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Abstract: Silver (Ag) nanoparticles (NPs) have been synthesized through an easy, inexpensive,
and ecofriendly method. Petroselinum crispum, parsley, leaf extract was utilized as a reducing,
capping, and stabilizing agent, without using any hazardous chemical materials, for producing
Ag NPs. The biosynthesized Ag NPs were characterized using different characterization techniques,
namely UV-Vis, FT-IR spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS),
dynamic light scattering (DLS), zeta potential, differential scanning calorimetry (DSC), thermogravi-
metric analysis (TGA), transmission electron microscope (TEM), field emission scanning electron
microscopy (FESEM), and energy-dispersive X-ray (EDX) analysis to investigate the optical, ther-
mal, structural, morphological, and chemical properties of the plant extract and the biosynthesized
Ag NPs. After that, the biosynthesized Ag NPs were utilized in harvesting sunlight for solar thermal
generation. Surface plasmon resonance (SPR) for the green synthesized Ag NPs with the dark color
were adjusted at nearly 450 nm. Once the Ag NPs are excited at the SPR, a large amount of heat is
released, which causes a change in the local refractive index surrounding the Ag NPs. The released
heat from the Ag NPs under the solar irradiation at the precise wavelength of plasmon resonance
significantly increased the temperature of the aqueous medium. Different percentages of Ag NPs
were dispersed in water and then exposed to the sunlight to monitor the temperature of the sus-
pension. It was found that the temperature of the aqueous medium reached its highest point when
0.3 wt. % of Ag NPs was utilized. This investigation is rare and unique, and it shows that utilizing
a small amount of the biosynthesized Ag NPs can increase the temperature of the aqueous medium
remarkably.

Keywords: silver nanofluid; green synthesis method; surface plasmon resonance effect; photothermic
energy; parsley

1. Introduction

The demographic and economic growth of our modern society has led to high demand
for energy, which is largely met by the use of fossil fuels. [1]. However, because of
its limited availability and the negative impact on the environment, it is important to
build technologies that allow for more effective use of alternative energy sources [2].
Solar energy, in general, is safe, abundant, simple to obtain, and of unlimited supply.
Accordingly, solar radiation energy is one of the most promising sources for meeting
future energy demand [3]. Similarly, solar energy can be effectively transformed into
electrical and thermal energy through the photovoltaic and photocatalytic processes [4].
Therefore, metal-based nanomaterials are the most common photoactive materials capable
of performing the processes described above [5]. In turn, nanoparticles (NPs), which are
particles with one or more dimensions within the range of 100 nanometers or less, have
attracted great interest due to their unique and attractive features and their irreplaceable
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usage over their analogues bulky materials [6]. Metallic nanoparticles, in general, possess
numerous advantages. First, their optical properties can be easily controlled; practically,
they are perfect optical absorbers [7]. Second, they can be utilized in multifunctional
applications to accomplish some specific purposes such as rapid thermal response [8],
corrosion resistance [9], recyclability [10], etc. Last but not least, through the doping of
metal-based materials, heat loss can be effectively reduced [11].

Photoactive nanomaterials, composed of novel metals, are capable of converting
solar energy into thermal energy [12]. In recent times, the synthesis of metallic NPs is
an important area of research due to their diverse application [13]. When the particle
size goes to the nanoscale, its catalytic [14], optical [7], thermal [15,16], mechanical [17],
electronic [18], and magnetic activity [19] improve significantly. Accordingly, metallic NPs
can be used in different areas of application, such as absorption of light spectrum [20],
water purification [21], antimicrobial activity [13], biomedicine [22], sensors [23], and many
others.

Among the metallic NPs, silver (Ag) NPs show great potential in the scientific com-
munity due to their wide range of applications [24]. In fact, there are three main meth-
ods for synthesizing nanomaterials, namely physical, chemical, and biological or green
methods [25,26]. The physical methods required highly sophisticated instruments, high
pressure, and high temperature [27], while the chemical methods have a hazardous impact
on the producers and users due to the utilizing precarious chemical materials as reducing,
capping, and stabilizing agents [28]. Thus, they cause many difficulties for the human
and the environment at the same time. Accordingly, in recent times, researchers have
focused on the biological or green method for synthesizing nanomaterials [29]. In addition,
the fabrication of nanomaterials using biological method is gaining more advantage due
to its simplicity, eco-friendliness, low cost, and toxic chemicals avoidance [30]. This great
advantage of non-toxic synthesis facilitates the possibility of using these nanomaterials,
especially in products that are closely related to humans, such as shampoo, toothpaste, and
photothermic conversion therapy.

Green synthesis of NPs includes using natural materials such as plants and microor-
ganisms, e.g., bacteria, fungi, algae, and yeasts [30]. However, the existing phytochemicals
in plant extracts possess an exceedingly high ability for reducing metal ions within a short
time as compared with bacteria, fungi, algae, and yeasts, which necessitates a longer incu-
bation period [31,32]. As a result, plant extracts have been noted as a prominent source
for the synthesis of metallic NPs. In addition, the plant-mediated synthesis procedure for
synthesizing NPs is a leading process over the microorganism process due to its simplicity,
rapidity, and avoidance of culture maintenance [33]. Furthermore, plant supplies, such as
flowers, leaves, seeds, stems, fruits, and peels, have been used as reducing and capping
agents in the NPs fabrication process [34]. Generally, plant extractions possess a signifi-
cant prominence due to involving a large number of phytochemicals such as flavonoids,
glycosides, polyphenol, terpenoids, and enzymes, which act as reducing, capping, and
stabilizing agents [35]. Additionally, the functional groups, e.g., -C=C- and -C=O, present in
phytochemicals can also contribute to the production of nanoparticles [36]. Moreover, green
methods designate an environmentally friendly production of nanoparticles of different
sizes and shapes [37,38].

