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Abstract: In this paper, we define some new almost and strongly almost convergent double sequence spaces E(%”f),

E(%fo), B [€/] and B [¢,] derived by the domain of four-dimensional sequential band matrix B(7,5,7,4) in the spaces
€, €ty [€5] and [€y,], respectively. Then we study some topological properties and prove some strict inclusion

relations. Moreover, we calculate the a.—, Bbp— and y—duals of the new spaces. Finally, we state some known lemmas
concerning the four-dimensional matrix classes of almost convergent double sequences, then we characterize some

new four-dimensional matrix transformations from and into the new sequence spaces E(‘za”f) and B [€F]. We conclude
the paper with several significant results.
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1. Introduction and Preliminaries

By the set Q := {x = (xun) : Xmn € C, Vm,n € N}, we denote all complex valued double sequences,
where C is the complex field. Q is a vector space with coordinatewise addition and scalar multiplica-
tion. Any vector subspace of Q is called a double sequence space. .#,,, €,, Cpp, €, and £, denote
the classical spaces of all double sequences that are bounded, convergent in the Pringsheim sense,
convergent in the Pringsheim sense and bounded, regular convergent, and g-absolutely summable, re-
spectively, where 0 < g < oo. It is well known that the space ., becomes the space .Z;, in the case
g = 1. Moreover, by ., €., where ¥ = {p,bp,r}, we denote all bounded and ¥-convergent
series, respectively.

Let E be any double sequence space. Then,

EB®) .= {a = (an) € Q:{ayxi} € €S9, for every x = (x) € E},
E%:= {a = (ay) € Q: {ayxu} € Ly, for every x = (x) € E},

EY:= {a = (aw) € Q: {anxu} € B.7, for every x = (xy) € E}
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Therefore, let E| and E, are arbitrary double sequences with E, C E; then the inclusions E{¥ C EY,
E! C E¥ and Ef(ﬂ) C E¥ hold. But the inclusion E] C E{g(ﬂ) does not hold, since %), \ .#,, is not
empty.

Let A = (Gmnii )mnkicn be an infinite four—dimensional matrix and E1, E» € Q. We write

Yimn = Apn(x) = 0 — Zamnkxkl for each m,n € N. €))
k1

We say that A defines a matrix transformation from E; to E; if

A(x) = (Apn(x))mn € Es forall x € E. )

The ¥ —summability domain Ef(f})

E is defined by

of a four-dimensional infinite matrix A in a double sequence space

E{gﬁ) =x=(xy) EQ: Ax= <0 - Zamnklxkl> exists and is in E }

m,neN

which is a sequence space. The above notation (2) says that A = (dyks)mnk,1cN maps the space E; into

the space E; if E| C (Ez)/(f) and we denote the set of all four-dimensional matrices that map the space
E into the space E; by (E| : E;). Thus, A € (E; : E») if and only if the double series on the right side
of (2) ¥—converges for each m,n € N, i.e, Ay, € (E; )13'(19) for all m,n € N and we have Ax € E, for all
x € E.

Adams (1933) defined that the four-dimensional infinite matrix A = (@) is a triangular matrix if
Amnit = 0 for k > m or [ > n or both. We also say by Adams (1933) that a triangular matrix A = (@)
is called a triangle if @, 7 O for all m,n € N. One can be observed easily that if A is triangle, then

Ef\ﬂ) and E are linearly isomorphic.

The concept of almost convergence for single sequence introduced by Lorentz (1948) and then Moricz
and Rhoades (1988) extended the idea of almost convergence for double sequence. He stated that a
double sequence x = (x;;) of complex numbers is called almost convergent to a generalized limit L if

m+q n+q
p— lim sup | ———F Xl —
94" m n>0 (q+1 (] +1 kZlen
In this case, L is called the f,—limit of the double sequence x. Then Basarir (1995) defined the concept
of strongly almost convergence of double sequences. A double sequence x = (x;) of real numbers is
said to be strongly almost convergent to a limit L; if

m+qn+q
p— lim sup e — Li| =
qq%‘”mn>0<‘]+1 +1 kZm[Zn

and it is uniform in m, n € N. Now we may define the set of all almost convergent, almost null, strongly
almost convergent and strongly almost null double sequences, respectively, as follow;

