM) with two standalone models, namely,
the Gene Expression Programming (GEP) and Group
Method of Data Handling (GMDH) through statistical
indicators and graphical interpretation. The results of this
study promise better accuracy of the hybrid GS-GMDH
and ANFIS-FCMmodels in river water level prediction.

2. Methodology and dataset

2.1. Study area

CameronHighlands is the smallest region in the province
of Pahang Darul Makmur and offers its fringes with the
territory of Kelantan and Perak, in the north and west,
respectively. It is situated in the Main Range (Banjaran
Titiwangsa) between 4° 27′ 53′′ N – 4° 32′ 39′′ N and
101° 23′ 10′′ E – 101° 25′ 25′′ E. The region of Cameron
Highlands with an expected region of 71,218 hectares
is hilly, extending from 300m at the stream valleys on
the eastern limit to 210m (Gunung Irau) on the west-
ern boundary. The most elevated point open by street in
PeninsularMalaysia, Gunung Brinchang (2031m), is one
of the significant tops in Cameron Highlands, side from
Gunung Swettenham (1961m), Gunung Siku (1916m),
Gunung Berembun (1840m), Gunung Cantik (1802m)
and Gunung Jasar (1704m). About 75% of the area of the
provenance is situated above 1000m heights. The exam-
ination zone falls within Cameron Highlands Districts
arranged at Pahang Darul Makmur, which the region
assessed to be 712 km2. Its temperature falls not more
than 25°C and is broadly known as an uneven region
with horticultural practices (Eisakhani & Malakahmad,
2009). Cameron Highlands is comprised of three signifi-
cant catchments of Bertam, Telom, and Lemoi as shown
in Figure 1. Bertam comprises five main sub-catchments
which are Habu, Ringlet, Lembah Bertam, Tanah Rata,
and Brinchang. While, Tringkap, Kampung Raja, and
Kuala Terla are the sub-catchments in Telom. Cameron
Highlands gets normal yearly precipitation of 2800mm
and normally 2 out of 3 days is raining (Tan & Beh,
2015). Therefore, almost every day precipitation could
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Figure 1. Location map of study basin (Nasidi et al., 2021).

be felt in Cameron Highlands. The details of the sta-
tion are organized in Table 1. For modeling the water
level, daily data from January 2009 to August 2014 was
used for Telom at Batu station, and data from January
2009 to March 20016 was used for Bertam at Rabinson

Falls Intake station. Table 2 summarizes statistical
parameters i.e. Max. = maximum, Min. = Minimum,
SD = standard deviation, Skew = Skewness, Q1, Q2,
and Q3 = first, second and third quartiles of WL at both
stations.
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Table 1. List of water level stations with their geographical
coordinates.

No. Station No. Station Name Longitude (E) Latitude (N)

1 6002 Telom at Batu 49 101° 25′ 25′′ 4° 32′ 39′′
2 6003 Bertam at Rabinson

Falls Intake
101° 23′ 10′′ 4° 27′ 53′′

2.2. Gene expression programming (GEP)

GEP was initially introduced by Ferreira (2002). It is a
generated technique with the base of genetic algorithms
(GA) and has been broadly adopted in recent investiga-
tions (Ebtehaj et al., 2015a; Ferreira, 2002). The PC pro-
gram of GEP is encoded in linear chromosomes, which
are then explained into trees term (Shabani et al., 2018).
A systematic diagram of GEP appears in Figure 2. The
initial step is to create the underlying population, which

Figure 2. Description of GEP model.

Table 2. The statistical characteristics of two stations.

Station Mean (m) Max. (m) Min. (m) SD Skew Q1 Q2 Q3

Telom 670 1469 399 153.26 1.467 566 643 735
Bertam 391 786 241 82.79 0.937 332 377 435
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Table 3. The most optimum values of the GEP parameters.

Telom station Bertam station

Parameter Setting

Number of chromosomes 50 50
Head size 10 10
Number of genes 5 3
Linking function Addition Addition
Fitness function RRSE RRSE
Mutation 0.014 0.01
Inversion 0.15 0.15
IS Transportation 0.15 0.15
RIS Transportation 0.15 0.15
One-point recombination 0.70 0.90
Two-point recombination 0.70 0.90
Gene recombination 0.20 0.10
Gene transposition 0.20 0.10

Note: RRSE = root relative squared error.

occurs with subjective births of chromosomes. Then the
chromosomes are converted to expression trees (ETs)
that are analyzed by performance measures to shows
the solubility of delivered ETs. If the outcomes convince
the performance measures criteria, population produc-
ing stops, and if the outcomes are not agreeable, the
system redeveloped with some improvement to make
generation with improved value, and this procedure hap-
pens until the best outcomes are accomplished. For addi-
tional clarification aboutGEP, readers and researchers are
referred to (Ferreira, 2006; Kiafar et al., 2017). According
to that, there is no certain method to find the optimum
values of the GEP parameters, the optimum values of
the GEP parameters for each station were found through
a trial-and-error process (Azimi et al., 2017). The most
optimum values of the GEP parameters for each station
are provided in Table 3.