This investigation is focusing on Ag NPs, due to the importance of Ag NPs whose
optical properties depend on their size and shape. This dependency, most likely, arises
from the surface plasmon resonance (SPR) and free electrons of the nanomaterials [39]. In
fact, the plasmonic effect describes the interactions of light with metallic nanoparticles [40].
Furthermore, SPR is the resonant oscillation of the free electrons at the metal surface layer,
which are excited by incident light sources. Resonant frequencies for noble metals, such as
Ag, are located in the middle of the optical spectrum; thus, SPR for such metals interact
strongly with light and depend on the size and shape of the NPs [41,42]. Plasmonic is
a part of nanotechnology where nanostructures are used as an active element to focus,
direct, control, and manipulate light. Even though the interaction of light and metallic
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NPs has long concerned the interest of scientists, plasmonic signifies a rather new level of
control and study, including both nanostructures and light [43]. Moreover, the plasmonic
effect in metallic NPs is a multidisciplinary and important area of research owing to its
potential applications in optoelectronic devices [44], thermodynamic [45], sensors [46], and
medical diagnosis [47].

In continuation of our recent works [48–56] regarding green synthesis nanomaterials,
here in this study, an active and easy process of one-pot green synthesis of Ag NPs is pro-
posed. The novelty of this research is that Ag NPs can be formed from a one-pot reaction
deprived of employing any exterior stabilizing and reducing agent, which is not conceivable
by means of the existing processes. Ag NPs were synthesized using Petroselinum crispum
extract, commonly known as parsley. Parsley is belonging to the Apiaceae carrot family,
and its chemical structure contains flavonoids, polyphenols, carotenoids, lipids, polysaccha-
rides, tannins, and essential oils, which are considered bio-reducing and stabilizing agents.
Polyphenols and flavonoids are the dominant compounds in the parsley extract [57,58].
Both parsley extract and Ag NPs have been characterized using different characterization
techniques. Then, the biosynthesized Ag NPs from parsley extract were dissolved in water,
and formerly their ability to perform the conversion of solar energy into heat energy, based
on the plasmonic effect, was investigated for boiling water application.

2. Materials and Methods
2.1. Preparation of the Parsley Extract

Parsley was collected from Rashken (Latitude 36◦11′58.0′′N and Longitude 43◦56′54.7′′ E)
in Erbil city, Iraqi Kurdistan Region in the spring season (March 2021). Five grams of
fresh parsley was soaked in a flask contained 100 mL double distilled water (DD water).
The solution was heated at 80 ◦C for 40 min. The extract was allowed to cool down to
room temperature and then filtered with a filter paper to remove unwanted organic ma-
terials. Subsequently, the pure filtrate extract was stored in the refrigerator for further
experimental work.

2.2. Synthesis of Silver Nanoparticles

Silver nitrate, Ag NO3, molecular weight 169.87 g/mol and purity > 99%, was pur-
chased from Sigma Aldrich company (Istanbul, Turkey) and used as received with un-
polluted specialized status. The amount of 2 mg of silver nitrite was dissolved in 50 mL
double distilled water and kept stirring for 20 min at 80 ◦C. Then, 50 mL of parsley extract
solution was drop-wise added to the dissolved silver nitrite. The final mixture was put
on the hotplate, heated, and stirred at 70 ◦C for 30 min until the color of the mixture
changed to a brownish color. The new chromatic appearance of the mixture is considered
a priority indicator for synthesizing Ag NPs. The obtained precipitates were separated
from the mixture by centrifugation at 7000 rpm for 25 min and afterwards heated at 500 ◦C
for 40 min using an oven to remove all of the impurities and organic materials around
the Ag NPs.

The mechanism of biosynthesizing Ag NPs can be explained through the following
steps: first, the activation step which involves the reduction of the available metal ions
into metal atoms; second, the nucleation and growth step, which includes the combination
of the available atoms to form NPs of a conclusive size and shape; third, the stabilization
step, in which the phytochemicals cap the NPs, therefore preventing them from agglom-
eration; and finally, calcination of NPs should be done to acquire pure NPs. Figure 1
represents the schematic diagram and the mechanism of Ag NPs formation by parsley
extract. The agglomeration occurred due to the sturdier binding energy between two metal
atoms; the agglomeration of NPs is prevented to some extent by the secondary metabolites
of plants, which act as a capping and stabilizing agent.
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Figure 1. Proposed mechanism of biosynthesizing Ag NPs from parsley extract.