Cr =

X = (X]d) eQ:dLeC> pP— hmqq*)oo sup,,. >0 WZ Z;H;lq Xkl — L‘ = O,
uniformly in m,n € N for some L ’
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cgfo =
x=(xy) €Q:3LeC3 p—limyy ,esup, .o Wzmw 7+;/ xkl‘ _
uniformly in m,n € N
(€] =

X = (X]d) cQ:9dLeC> pP— hl’l’l%q/_wo supm7n>0 WZM-"-L] n+q |)Ck1 L1| = O7
uniformly in m,n € N for some L ’

[(gfo] =

X = (Xk[) cQ:dLeC> pP— llmqq —o0 SUP,, >0 mzm+q n+q |xkl| =
uniformly in m,n € N ’

Here we can say for this case that L; is called [f>]—limit of a double sequence x = (xi;) and written
shortly as [f>] —limx = L.

Here we state some geometrical and topological properties of these sets. Unlike single sequence con-
vergent double sequence need not be almost convergent. But it is well known that every bounded
convergent double sequence is also almost convergent and every almost convergent double sequence is
bounded. That is, the inclusions ¢}, C €y C .4, strictly hold. Since the following inequality

1 m+qn+q 1 m+qn+q
sup | ——————~ xy—L| < sup ————F—— |xk — L.
m,n>0 (Q+1) q +1 kzmlzn m,n>0 (Q+1) kzmlzn

holds, we can easily say that if a double sequence is strongly almost convergent, that is, the right hand
side of the above inequality approaches to zero if we pass to limit as g,q’ — oo, then the left hand side
of the inequality also tends to zero. It says that the inclusion [€] C % holds and it easily can be seen
that the double sequence x; = (—1)!, for all k € N, is in €7\ [¢7]. So the inclusion is strictly hold.
Now, we can mention here that the inclusions ¢, C [¢},| C [€}] C €y, C €y C A, are strictly hold
and each inclusion is proper.

Furthermore, the sets ¢y and ¢, are Banach spaces with the norm

1 migntq
e = o A, A
and the sets [6] and [6},] are Banach spaces with the norm
m+qn+q
Mg = e D@+ (q+1 Y kZm IZ i

The four-dimensional sequential band matrix B(7,s,t,%) = {buu(7,5,1,u)} was defined and studied
by Tug, Rakogevié, and Malkowsky (2020) as follows; let 7= (r)%2_g, § = (Sm)ro_gs £ = (tn)irg» and
u = (uy);_, be given sequences of real numbers in the set ¢ \ co. Then,

Fmtn —,  (k,0) = (m,n),
YmUn (k7l):(man_1)a

bmnkl(7as~)t7m = Smln ) (k7l) - (m_ l,fl),
Smin , (k,1)=(m—1,n—1),
0 , elsewhere,

for all m,n,k,l € N. Therefore, the four-dimensional sequential band matrix B(7,s,7,)-transforms a
double sequence x = (x,,;,) into the double sequence y = () as follow;
Ymn -= {B(ZE’Z mx}mn = menkl(?aaz mxkl 3)
ki
= Sm—1Un—1Xm—1n—1 T Sm—1IXm—1,n + FmUn—1Xmn—1 + FmtnXmn
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for all m,n € N. With respect to the above equation in (3), Tug et al. (2020) calculated the inverse
B-(F5.1,i0) = F(F,5,1,i0) = { fyta (7.5.7,0)} of B(7,5,1, i) which is defined by

5 (505 . 0<k<m, 0<I<n,

0 , elsewhere,

f;‘/ll’lkl (77 E;?; Z[) = { Filn (4)

for all m,n,k,l € N. Thus, by considering the matrix B(7,s,,u) and its inverse matrix F(7,s,t,u), and
keeping the relation between x = (x;,,) and y = () in mind, we can observe the following;

1 mn m—1 n—1 —s: —Uu;
Xun = Z H H < l) (tj> Ym—kn—i, forallm,n e N. )
J

Pmln 20 i=m—k j=n—1 \ Ti

The double sequence spaces B(E), where E = { %, #y, €y, €, %} and 1 < q < oo were introduced
and studied by Tug et al. (2020).