2.3. Groupmethod of data handling (GMDH)

Ivakhnenko (1971) initially proposed the GMDH
method. It’s practical in different sections for deep learn-
ing and science detection and is applied in several fields as
forecasting, pattern recognition, and optimization. Ana-
logical GMDH algorithms present the feasibility to dis-
cover automatically interrelations in data, to obtain the
best structure of model or network, and to enhance the
accuracy of existing algorithms. GMDH is containing
numerous algorithms for the solution of various types
of problems including clusterization, parametric, and
probability algorithms. This method is relying on the
sorting-out of gradually complexmodels and chooses the
superlative solution via the lowest of outside criterion fea-
tures. Generally, this method has numerous inputs and
one output, which is a subset of elements of the base func-
tion (Madala & Ivakhnenko, 2019). To obtain the supe-
rior solution this model considers a variety of elements

subsets of the initial function (Madala & Ivakhnenko,
2019) known as partial models. Least-squares techniques
are used to find the coefficients of these models. GMDH
algorithms gently enhance the number of incomplete
model elements and discover a model structure with
optimal complications represented via the lowest value
of an outside criterion. This method is known as the
self-organization of models (Schmidhuber, 2015):

Y(x1, . . . xn) = α0 +
m∑
i=1

αifi (1)

Y(x1, . . . xn) = α0 +
n∑

i=1
αixi +

n∑
i=1

n∑
j=i

αijxixj

+
n∑

i=1

n∑
j=i

n∑
k=j

αijkxixjxk + . . . (2)

where Y(x1, . . . xn) represent the input content and
n the number of input variables. Also, α(α1, . . . αn)

coefficients are acquired via regression techniques for
each couple of xi andxj input variables (Farlow, 1981).
Hence, theGMDHalgorithmuses various second-degree
polynomials.

2.4. Generalized structure-groupmethod of data
handling (GS-GMDH)

The standard GMDH model has few drawbacks that the
low performance of this model in complex and nonlinear
problems. In the present investigation, a novel encod-
ing of GMDH has developed to increases the accuracy
of the standard GMDH model. The main drawback of
this model is the utilize of only two parameters as inputs
for every neuron. In standard GMDH models, the input
variables of every neuron are chosen from neighboring
neurons. In the present study, a new generalized structure
of the GMDH algorithm (GS-GMDH) model was devel-
oped to decrease the drawbacks of the standard GMDH
model. The introduced new method decreases the lim-
itations available in the standard GMDH algorithm. In
GS-GMDH, the proposed neurons can be consisting of 2
or 3 input variables. Moreover, the polynomials are con-
sidered as second and third order. Besides, the input of
every neuron can be chosen from both neighboring and
non-neighboring layers. The most favorable structure of
GS-GMDH (Figure 3) is obtained based on the Akaike
Information Criterion (AIC) as follows (Ebtehaj et al.,
2015b):

AIC = n ∗ log(MSE) + 2(N + 1) (3)

where N is the number of neurons in the model, n is the
number of samples, and MSE is the mean square error.
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Figure 3. The flowchart of the proposed GS-GMDHmodel.
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Figure 4. The flowchart of the proposed ANFIS-FCMmodel.

2.5. Adaptive neuro-fuzzy inference system (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) is an
amalgamation of ANN and fuzzy logic (FL) for develop-
ing non-linear problems and initially, it was developed
by Jang et al. IF-THEN fuzzy rules are utilized in model
development by ANFIS (Sobhani et al., 2010; Yuan et al.,
2014). It draws advantages of both ANN and FL. It could
successfully be used where ordinary traditional tech-
niques fail or too weighty (Vakhshouri & Nejadi, 2018).
Shape and number of membership functions (MFs) are
significant parameters inANFIS to generate amodel with
the least error zone. Figure 4 display the structure of an
ANFIS model having two input variables. For simplicity
of illustration only two inputs p, q, and single target, y is
considered in this figure.