2.3. Characterization of Ag NPs

X-ray diffraction (XRD) measurements were carried out using a PAN analytical
X′Pert PRO (Cu Kα = 1.5406 A◦). The scanning rate was 1◦/min in the 2θ range from
20 to 80◦. XRD can be used for the determination of crystal structure, purity, and crystallite
size of the nanoparticles. X-ray Photoelectron Spectroscopy (XPS) spectra of Ag NPs were
studied by means of a hemispherical analyzer (Physical Electronics 1257 system) (Partow
Rayan company, Tehran, Iran). For the XPS, an identical anode (Mg and Al) with an X-ray
basis was run at 400 W of persistent power with Al Kα radiation (1486.6 eV). The sample
was located in a sample stage with a release angle of 45◦. The analysis was supported by
hanging Ag NPs on a gold film, whereas gold functioned as a metallic reference. Au 4f
binding-energy was 84 eV for samples deprived of any charging effect. Furthermore,
UV-Vis spectroscopy analysis was conducted using a double-beam spectrophotometer
(Super Aquarius spectrophotometer-1000) Soran University, Soran, Erbil, Iraq) to confirm
the formation of Ag NPs. Additionally, the morphology and particle dispersion were
investigated by field emission scanning electron microscopy (FE-SEM) (Quanta 450) Soran
University, Soran, Erbil, Iraq). The chemical composition of the prepared nanostructures
was studied using energy-dispersive X-ray spectroscopy (EDX) performed in the FE-SEM
instrument. The shape and size of the Ag NPs were characterized by a high-resolution
transmission electron microscope (HRTEM) (Partow Rayan company, Tehran, Iran) uti-
lizing a Philips (USA) EM208 microscope functioning at an accelerating voltage of 90 kV.
Fourier transform infrared (FTIR) spectroscopy with a resolution of 4 cm−1 was used to
investigate the functional groups in the leaf extract and the NPs independently. The actual
size of the biosynthesized Ag NPs was computed by dynamic light scattering (DLS). The
particle size was computed utilizing a Malvern Zetasizer 3000HSA (Malvern, Worcs, UK)
equipped with a 10-mW He–Ne laser (633 nm) and functioning at an angle of 90◦ and a tem-
perature of 20 ◦C. T. Differential scanning colorimetry (DSC) type (TA Instruments, (Partow
Rayan Company, Tehran, Iran) in the range 50–1000 ◦C was utilized for the DSC curve.
Thermogravimetric anal sis (TGA) was performed using Perkin-Elmer-Pyris1 analyzer
(Partow Rayan Company, Tehran, Iran).

2.4. Increasing Temperature during Irradiation of the System

After the synthesis and characterization of Ag NPs by a green method using parsley
extract, the NPs were utilized to increase the water temperature. A representation diagram
of the present study is shown in Figure 2. The system contains four equalized bakers filled
with 50 mL of distilled water.
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Figure 2. Representation diagram of rising temperature during sunlight irradiation using different
concentrations of Ag NPs.

Different concentrations of Ag NPs have been used in each beaker, and their initial
temperature was recorded (14 ◦C) from their own fine thermometer (laboratory thermome-
ter, Lafayette Township, New Jersey, USA). After that, the beakers were subjected to
ultrasound to disperse the NPs homogeneously inside water and record the temperature
of the solutions homogeneously. Then, the system was placed in front of the sunlight
source to investigate the amount of the released heat by the utilized nanoparticles into
the water medium. It should be noted that the temperature of the solution was not raised
by thermal solar radiation, but rather the plasmonic effect was responsible for this in a way
that the heat exchange between the water and the external conditions before the exper-
iment was sufficient. The temperature of each beaker under the sunlight radiation was
monitored sensibly, so there would be no temperature lag, and the values of temperature
were registered every 2 min. The detail of Ag concentration and ambient temperatures are
summarized in Table 1.

Table 1. Temperature measurements profile of water using different concentrations of Ag NPs.

Water
mL

Ag NPs
Concentration

Temp.
(2 min) ◦C

Temp.
(4 min) ◦C

Temp.
(6 min) ◦C

Temp.
(8 min) ◦C

50 0.0% 14 14.3 14.5 14.8

50 0.3% 14.8 16.7 16.5 17.4

50 0.5% 14 14.4 15.6 16.3

50 0.7% 14.5 17 17.1 17.2

3. Results and Discussion
3.1. Characterization of Parsley Leaf Extract

The available phytochemicals in parsley extract reduce the available metal ion in
the silver nitrate salt to metal zero nanoparticles. Therefore, plant extract, at the same time,
acts as a reducing and stabilizing agent. Makarov et al. [59] suggested that metal atoms
would be compressed as organic casing in three steps for their degree of steadiness after
reduction by plant extracts. Metal ion reduction and nucleation of the reduced metal atom
would be in the activation phase, the NPs steadiness improved through the growth phase,
and the shape of the NPs formed during the end phase. UV-Vis spectroscopy observes
this reaction growth. The UV-Vis spectroscopy revealed an absorption peak, associated
with the surface plasmon resonance (SPR), gathers conduction band electrons oscillations
in responding with electromagnetic waves, demonstrating metal ion reduction and NPs
formation [51]. Parsley leaf extract comprises flavonoids, polyphenols, carotenoids, lipids,
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polysaccharides, tannins, free organic acids, and essential oils (Figure 3), which are consid-
ered essential bio-reducing and stabilizing agents through possessing -OH groups for NPs
formation [60,61]. Flavonoids and polyphenols are predominant compounds of Parsley [62].
These phytochemicals, being antioxidant and free from toxic chemicals, are tremendously
able to reduce metal ions and stabilizing them in nanoscale length. These phytochemicals
are also directly affecting the shape and size of the biosynthesized NPs [63].
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Figure 3. Available phytochemicals in Parsley leaf extract.