Remark 0.1. Note that in the case s;, = s, rpy =rforallm e Nandt, =t, u, =u foralln € N, the
four-dimensional sequential band matrix B(7,s,t,1) is reduced to the four-dimensional generalized dif-
ference matrix B(r,s,t,u) which was defined by Tug and Basar (2016), and studied in Tug (2017b),Tug
(2018),Tug (2018),Tug (2021),Tug (2017a),Tug (2017). Moreover, in the case s, = —r, = 1 for all
me N and t, = —u, = —1 for all n € N, the four-dimensional sequential band matrix B(7,s,t,u)
is reduced to the four-dimensional difference matrix A(1,—1,1,—1) (see Capan and Basar (2019)).
Therefore, the results produced by domain of the matrix B(7,s,t,u) are more comprehensive than the
corresponding consequences of the matrix domain of the matrices B(r,s,t,u) and A(1,—1,1,—1).

2. The new spaces of almost and strongly almost convergent double sequences

In this section, we define spaces §((€f), E(%fo), B (€] and B [€f,] whose four-dimensional sequential
band matrix B(7,5,7,u) domains are in the double sequence spaces €, ¢7,, [¢7] and [¢,], respectively.
Then we give some topological properties and prove some strict inclusion relations.

Now, we define the spaces B(%}), B(€},), B[€f] and B[%},] as follows;

B(%) ==

x=(x) €Q:3ILEC 3 p—limyy esUp,, -0 Wzmw ):n+q (Bx)u —L‘ =0,
uniformly in m,n € N for some L ’

B(¢},) =

x=(xu) €Q:ILECS p—limyy e SUP 20 | T GTT) Lo o Bx)kl‘ —0,
uniformly inm,n € N 7

B[%y] =

x=(x) €Q:3ILEC 3 p—limyy esUp,, -0 Wzmw ZnJrq (Bx)u —L‘ =0,
uniformly in m,n € N for some L ’

B¢y) :=

x=(x) €Q:3ILEC 3 p—limyy e8Up,, -0 Wzmwzwq (EX)M‘ =0,
uniformly in m,n € N|

where {Bx} i = Sg—1U—1Xk—1,1—1 + Sk—181Xk—1,1 + Felbi—1Xk 1—1 + it Xpg.-

Theorem 0.1. The double sequence spaces B(€y), B(€y,), B[] and B[%},) are linearly isomorphic
to the spaces €y, €y, €] and [€y,), respectively; that is, B(€y) = €y, B(6},) = €y, B[€y]) = [€}] and
B[Cgfo] = [(gfo]'
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Proof. Since the other cases can be proved similarly, we prove only §(<gf) = ¢¢. To prove this, we
need to show the existence of a linear bijection between the spaces E(%”f) and €. Let us define the
transformation T from B(%}) to € by x — Tx = y = B(F,5,1,)x. Linearity of T is clear. Moreover, it
can be seen that x = 6 whenever Tx = 6, which means that T is injective.

Let us suppose that an arbitrary y = (yx) € 7 and define x = (x,,,) via the sequence y by the relation
(5) for all m,n € N. Therefore, we obtain by considering the qualities (3) and (5) that

{B(?a S, 1, i\‘l)x}mn = Sm—1Un—1Xm—1,n—1 T Sm—15nXm—1,n + T'mUn—1Xmn—1 + T'mlnXmn

< (e BRI G )

Fm—1In—1 (=0 |=0 i=m—k—1 j—

1 m—1 n m—2 n—1 —s
" f( £y 1 1 (3)