2.6. Fuzzy C-meansmethod (FCM)

The algorithm k-mean is one of the grouping algorithms,
which is utilized broadly. This algorithm with unsuper-
vised in large data sets is faced with limitations in prepar-
ing. To deal with the shortcoming, distinctive group-
ing algorithms are given. Fuzzy C-means clustering as
an alternative technique is utilized (Kisi & Zounemat-
Kermani, 2016). Fuzzy c-means (FCM) were presented
by Bezdek et al. (1981), and improved by variables and
dependent variables (target) specified in this stage are:

S1Ma = μMa(p), a = 1, 2 (4)

S1Na = μNa(q), a = 1, 2 (5)

where p and q are crisp inputs, andMa and Na are fuzzy
set, low, medium, high-class size membership functions
are applied, which could any shape such as triangu-
lar, trapezoidal, bell-shaped, Gaussian function, etc. (Cai
et al., 2007). In Fuzzy clustering, designs in clusters with
common are classified, and a pattern can appertain mul-
tiple clusters with an alternate proportion. In the FCM
algorithm, designs are blocked to the C cluster, truth be
told, the quantity of clusters (C) is indicated prior, yet
the focal point of the cluster is chosen haphazardly. The
level of membership for each example as indicated by the
membership function is determined by the focal point of
each cluster. The goal of the FCMalgorithm is to discover
a group that the likeness between designs inside various
clusters is minimized. One of the primary benefits of the
FCM technique is that in this approach, every data point
is related to at least two clusters. The FCM cluster cen-
ter utilizes the minimization of the objective function,
which is considered as the squared separation between
each group center and information point and is weighted
by its memberships.

2.7. Performance indicators

The accuracy of the hybrid (i.e. GS-GMDH and ANFIS-
FCM) and standalone (i.e. GMDH and GEP) models
developed for water level prediction at both study sta-
tions were evaluated by using four performance or sta-
tistical indicators i.e. Root Mean Square Error (RMSE)
(Malik et al., 2019b; Pham et al., 2021; Sammen et al.,
2020), Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe,
1970), Pearson Correlation Coefficient (PCC) (Adnan
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et al., 2019; Malik & Kumar, 2020), and Willmott Index
(WI) (Willmott, 1981), and through graphical inspec-
tion (time-variation plot, scatter plot, box–whisker plot,
and Taylor diagram). The RMSE, NSE, PCC, and WI are
stated as

RMSE =
√√√√ 1

N

N∑
i=1

(WLobs,i − WLpre,i)2 (6)

NSE = 1 −
[∑N

i=1 (WLobs,i − WLpre,i)2∑N
i=1 (WLobs,i − WLobs )

2

]
(7)

PCC =

∑N
i=1(WLobs,i − WLobs )
(WLpre,i − WLpre)√∑N
i=1 (WLobs,i − WLobs )

2∑N
i=1 (WLpre,i − WLpre)

2

(8)

WI = 1 −

⎡
⎢⎢⎢⎣

∑N
i=1 (WLpre,i − WLobs,i)2∑N
i=1(|WLpre,i − WLobs |

+|WLobs,i − WLobs |)2

⎤
⎥⎥⎥⎦ (9)

where N,WLobs,WLpre, WLobs and WLpre are the data
points, observed and predicted water level (WL) values
for the ith observations, and mean of observed and pre-
dicted WL values, respectively. In general, if the applied
models follow the criteria of higher values of NSE, PCC,
and WI, and the lower value of RMSE designated a
relatively better model for WL prediction at study sta-
tions. These four statistical indicators are commonly used
performance indicators in assessing model performance,
which has proven their values in previous studies. They
are used together in this study because each of them has
both advantages and disadvantages. The use of all four
indicators will ensure that an all-around assessment can
be made of the model performance.

3. Results and discussion

3.1. Performance assessment using statistical
metrics

Four different machine learning techniques, namely,
GEP, GMDH, GS-GMDH, and ANFIS-FCM were empl-
oyed to predict the daily WL for two stations of
Cameron Highlands in Malaysia. Table 4 present the
results of the performance indices (i.e. RMSE, NSE,
PCC, and WI) of the GEP, GMDH, GS-GMDH, and
ANFIS-FCM models at Telom station during the val-
idation period under three different scenarios. It is
clear from Table 4 that the values of RMSE, NSE,
PCC and WI found in the range of 87.340–88.552m,

Table 4. Performance indicators of hybrid and simple MLmodels
at Telom station during the validation phase.