Figure 4a displays the UV-Vis spectrum of Parsley leaf extract. We believed that
the dominant peaks, at 264 nm and 325 nm, are more likely related to the phenolic com-
ponents, i.e., polyphenols and flavonoid available in Parsley leaf extract. The functional
organic molecules, for instance, Apiin, phenol, ascorbic acid, exist in the Parsley leaf ex-
tract [64]. Liu et al. identified that these peaks associated with Apiin, C26H28O14, a natural
flavonoid, exist in Parsley leaf extract [65]. Markarov et al. [59] state that flavonoids, as
a general rule, over their -OH groups converted from the enol-mold to the keto-mold,
contribute an approachable hydrogen atom, which reduces the metallic ion into zero-valent
NPs. Amongst those functional organic molecules, the phenolic groupings present in
the extract more likely had an abundant impact on the metals [66], which reduced Ag+ to
Ag0 [67]. The Fourier transform infrared (FTIR) of Parsley leaf extract (Figure 4b) com-
prises several clear peaks over the entire range. As a general rule, an FTIR spectrum has
two regions, i.e., the functional group region (1800–4000 cm−1) along with the fingerprint
region (0–1500 cm−1). The bands at 1645 cm−1 and 3383 cm−1 indicate C=O stretching
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of tertiary-amides and O-H stretching of phenol group, in that order [68]. A band at
1079 cm−1 indicates the CN stretching vibration of amines, whereas a distinct band at
1562 cm−1 specifies the bending of C-H bonds present in hydrocarbons [69] that follow
the surface during Ag NPs production. The bands perceived at 1422 cm−1 and 667 cm−1

might be related to the C-H bending of alkanes and stretching vibrations of halo-alkanes,
respectively [70].

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 20 
 

 

noid, exist in Parsley leaf extract [65]. Markarov et al. [59] state that flavonoids, as a gen-

eral rule, over their -OH groups converted from the enol-mold to the keto-mold, contrib-

ute an approachable hydrogen atom, which reduces the metallic ion into zero-valent NPs. 

Amongst those functional organic molecules, the phenolic groupings present in the ex-

tract more likely had an abundant impact on the metals [66], which reduced Ag+ to Ag0 

[67]. The Fourier transform infrared (FTIR) of Parsley leaf extract (Figure 4b) comprises 

several clear peaks over the entire range. As a general rule, an FTIR spectrum has two 

regions, i.e., the functional group region (1800–4000 cm−1) along with the fingerprint re-

gion (0–1500 cm−1). The bands at 1645 cm−1 and 3383 cm−1 indicate C=O stretching of ter-

tiary-amides and O-H stretching of phenol group, in that order [68]. A band at 1079 cm−1 

indicates the CN stretching vibration of amines, whereas a distinct band at 1562 cm−1 spec-

ifies the bending of C-H bonds present in hydrocarbons [69] that follow the surface during 

Ag NPs production. The bands perceived at 1422 cm−1 and 667 cm−1 might be related to 

the C-H bending of alkanes and stretching vibrations of halo-alkanes, respectively [70]. 

  

(a) (b) 

Figure 4. (a) UV-Vis spectra and (b) FTIR spectra of Parsley leaf extract. 

3.2. Characterization of Ag NPs 

In this investigation, several characterization techniques were used to study the 

structure, morphology, optical, thermal, and stability of Ag NPs. 

3.2.1. UV-Vis Spectrum of the Biosynthesized Ag NPs 

Once the frequency of the electromagnetic field turns out to be resonant with the 

coherent electron motion, a robust absorption is created, which is the starting point of the 

observed color whose absorption extremely relying on particle size, dielectric medium, 

and the environments [71]. The UV-Vis absorption spectrum (Figure 5a) indicator of the 

creation of silver nanoparticles is at the visible range of 440 nm, while if we take the UV-

Vis absorption spectra of silver nitrate, Ag (NO3), solutions, the absorption peaks will ap-

pear around 310 nm due to the existence of nitrate ions in the solution [72]. At the same 

time, in the Ag NPs case, both the conduction and valence bands would have lie down 

very nearby to each other, allowing the free flow of electrons that might have conse-

quently given rise to the surface plasmon resonance (SPR) absorption band as demon-

strated by Yallappa et al. [73], Ashraf et al. [74], and Devaraj et al. [75]. Moreover, the long 

tail, precisely at the long wavelengths, is a good indicator for having a tiny extent of ag-

gregated particles, as reported by Hamedi et al. [76] and demonstrated in the investigation 

that the solution comprising NPs persisted unchanging for more than one month, with no 

indicator of aggregation or precipitation displaying the SPR peak at the equivalent wave-

length [77]. Additionally, agglomeration is always the case, especially in the plant-medi-

ated NPs synthesis, since the presence of biomolecules, particularly proteins, can easily 

modify the NP surface properties, leading to the loss of colloidal stability and formation 

of agglomerates. The absence of any additional peak in the UV-Vis spectrum is a good 

Figure 4. (a) UV-Vis spectra and (b) FTIR spectra of Parsley leaf extract.