Pm—1Tn (=0 [=0i=m—k—1j=

k=0 [=0

—2 n—1
Sm—1tn 'Y —Si
L [1 II ri
m=1n j—p_k—1 j=p—1 \ i

m—1n—1 m—2 n
(sm 1Upn—1

- 1,006
= ZZ Fi—ta—1 ; q_lj_g_l< r: 1 Ym—k—1,n—1—1

FmUn—1 mton2 —Si —uj
+ ) — | Ym—kn—-1-1
Pmfn—1 i Zpk j=n—i—1 \ Ti lj
-1 n-1 m—1 m—2 n—1
Fln ™3 —s; Uj —S; u
+ I IT (=) (")t |+ 2 TT 11 — ) ymke10
Fmln i Zpy—k j=p—1 \ Ti k=0 i=m—k j=0 \ Ti j
1

l —
m—1m—1n—1 —s; m—1n—1
© LG ) TE)
k=0 i=0 j=0 \ i i=0 j=0 \ Ti

for all m,n € N. This equality leads us to the fact that

m+qn+q mqniq
p— lim sup =p— lm sup | ————— Ykl
qqﬁoomn>0 (q+1 q+1 kzr'nlzr’z ‘I%‘x’mn>0 (Q+1 q+1 kzr’nlz;l

This shows us that x = (x,,) € E((ﬁf) since y = (ymn) lies in €. Thus, T is surjective. Therefore, T is
a linear bijection between the spaces B(%) and €. It completes the proof. g

Theorem 0.2. The following inclusions strictly hold.
(i) € C B(%y).
(ii) €y, C B(Ey,).
(iii) [€f] C B[%].
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(iv) [Cgfo] C E[Cgfo]-
(v) B[€}] C B(%y).
(vi) B[6y] C B(%p,).

Proof. (i—ii) : Suppose that x = (x;) be a double sequence in the set € such that

m+qn+q
p— lim sup Xxl
4,4 =% >0 (q+1 Q+1 kz,’nlz;l

exists uniformly in m,n € N. We need to show that the double sequence x = (xy;) is also in E(‘Kf), ie
Bx € €. Thus, we have

m+qn+q

(g+1D)(g+1) q’+1 Z X (Bx)e

k=m I=n

1 m+qn+q

= |7 (Sk—1U1—1Xp—1 =1 F Sk— 11 Xk—1,1 F TRl —1 Xk 1—1 + Tl Xpg)
(g+1)(g+1) ,;,;, ;

m+qn+q' m+qn+q
< GiD@+D q’+1 kz;nlz;l Sk—1U—1Xk—1,1-1) | + CENCES) q—l—l kz;nlz;l Sk—111Xk—1,1)
m+qn+q mtqntq
+ W‘l—kz;nzz;l U1 X —1) | + m;‘nlfz ritix)
Hence, if we pass p—limit by letting g,q" — o, then
1 mtqntq
P e & P ©®

exists uniformly in m,n € N which means that the inclusion €y C B(%) holds.
Now, we must show that the set B(¢) \ € is not empty. Let us define x = (x;) by

1 k—11-1 i —u;
X = —— H ( t) (]> (7
Tkl =0 j=0 \ i L

for all k,/ € N. Clearly x = (xy) is not in €. Furthermore,

(BX) = Sk—1Uj—1Xk—1,0—1 + Sk—111Xk—1,1 + Thli—1Xpc 1~ 1 + TiliXp

| k22 —u | k=2i=1 /o —u
J i J
= Se-1i [ITT1(— ) () +sens [ —) |-
Tk=10-1 j=0 j=o \ i lj k=111 =0 j=0 \ Ti lj

k—11-2 k=111 /o

l

rktllejO Ti klleO ]
= 0.

that is, Bx = 0 for every k,/ € N, which is in the space €7, i.e., x € E(‘Kf) \ €. This gives us that the
inclusion ¢y C B(%) is strict.
(iii —iv) : Similarly, let us assume that x = (x;) be a double sequence in the space €] such that

m+qn+q
p— lim sup m Z Z [oeua |

94" =% m n>0 k m l=n
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exists uniformly in m,n € N. We must show here that the double sequence x = (xy) is also in B[],
i.e., Bx € [¢%]. Thus, we have

m+qn+q

ey ramyp P MICUT

k m l=n
m+qn+q

1

)