Performance indicators

Scenario Model RMSE NSE PCC WI

GS-GMDH 87.340 0.761 0.873 0.927
GMDH 88.053 0.757 0.871 0.925
ANFIS-FCM 88.552 0.755 0.869 0.923
GEP 88.224 0.756 0.870 0.924Sc

en
ar
io
-1

(5
0%

–5
0%

)

GS-GMDH 84.203 0.772 0.879 0.931
GMDH 84.573 0.770 0.878 0.929
ANFIS-FCM 84.394 0.771 0.879 0.929
GEP 84.704 0.769 0.878 0.929Sc

en
ar
io
-2

(6
0%

–4
0%

)

GS-GMDH 82.987 0.767 0.876 0.929
GMDH 83.131 0.766 0.876 0.928
ANFIS-FCM 83.800 0.763 0.874 0.927
GEP 83.616 0.764 0.875 0.927Sc

en
ar
io
-3

(7
0%

–3
0%

)

0.755–0.761, 0.869–0.873 and 0.923–0.927 for scenario-
1, 84.203–84.704m, 0.769–0.772, 0.878–0.879 and 0.929–
0.931 for scenario-2, and 82.987–83.616m, 0.763–0.767,
0.874–0.876 and 0.927–0.929 for scenario-3, respectively.
According to the Table 4, the GS-GMDH models had
better performance for all three scenarios, but optimal
results yielded under scenario-3 with RMSE = 82.987m,
NSE = 0.767, PCC = 0.876 and WI = 0.929. Likewise,
the GS-GMDH model follows the criteria of lower val-
ues of RMSE, and higher values of NSE, PCC, andWI for
all three scenarios and designated the first (or highest)
rank for water level prediction. Similarly, the ANFIS-
FCMmodel closely follows the GS-GMDHmodel, while
theGMDHandGEPmodels had similar performance for
water level prediction for the Telom station.

Similarly, Table 5 summaries the results of GEP,
GMDH,GS-GMDH, andANFIS-FCMmodels at Bertam
station during validation phase. It was noted fromTable 5
that the values of RMSE, NSE, PCC and WI found
in the range 48.148–49.86 m, 0.646–0.656, 0.804–0.810
and 0.882–0.887 for scenario-1, 49.047–49.766m, 0.639–
0.649, 0.799–0.806 and 0.882–0.884 for scenario-2,
and 48.143–49.041m, 0.680–0.691, 0.825–0.832 and
0.895–0.900 for scenario-3, respectively. Besides, the GS-
GMDHmodels had better performance for all three sce-
narios, but improved results produced under scenario-
3 (RMSE = 48.143m, NSE = 0.691, PCC = 0.832 and
WI = 0.900).

Furthermore, the prediction accuracy of the GS-
GMDH model improved by 0.81%, 1.37%, 1.00% in
scenario-1; 0.44%, 0.23%, 0.59% in scenario-2, and
0.17%, 0.97%, 0.75% in scenario-3 with respect to RMSE
overGMDH,ANFIS-FCMandGEPmodels at Telom sta-
tion. Likewise, the prediction accuracy of the GS-GMDH
model enhanced by 1.43%, 0.47%, 1.17% in scenario-1,
1.44%, 0.30%, 1.26% in scenario-2, and 1.83%, 0.49%,
0.73% in scenario-3 regarding the RMSE over GMDH,
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Table 5. Performance indicators of hybrid and simple MLmodels
at Bertam station during the validation phase.

Performance indicators

Scenario Model RMSE NSE PCC WI

GS-GMDH 49.148 0.656 0.810 0.887
GMDH 49.860 0.646 0.804 0.882
ANFIS-FCM 49.379 0.653 0.808 0.885
GEP 49.730 0.648 0.805 0.885Sc

en
ar
io
-1

(5
0%

–5
0%

)

GS-GMDH 49.047 0.649 0.806 0.884
GMDH 49.766 0.639 0.799 0.879
ANFIS-FCM 49.197 0.647 0.805 0.884
GEP 49.672 0.640 0.800 0.882Sc

en
ar
io
-2

(6
0%

–4
0%

)

GS-GMDH 48.143 0.691 0.832 0.900
GMDH 49.041 0.680 0.825 0.895
ANFIS-FCM 48.379 0.688 0.830 0.899
GEP 48.495 0.687 0.829 0.900Sc

en
ar
io
-3

(7
0%

–3
0%

)

ANFIS-FCM and GEP models at Bertam station. There-
fore, for the Telom and Bertam stations, the obtained
results indicate that the best performance was attained
under scenario-3 where the data was divided by 70% for
the calibration and the remaining 30% for validating the
models.