3.2. Characterization of Ag NPs

In this investigation, several characterization techniques were used to study the structure,
morphology, optical, thermal, and stability of Ag NPs.

3.2.1. UV-Vis Spectrum of the Biosynthesized Ag NPs

Once the frequency of the electromagnetic field turns out to be resonant with the coherent
electron motion, a robust absorption is created, which is the starting point of the ob-
served color whose absorption extremely relying on particle size, dielectric medium, and
the environments [71]. The UV-Vis absorption spectrum (Figure 5a) indicator of the cre-
ation of silver nanoparticles is at the visible range of 440 nm, while if we take the UV-Vis
absorption spectra of silver nitrate, Ag (NO3), solutions, the absorption peaks will appear
around 310 nm due to the existence of nitrate ions in the solution [72]. At the same time,
in the Ag NPs case, both the conduction and valence bands would have lie down very
nearby to each other, allowing the free flow of electrons that might have consequently
given rise to the surface plasmon resonance (SPR) absorption band as demonstrated by
Yallappa et al. [73], Ashraf et al. [74], and Devaraj et al. [75]. Moreover, the long tail, pre-
cisely at the long wavelengths, is a good indicator for having a tiny extent of aggregated
particles, as reported by Hamedi et al. [76] and demonstrated in the investigation that
the solution comprising NPs persisted unchanging for more than one month, with no
indicator of aggregation or precipitation displaying the SPR peak at the equivalent wave-
length [77]. Additionally, agglomeration is always the case, especially in the plant-mediated
NPs synthesis, since the presence of biomolecules, particularly proteins, can easily modify
the NP surface properties, leading to the loss of colloidal stability and formation of ag-
glomerates. The absence of any additional peak in the UV-Vis spectrum is a good indicator
of the purity of the biosynthesized Ag NPs. The results of this investigation agree with
the previous studies, showing that the SPR peak for the spherical Ag NPs normally appears
between 410 and 480 nm [72,78–81].
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Furthermore, it can be seen from Figure 5a that the sharp peak is a clear indicator
for the monodispersity of the biosynthesized Ag NPs [82]. The measured value is lower
than that of bulk Ag particles, >100 nm, given as 520 nm and displaying a blue shift in
excitonic-absorption, which specifies a tiny quantum confinement consequence [83].

Biological, green syntheses of NPs using plant extracts normally produces poly-
disperse NPs with varied characteristics that are hard to regulate from an organic view-
point. Therefore, the explanation of obtaining monodisperse Ag NPs using plant extracts
is extremely significant. We have shown that the presence of polyphenols and flavonoid
in parsley leaf extract affects the size and shape of Ag NPs. Polyphenols and flavonoid
complex display superior reducing and capping properties than either polyphenols or
flavonoid alone; therefore, this complex can produce homogenous, spherical, and monodis-
perse Ag NPs. In other words, parsley leaf extract was not arbitrarily selected in this
study as a biosynthesizing medium for producing Ag NPs. Accordingly, in the first stage
of the reaction, the polyphenols–flavonoid complex reduces silver ions to metallic silver,
then the oxidized and none-oxidized forms of polyphenols–flavonoid complex stabilize
the metallic nanocrystal and form stable Ag NPs.

The energy band gap of the biosynthesized Ag NPs was computed from Tauc’s plot by
deducing the linear ratio of the UV-Vis curve. Figure 5b displays that the biosynthesized
Ag NPs from parsley extract possess a value of energy band gap of 2.51 eV. These NPs with
the relatively large value of band gap energy can be supplementary utilized in improved
optoelectronic devices, thermal applications, batteries, and sensors as a semiconductor
material. The corresponding band gap result is similar to the previously reported studies,
and this value might be a result of the quantum confinement effect [84–86].

3.2.2. FTIR Spectrum Analysis for Ag NPs

The FTIR spectrum of the biosynthesized Ag NPs is displayed in Figure 5c, which
demonstrates absorption peaks positioned between the region around 4000 cm−1 and
500 cm−1. The FTIR spectra displayed absorption bands at 3441 cm−1, 2923 cm−1, 1596 cm−1,
1383 cm−1, 1251 cm−1, and 1076 cm−1, representing the existence of reducing, capping,
and stabilizing biomolecules with the Ag NPs. The band at 3441 cm−1 in the spectra corre-
sponds to the O-H stretching vibration, indicating the presence of alcohol and phenol [87].
The band at 2923 cm−1 was related to the C-H stretching vibrations of the primary and
secondary amines [88]. The band at 1596 cm−1 is more likely related to C-C/C-N stretching
vibrations of Alkene or amines [89], while the band at 1383 cm−1 is related to the N=O sym-
metry stretching typical of the nitro compound [90]. Additionally, the bands at 1251 cm−1

and 1076 cm−1 correspond to C-N and C-C stretching, indicating the presence of proteins
amines [91]. Normally, the binding of protein with the Ag NPs maintains the stability of
Ag NPs considerably through acting as capping and stabilizing agents and consequently
protecting them from agglomeration [92]. Finally, the band at the 536 cm−1 region is most
likely credited to C-Br stretching, which is typical of alkyl halides [93]. Other investigations
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reported that peaks at minor field in the range 400–700 cm−1 reflected the metallic nature of
any examined sample, Ag NPs in our case [94]. As stated before, these functional groups, in
general, have a role in the stability/capping of Ag NPs as reported in many studies [95–98].