1
m k;m l:Zn |Sk—1U1—1Xk—1,1—1 F Sk—111Xk—1,1 F+ TrU—1 Xk 1—1 F Trt1Xp |

1

(

1

m+qn+q 1 m+qn+q
< ISk—1U—1Xk—1,1—1| + ————— |Sk—1t1Xk—1,|
TENIENP Y TR
m+qn+q m+qn+q
+ w1 x 1|+ | Pt |
(g+1)(¢'+1) kzr’nlzr’z (q+ fI+1 kz,’nlz,’l
Islleolulloo "I Islleolltlle "
< — |xk—1 77 k-1,
(g+1)( q+1k2;n,)::; ( q+1kz;nlz:;
el oo " Hrll Htllw sy
+ |, [t |-
(g+1)(¢'+1) kzmlzn kz:’nlzr’z
Hence, if we pass p—limit by letting g,q" — o, then
m+qn+q
p— lim sup ‘ Bx kl‘ (8)
qq%‘”mn>0(q+1 CI+1 kzmlzn

exists uniformly in m,n € N. Thus, the inclusion [¢] C B[%] holds.

Now, to show that the set B[%7] \ [¢] is not empty, we may consider the double sequence x = (x;;)
defined as (7) such that Bx = 0 which is also in the space [€)],i.e,xEB [%f] \ [€7]. This gives us that
the inclusion [¢r| C B [%f] is strict.

(v —vi) : The proofs can be proved easily since 6] C € and [¢},] C €, and the double sequence
x = (xg;) defined as in (7) shows that the sets ¢ \ [€}] and €, \ [€},] are not empty. So, we omit the
details. O

Theorem 0.3. The following statements hold.

(a) If *2wm 1 for all m € N and 3P < 1 for all n € N. The spaces .#, and |1 do not contain

inf,, ryy, inf, 1,

each other where [ = {E[Cf],E[CfO]}.

(b) If T2 <1 for all m € N and 522 <1 for all n € N. Then, the following inclusions E(%f) -

inf, inf, t,

My and B(€y,) C My strictly hold.

Proof. (a) : To prove this claim, we must prove that the sets B[}, \ .#,, .4, \ B[€},] and B[€},) N4,
are not empty. Let us define a double sequence x = (xy;) by

_1)1

Til]

Xy = forall k,1 € N.

Thus, Bx € [€},] since e < 1 for all m € N and e < 1 for all n € N, but clearly not in the
space .. The set B[€},] \ .4, is not empty. Moreover, if we define a double sequence x(!) = (x,((})) by
x() = ¢ then, it is clear that x\!) € B[€},] N.,

Now, if we define a double sequence x(2) which is in the space .#, by

_ Tty
X =

) L ifboth k and | are even
0o otherwise.
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Then, we have the B—transform of x = (x,(j)) as

TEL L ifkisodd s odd,
Sk—111 . . .
Bl — ro 0 fkisoddlis even,
( x)kl = rRU—1

, ifkisevenlisodd,
if k is even [ is even.

Tt
Tily

it ’

Thus, one can obtain since ?Elfj'" m <1 for all m € N and 5}‘:}‘;" ;’" < 1 for all n € N that
m+qn+q
p— lim sup ‘ Bx kl‘
qq%‘”mn>0(q+ +1 kzmlzn

uniformly in m,n € N. We read from the last approach that X(®) € ., \ B[¢},]. This is what we
claimed.

(b) : First, we need to show that the inclusions B(%) C ., and E( %) C A, hold. Let us take any
double sequence x = (xy) € B(‘gf) Theny=Bx ¢y C My. Since B ( ,5,1,u) satisfy the conditions
of (Tug, 2018, Theorem 4.10), it belongs to class (¢ : .#,) and x = ~ly € ., holds. Therefore, the
inclusion B(%) C .#, holds.