3.2. Performance assessment using graphical
interpretation

Besides the statistical assessment of the results, graph-
ical methods have been widely used for model assess-
ment. Accordingly, three different graphical methods
namely temporal and scatter plots, Box–Whisker plot,
and Taylor diagram were adopted in the study to assess
the model performance graphically. Figures 5 and 6
illustrate the temporal and scatter plots of GS-GMDH,
GMDH, ANFIS-FCM, and GEP models under scenario-
1, scenario-2, and scenario-3 during the validation
period at Telom and Bertam stations, respectively. As can
see from these two figures that the GS-GMDH model
had a higher value of the coefficient of determination:
R2 = 0.7619, 0.7724, and 0.7679 for scenario-1, scenario-
2, and scenario-3 respectively at Telom station. Similarly,
the high value of R2 = 0.6562, 0.6494, and 0.6916 for
scenario-1, scenario-2, and scenario-3, respectively was
obtained when the GS-GMDH model was applied at
Bertam station.

Furthermore, the performance of the GS-GMDH,
GMDH, ANFIS-FCM, and GEPmodels in this study was
evaluated by using the Box–Whisker plot. According to
this diagram, it is easy to explain if there is any skew in
the distribution of the data or there are any outliers. Fig-
ures 7 and 8 display the Box–Whisker plots for Telom
andBertam, respectively. In these figures, the distribution
of the predicted values over the observed values during
the validation period was explained. It was seen from

the figures the distributional variation among predicted
vs observed water level values were relatively minor.
Therefore, the verdict based on performance measures
(RMSE, NSE, PCC, and WI) and graphical inspection
(coefficient of determination of regression line in scat-
ter plots) showed the better water level prediction accu-
racy of the hybrid GS-GMDH model than the GMDH,
ANFIS-FCM, and GEP models.

Likewise, the Taylor diagram (Taylor, 2001), an asso-
ciation of standard deviation, RMSE, and the correlation
coefficient was employed to display the spatial variation
of predicted water level using all four models in three dif-
ferent scenarios over the observed one in a single topol-
ogy. Figures 9 and 10 demonstrate the Taylor diagram
for the relative performance at Telom and Bertam sites,
respectively. These diagrams clearly show the better per-
formance of the GS-GMDH model for both stations. It
is clear from Figures 9 and 10 that the obtained results
by the GS-GMDH models are closer to the observed
values of water level prediction and it has the superior
performance as discussed before in the previous section.

The final equation of the GEP for both stations are
provided as follow:

WL(t)_Telom = ((WL(t − 3) − WL(t − 1))

/(−4.87/(((WL(t − 3) − WL(t − 1))

− WL(t − 1))/(WL(t − 3) + 9.44))))

+ ((((((WL(t − 2) + WL(t − 6))

∗ −5.32)/WL(t − 4)) ∗ WL(t − 2))

/WL(t − 5)) − 5.32)

+ (sqrt(WL(t − 6)) + WL(t − 1))

+ (((8.82 − (WL(t − 3)(1/3)))

∗ (sqrt(WL(t − 1)) ∗ WL(t − 1)))

/WL(t − 3)) + ((−1.61)3) (10)

WL(t)_Bertam = 2 + ((((WL(t − 5) − WL(t − 1))

− (−0.56 + WL(t − 1)))

+ (WL(t − 3) − WL(t − 1)))/8.88)

+ ((((7.49 + WL(t − 3))

+ (WL(t − 2) + 7.49))/((WL(t − 2)

− WL(t − 3)) − WL(t − 5)))

+ WL(t − 1)) (11)

The results of the current research were compared
with existing studies onwater level prediction by employ-
ing machine learning techniques. Altunkaynak (2019)
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Figure 5. Comparison of observed and predictedWL values by GS-GMDH, GMDH, ANFIS-FCM, and GEPmodels under (a) scenario-1, (b)
scenario-2, and (c) scenario-3 during validation period at Telom station.