3.2.3. X-ray Diffraction (XRD) Pattern and X-ray Photoelectron Spectroscopy (XPS)
of Ag NPs

Figure 6a shows the X-ray diffraction (XRD) pattern of the biosynthesized Ag NPs.
This pattern confirmed the crystallinity of the Ag NPs. The peaks at 38.01◦, 44.34◦, 65.52◦,
and 77.30◦ are equivalent to (hkl) planes of (111), (200), (220), and (311) planes, respectively.
These peaks can be accredited to the face-centered cubic structure of silver nanocrystals,
and they are in outstanding agreement with the previous studies [99,100]. It can be seen
from Figure 6a that the diffraction pattern has been matched with JCPDS card No. 65–2901
and all the diffraction peaks were indexed to a pure cubic Ag phase. In addition, there are
no additional peaks observed in the XRD patterns indicating the high purity of the Ag NPs
synthesized by parsley extract. This is a good indicator that plant extract, in contrary to
other synthesizing methods, produces pure, high-quality, and stable NPs [13]. Furthermore,
the purity of the sample has been proven by SEM and EDX analysis in the coming sections.
The crystallite size and quality can be studied by investigating the full width at half
maximum (FWHM) values from the XRD spectrum. Therefore, from the XRD spectrum,
one can compute the average crystallite size using Debye–Scherer Equation (1) [101]:

D =
0.95λ

β cosθ
(1)

where D is the average crystallite size, λ is the wavelength of the incident X-ray (0.154 nm),
θ is the Bragg’s angle, and β is the full width at half maximum (FWHM). As a rule of thumb,
the narrow FWHM, ~0.2475, is always a cue for having a high-quality structure of Ag NPs.
The calculated average crystallite size of the Ag NPs around 30 nm. Comparable results
have been found by other researchers [102,103]. The crystalline size is relatively smaller
than the grain size, which can be obtained by the SEM. Thus, in order to calculate the actual
nanoparticle size, TEM or DLS should be utilized [49]. XPS analysis was accomplished
with the intention of studying the oxidation state of Ag NPs. The chemically reduced
Ag designate peaks in the spectrum of XPS as displayed in Figure 6b at 368 and 374 eV,
which can be allocated to Ag (0) 3d5/2 and Ag (0) 3d3/2, respectively [104]. This is another
confirmation showing that Ag is in zero oxidation state, i.e., reduced silver, similarly
confirmed by EDAX analysis in the coming section. It can be seen that from the XPS
spectrum, nitrogen was not sensed from AgNO3, predictable at about 400 eV, demonstrating
the creation of Ag NPs, and this outcome, again, was in good agreement with the EDX
analysis.
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3.2.4. SEM and EDX Analysis of Ag NPs

The morphology, shape, and size of the biosynthesized Ag NPs were investigated
using a field emission scanning electron microscope (FE-SEM). It can be seen from Figure 7a
that the synthesized Ag NPs possess uniformly dispersed spherical NPs. The grain size of
the biosynthesized Ag NPs was in the range from 40 nm to 80 nm (Figure 7b); the real size
of NPs can only be observed by dynamic light scattering (DLS) and transmission electron
microscope (TEM) [105] since XRD provides the crystallite size, relatively smaller than
the NPs size, and FE-SEM provides the grain size, comparatively bigger than the NPs
size [49]. Figure 7a also shows some agglomeration states of the biosynthesized Ag NPs.
Despite having a C-N and C-C stretching bond, as stated before, in the FT-IR spectrum,
which is signifying the presence of proteins amines around the Ag NPs, they can protect
the NPs from agglomeration, and there are still agglomerated clusters [92]. According
to our best knowledge, as stated in the UV-Vis analysis, utilizing plant extract leads
to a non-uniform nucleation process and thus forming the agglomerated clusters. On
the other hand, agglomeration is usually owing to the high surface energy per unit volume
ratio, which is the case in most biosynthesized NPs [6]. Our SEM results were in good
agreement with those of preceding investigations [102,103].
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Elemental analysis of the biosynthesized Ag NPs (Figure 7c) was investigated by
Energy Dispersive X-ray (EDX) analysis. EDX spectra show a strong signal in the silver
region, i.e., 3 keV, and confirm the formation of nanosilver and its elemental nature. This
signal was shaped due to the excitation of surface plasmon resonance of Ag NPs. Some
of the weak signals from Au were detected. These signals were formed owing to coating
the Ag NPs with a 200 Å layer of gold to enhance the quality of the SEM images. Figure 7c
shows the purity of the biosynthesized Ag NPs, which contains only an Ag element with
no impurity from the other elements. Comparable analysis has been found by previous
investigations [103].