Now, for the converse, let the following double sequence x = (xy;) be defined as

1
1
1

o O O
S O O

1 1
1 1
1 1

S O O
S O O
oS O O
S O O
S O O
S O O
S O O
oS O O

1
1
1 ) (9)

Xkl =

i.e., in each row, there is one 1, then two Os, then four ls, then eight Os, then sixteen 1s, and goes on
with respect to this harmony. Thus, clearly the double sequence x = (x) € .#, \ B(¢7). O

3. The a—,3(bp) — and y—duals of the spaces E(‘gf) and E[‘éf]

In this section, first we calculate the a—dual of the spaces B(%, ) and B [€’]. Then we state some known
lemmas concerning the matrix classes (67 : €5p), ([€7] : 6bp), (€7 : A,) and ([€F] : .#,) which we
consider them to calculate the B (bp)— and y—duals of the spaces B(¢) and B[¢7,].

0By S

Theorem 0.4. Ler | 5"
spaces B(€y) and B [Cff] is the space £,.

sup, tn

<1 forallme N and i,

< 1 forall n € N. Then, the a.—dual of the

~ o
Proof. Since the proofs are similar to each other, we only prove here {B(‘Kf)} = ., and leave the
other assumption to the reader. To prove our claim {g(%f)} = .Z,, we must show the existence of
~ 04 ~ a
the inclusions .%;, C {B(%f)} and {B(%f)} C Zu.

For the first inclusion, suppose a sequence a = (@) € £, and x = (Xpy,) € E(‘Kf) Therefore, there
exists a double sequence y = (yun) € €r with the relation (3) and (5) such that

m+qn+q
p— lim sup Vki
qq%“’mn>0 (C]+1 q+1 kzmlzn

exists. Moreover, the inclusion € C ., holds, says, sup,, ,cn |[yma| < K where K € R*. Since

SUp,,, Sm
inf,, rpy

sSup,, Un

mhg, | < 1 for all n € N, we have

< 1 for all m € N and
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m —

G n_l _Sz ‘
H Ym—kn—I
mt"kl Oizm—k j=n—1 j
m—1 n—1 < > ( )
i=m—k j=n—I Ti J

Z|amnxmn| = Z’amn‘
m,n

’ymfk,nfl‘

m,n
TR AL 5
[GEGE H oot ™

k,I=0

—sup, s |" | —sup, u, |’

—n —Tnn

7 HthZ‘am"‘klZO - ‘ ot

NG || supas : )*supnun Y Il
ol = | =L 1, m

< oo

~ o ~ a
Thus, a = (amm) € {B(///M)} and we can say the fact that the inclusion £}, C {B(%f)} holds.
Now, to prove the second inclusion {E (‘Kf)} C Z,, we use converse of this assumption. Let suppose

~ o
that there exists a sequence (@) € {B (‘Kf)} \ -Z, such that ¥',,, , |@pnXmn| < oo for all x = (xun) €

B(%). Let the double sequence x = (x;) be defined as x = (x,,,) = {(—1)"*"} which is in B(€}) such
that

Z ‘amnxmn‘ = Z ‘amn‘ = oo.

m,n m,n
Thus this is a contradiction. Therefore, (a,,,) must belong to the space .%),. It completes the proof. [

Lemma 0.5. (Moricz & Rhoades, 1988, Theorem 1., p.285) The following statements hold:
(a) A four-dimensional matrix A = (amnir) € (€7 : Gbp) if and only if the following conditions hold:

SUP Y [dymnit] < o (10)
m,neN |
day € C3,bp— lim apuy = ay forall k,l € N, (1D
m,n—oo
ueCs,bp— lim Y apu =u, (12)
min—yoo 4=
Jko e N>,bp— mlrllr_r}wzl: |@mn kot — k1| = 0 for all 1 € N, (13)
dlp e N>,bp— lim Z‘amnk,lo —ay | =0forallk €N, (14)
m.n—)oo
P—mlrlgl ZZ\Amamnkl! = (15)
bp— lim_ ZZ |A10mnkt| = (16)
where
AV0Amnki = Qmnki — Amn k41,05 Do1@mnkl = Qmnki — Gmnk,1+1- (17)

(b) A four-dimensional matrix A = (amuq) is strongly regular, i.e., A € (€ : Cpp)req if and only if the
conditions (10)-(16)hold with a; = 0 for all k,1 € N and u = 1.