predicted monthly WL in Lake Van, Tukey by employ-
ing the multilayer perceptron (MLP), wavelet-MLP (W-
MLP), and MLP-ASA (additive season algorithm). Their
prediction performance was evaluated using RMSE and
NSE criteria. They found that the MLP-ASA model
(RMSE = 3.550 cm, NSE = 0.992) outperformed the
other models. Alizamir et al. (2020) employed a deep
echo state network (DESN) to predict the monthly WL
of lake Van (Turkey), and its outcomes were compared
against the ANN, extreme learning machine (ELM),
and regression tree (RT) based on RMSE, R2, and NSE

performance indicators. The investigation shows better
performance of the DESNmodel with RMSE = 0.025m,
NSE = 0.998, and R2 = 0.998 than the ANN, ELM,
and RT models. Nhu et al. (2020) applied four deci-
sion tree-based algorithms i.e. M5 pruned (M5P), ran-
dom forest (RF), RT, and reduced error pruning tree
(REPT) for predicting the daily WL in Zrebar Lake,
Iran during 2011–2017. These models were optimized
with 70% data for training and 30% data for testing.
Their performance was evaluated using RMSE, MAE,
(mean absolute error), R2, PBIAS (percent bias), and RSR
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Figure 6. Comparison of observed and predicted WL values by GSGMDH, GMDH, ANFIS-FCM, and GEP models over (a) scenario-1, (b)
scenario-2, and (c) scenario-3 during validation period at Bertam station.

(ratio of RMSE to standard deviation of observed data)
indicators and graphical interpretation (Taylor and Box
plots). They reported the M5P model produced better
estimates (R2 = 0.99, RMSE = 0.05m, MAE = 0.01m,
NSE = 0.98, PBIAS = 0.00, RSR = 0.11) than the other
models. Yaseen et al. (2020a) examined the com-
parative potential of the hybrid MLP-WOA (Whale
OptimizationAlgorithm)model against theCCNN(Cas-
cade Correlation Neural Network), SOM (Self Orga-
nizing Map), DTR (Decision Tree Regression), RFR
(Random Forest Regression), and Classical MLP to
predict the monthly WL of Van Lake, Turkey. The

comparison demonstrates that the hybrid MLP-WOA
models produced superior prediction (RMSE = 0.047m,
MAE = 0.035m, NSE = 0.969, WI = 0.992, Legate
McCabe’s Index: LMI = 0.836, and R2 = 0.970) over
other models during validation phase. Zhu et al. (2020)
forecasted the monthly WL of 69 temperate lakes
in Poland by utilizing Feed Forward Neural Network
(FFNN), and Long Short-Term Memory (LSTM) mod-
els. Their finding reveals the better feasibility of FFNN
and LSTM models in forecasting the monthly WL of
the 69 lakes. Overall, the findings of the listed stud-
ies and current research confirm the superiority of ML
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Figure 7. Box-Whisker plot of observed and predicted WL by GS-GMDH, GMDH, ANFIS-FCM, and GEP models in (a) scenario-1, (b)
scenario-2, and (c) scenario-3 during validation period at Telom station.
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Figure 8. Box-Whisker plot of observed and predicted WL by GS-GMDH, GMDH, ANFIS-FCM, and GEP models in (a) scenario-1, (b)
scenario-2, and (c) scenario-3 during validation period at Bertam station.
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Figure 9. Taylor diagramofGS-GMDH,GMDH,ANFIS-FCM, andGEPmodels under (a) scenario-1, (b) scenario-2, and (c) scenario-3 during
validation phase at Telom station.

models in predicting the daily/ monthly Lake water
levels.

4. Conclusions

The present study has presented two new hybridmachine
learning models, namely, generalized structure with

GMDH algorithm (GS-GMDH) and adaptive neuro-
fuzzy inference system with fuzzy C-means (ANFIS-
FCM) for daily water level prediction at Telom, and
Bertam stations positioned on Perak River in Malaysia.
The performance of the hybrid models was com-
pared with standalone models i.e. GEP and GMDH.
To meet the objectives, the daily water level data of
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Figure 10. TaylordiagramofGSGMDH,GMDH,ANFIS-FCM, andGEPmodels under (a) scenario-1, (b) scenario-2, and (c) scenario-3during
validation phase at Bertam station.

two stations for the Cameron Highlands in Malaysia
were used. In addition, three different percentage ratios
were used to divide the data for calibration and val-
idation sets which include 50%–50%, 60%–40%, and
70%–30%, respectively. The results of the analysis
reveal that the performance of the GMDH model
could be enhanced with a new general structure

(GS-GMDH)model. According to the best performance,
the models were ordered as GS-GMDH > ANFIS-
FCM > GEP > GMDH for both study locations. In
addition, the results of the hybrid GS-GMDHmodel can
be utilized to formulate the smart and truthful intelligent
system for managing the water-related operations over
the study sites.
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