3.2.5. Transmission Electron Microscopy Analysis of Ag NPs

To understand the impacts of the biosynthesis circumstances on the shape and size
of Ag NPs, the morphology was investigated using transmission electron microscopy
(TEM). Figure 8 displays the existence of spherical Ag NPs. TEM image shows an NPs
size range from 40 to 60 nm. High-resolution TEM (HRTEM) study was utilized to find
the structure of the biosynthesized Ag NPs. HRTEM displays the crystalline structure of
single Ag NP, with noticeable lattice fringes. A lattice spacing of 2.3 Å was computed,
equivalent to the Miller index plane (111) of face-centered cubic (FCC) Ag. The TEM
images, similarly, revealed that the Ag NPs are monodispersed and highly crystalline,
which is in good agreement with the SPR band in the UV-Vis and XRD spectra. It can be
seen from Figure 8 that especially under close observation, the biosynthesized Ag NPs are
surrounded by shaded layers of foreign matter, which most likely represent the capping
agent from the parsley leaf extract. Additionally, the Ag NPs are separated from each other
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by a uniform interparticle distance. The results of HRTEM are in excellent agreement with
an earlier investigation by Alahmad et al. [99].
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3.2.6. TGA–DSC Analysis

It is well-known that in many applications, such as the current applications in this
study, the thermal properties of nanoscale materials are extremely important. The impact
of temperature in nanoscale materials has been studied widely, such as crystallization, melt-
ing, and decomposition points [106]. The purity and thermal stability of the biosynthesized
Ag NPs were investigated using thermal gravimetric analysis (TGA) and differential scan-
ning calorimetry (DSC) analysis (Figure 9). It can be noticed from Figure 9a that the first
loss in mass of about 3% is related to the water desorption from the organic environment
of the NPs, while the second loss in mass of about 27% demonstrated that the metallic
core, Ag NPs, is enclosed by biomolecules. These outcomes agree in a high manner with
the HRTEM results; it has been shown that the shaded layers are representing the capping
agents surrounded around the Ag NPs. At the same time, these results solve the dilemma
of stability of the available phytochemical inside the plant extracts, which are stable until
high temperature [107]. In addition, TGA analysis (Figure 9a) proposed that the weight loss
in the temperature range of 0 ◦C−100 ◦C is due to the water desorption from the organic
environment of the NPs. This, in turn, proves that the biosynthesized Ag NPs are a good
candidate for absorbing moisture in many areas of applications [108]. From Figure 9b,
a sharp exothermic peak at 200 ◦C could be observed together with two small endothermic
peaks, one at 450 ◦C and the other one at 964 ◦C (Figure 9b) analogous to the melting point
of the metallic silver, which specifies the purity of the NPs. The deprivation pattern of
organic compounds was lasting until 750 ◦C. In other words, there was no deprivation
above 750 ◦C, which is related to the weight of Ag NPs. Analogous consequences have
been found elsewhere by other researchers [109,110].
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3.2.7. Particle Size Distribution and Zeta Potential Measurement

The dynamic light scattering (DLS) is utilized to compute the diameter of the Ag NPs
dispersed in the liquid. The size dissemination profile of the biosynthesized silver nanopar-
ticles measured by the DLS method is shown in Figure 10. The sharp signal confirms
the equi-size particle distribution, an indicator for monodispersity, which agrees well
with the UV–Vis spectrum. Size distribution profiles reveal one population of NPs with
an average size around 55 nm. Zeta potential, in turn, is the degree of the actual electric
charge around the surface of the NPs. Once a nanoparticle possesses a total surface charge,
the charge is measured through the ion concentration within an opposite charge near
the surface of the NPs [111]. The zeta potential value was shown to be −50 mV, which
is corresponding to the high stability of the biosynthesized Ag NPs. These outcomes
are in good agreement with Netala et al.’s results [112]. The DLS results coinciding with
the range obtained from the HRTEM analyses. Consequently, the DLS and TEM analyses
provided analogous results for the size range of the NPs. Parsley leaf extract mediated
biosynthesized Ag NPs possess high negative zeta potential values, and thus, they are
stable under a wide pH range [113].
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3.3. Solar Energy Harvesting Using Ag NPs

Nanomaterials, in general, own better thermal, electrical, optical, magnetic, and
mechanical properties, which have made them appropriate for countless applications [114].
For instance, in solar energy absorbers, nanostructured metallic materials are able, due to
the high surface area per unit volume, to absorb the maximum incoming light flux through
the vicinity of plasmonic structures [115]. In the surface plasmonic modes, the energy of
the absorbed photons is given directly to the free electrons, and the produced hot electrons
can be used in thermoelectric, photovoltaic, and photocatalytic platforms [116]. In other
words, metallic nanoparticles can enhance the absorption and emission of light and then
provide local heating.

The plasmonic photothermal characteristics of metallic NPs are of massive atten-
tion in biomedical areas since of their robust optical reaction and the aptitude to oper-
ate the photothermal consequence through the exterior light sources [117]. In addition,
the most important role of plasmonic effects in hot electron production lies in their apti-
tude to harvest near-infrared and infrared regions of the solar spectrum, which cannot be
obtained in conventional photocatalytic devices [118]. Among the metallic nanostructured
materials, NPs have played, exclusively, an important role in the development of pho-
tothermal generation devices. Nanoparticles such as gold and silver can effectively release
heat under the light source [119]. The heat generation is due to the plasmonic electric field
driving the electrons forcefully inside the nanocrystals, while the light energy received
by the Ag NPs is converted to heat through the interaction between light and the mobile
charge carriers in metallic nanoparticles and increase the temperature of the surrounding
medium as shown in Figure 11 [120].
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The reason behind selecting Ag NPs for this purpose is that Ag NPs, after Au NPs,
are the best candidate for the plasmonic heating generation process [117]. Meanwhile,
in semiconductor NPs, the heat release rate is much weaker since heat is produced over
the interband absorption procedure with the formation of mobile electrons and holes [121].

As stated previously, the utilized biosynthesized method in this study is produc-
ing spherical Ag NPs. Thus, the movement of electrons in the electric field results in
the polarization of the sphere; therefore, there is a linear restoring force, which reaches
the extreme point at the SPR. Accordingly, in contrast to the bulk material, a free electron
in the spherical particles is a vibrational system [122,123].

Figure 12a shows temperature profiles of 0.7% wt. Ag NPs in water medium by heat
generation due to SPR of free electrons when exposed to the sunlight. It can be noticed that
the heat released by the Ag nanofluid under sunlight irradiation at the plasmonic-resonant
wavelength increased the temperature of the water medium as the irradiation time in-
creases [124]. In order to achieve an optimal plasmonic heating generation, the wavelength
of the light source should be close to the plasmonic resonance wavelength of Ag NPs [125].
It can be seen from Figure 12b that the released heat by the Ag nanofluid under sunlight
irradiation at the plasmonic-resonant wavelength increased the temperature of the water
medium as the irradiation time increased. Additionally, the concentration of Ag NPs has
a noticeable effect on increasing the water temperature. For instance, at a low concentra-
tion of Ag NPs (0.3%), the temperature of the water rises up to 17.4 ◦C after 8 min, while
the temperature profiles containing between 0.5% and 0.7% of Ag NPs were reached at
16.3 and 17.2 ◦C, respectively. As a result of the absorption, trapping, and scattering of
the incident light by the Ag NPs over a board spectrum is following the generation of heat
through non-radiative damping after sunlight absorption, as explained in Figure 11 [124].
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Beicker et al. studied the photothermal conversion behavior of gold/water and
also multi-walled carbon nanotube (MWCNT)/water nanofluids at specific volumetric
concentrations (0.0001–0.004% and 0.0001–0.03%, individually [126]. They showed that
the optimal nanoparticle volumetric concentration was 0.002% for the gold nanofluids and
0.001% for the MWCNT. These results indicate that by optimization, the solar spectrum
could be absorbed to its maximum level. However, He et al. used Cu nanofluid as solar
absorber nanoparticles, and they showed the efficiency of solar collectors in the water
medium was improved to 23.83% for (25 nm, 0.1 wt. %) Cu NPs [127]. Moreover, they
also showed that the optical absorption of metallic NPs could be improved more by merg-
ing with graphene. Recently, different research groups synthesized nanofluids based on
spherical silver, gold, and copper NPs, covered by graphene oxides (GO) structures and
studied their thermal absorption behavior under the sunlight [128]. These results demon-
strated that the new nanostructured materials could convert solar energy to thermal energy
under low and high solar irradiation. As stated by Campos et al. [128], the nanofluids
were increased their temperature and reaching the boiling point after 10 min. In fact,
this is already expected by nanomaterials due to their extraordinary physical properties,
such as large surface area per volume. In addition, when the scale of the nanoparticles
is comparable to the free electrons De-Broglie wavelength, the periodic boundary condi-
tions would be changed due to the size shrinking. Thus, light absorption, magnetic effect,
thermal conductivity, chemical reactivity, and melting point can be converting strongly.
For instance, the properties of plasmonic resonance frequency change with different par-
ticle sizes; therefore, the NPs size can be tuned to control photothermal conversion with
broadband sunlight absorption [129].

4. Conclusions

In this study, high purity, thermally stable, monodisperse, and spherical Ag NPs were
synthesized from a simple, rapid, safe, and one-pot green method using parsley leaf extract.
Different characterization techniques were utilized to investigate the morphology, purity,
stability, crystal structure, optical, and thermal properties of the biosynthesized Ag NPs.
This investigation also shows that polyphenols and flavonoid complex exhibit higher reduc-
ing and capping properties than either polyphenols or flavonoid alone; thus, this complex
can provide homogenous, spherical, and monodisperse silver NPs. The biosynthesized
Ag NPs were used to investigate the plasmonic effect of different concentrations, namely
0%, 0.3%, 0.5%, and 0.7% Ag NPs and monitor the released heat from nanoparticles into
water medium through irradiation under the sunlight. It was found that the temperature of
water ambient reached 17.4 ◦C when 0.3% of Ag NPs were used within 8 min of irradiation.
In addition, this study showed that the released heat by the biosynthesized Ag NPs from
the irradiation around 450 nm leads to the thermal decomposition of localized surface
plasmon resonance. Finally, the result of this investigation is promising, and it emphasizes
that the Ag NPs can be utilized as converting sources of solar energy to thermal energy
and then increasing the temperature of the water medium at optimized conditions.
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