where Aokt = Amnki — Ampje+1,1 A0 Ao1 Akt = Akt — Amn 141, (m,n,k, 1 =0,1,2,...).
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Lemma 0.6. (Basarir, 1995, Theorem 1., p.179) A four-dimensional matrix A = (Gyn € ([€7] : Cpp)
if and only if A is bounded regular, i.e., A = (aunt) € (Cpp : Gbp) (see (Robison, 1926, Theorem I,
p.53)), that is the conditions in (11)-(14) hold with ay; = 0 for all k,l € N and u = 1, and satisfy the
following two conditions;

bp— lim_ Y Aol =0, (18)
e IeE

bp— lim Y |Aoiamm| =0. (19)
e IeE

for each set E which is uniformly zero density

Lemma 0.7. (Tug, 2018, Theorem 4.10, p.14) A four-dimensional matrix A = (i) € (€ = M) if
and only if Ay, € {%f}ﬁ(ﬂ) and condition (10) hold.

Lemma 0.8. (7ug, 2021, Corollary 3.4, p.13) A four-dimensional matrix A = (ayuut) € (€7 : A,) if
and only if the Ay, € { }ﬁ for all m,n € N and (10) holds.

Now let us define the sets by where k € {1,2,...,7}, as follows:
~ mu il —u
bi=<Sa=(ay)€Q: sup Y | ) HH( ”) ( p)%‘j
mneNE] (i j=k Tilj z=kp=i \ = Ip
~ UL T W Ny G —u
b2:{a:(akl)EQZHﬁkle(CB,ﬁ—mlim Z HH< )<p>aij:ﬁkl}a

e T Tilj zZkp=i \ Tm

. m,n i-1j-1 ,/ .
b3={a=(akz)€Q:Eiu€C9,l9— lim Z 1HH< S”) (%>aij:u},
P

m’nﬁmi,j:k,l ritj T—kp=i g

a:{a:wmegs

dlp e N>, 89— lim

m,n—eo

L T N el N —Up
Y —11 — Brio
= I",'l‘j rr l‘p

OforallkEN},

a_{a_mmegs

FkoeN>,9— lim )

m,n—yoo

m,n 1 i—1 j—1 . o
Y T () (5 ) pu

:OforallleN},

I |i,j=ko,l "itJ m=ko p=I
~ L W el —u
b6:{a:(akl)eﬂ:19— lim Y'Y lanq Y —T] ( ><P>a,-j :0},
mnree ST ikt Tili aZfp=i \ Tx Ip
mn i—1 j—1 s —u
b7—{a—(ak1)€£2 o= Jim T a0t ¥ HH< ) <P>a,.,. _0}.
oo ikt Tilj xZfp=i \ = Ip

Theorem 0.9. The B(bp)—dual {u}P®P) of the space u is 0,7:151', ie, {u}pr = ml?:[z;,-, where
u={B(%y),B[%}]}.

Proof. Suppose that a = (dy,,) € Q and x = (x,u,) € B(€). Then, we have y = Bx € €. m, n-th partial
sum of the series }; ; ax Xy is given by the equality (26) which was defined by Tug at al (Tug et al.,
2020, Lemma 1., p.11) and the four-dimensional matrix D = (dm,,k,) which was also defined by Tug at
al (Tug et al., 2020, p. 11) as

s :{ ZT]nkzr,,,H H (%") (%?’)aij ;, 0<k<m0<I<m

dmnkl
0 , elsewhere
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for all m,n,k,l € N. Then, since it is given in the hypothesis, one can obtain that ax € ¢".%,, whenever
x = (Xmn) € B(€y) if and only if Dy € 63, whenever y = (yun) € €. This says that a = (@) €

~ B(bp) ~
{B(%f)} " if and only if D € (€ : 6p). Thus, we can say that the conditions of Lemma 0.5(a)

holds with cZ,mkl instead of a4, 1.€., this is the set ﬂzzl cZ This completes the proof.

The Bbp—dual {B[&;]}PP) of the space B[%] can be calculated by considering k,/ € E which is
uniformly zero density in Lemma 0.6 and then it is seen that { B[] }#(*?) = N, d; t00. So we omit
the repetition. O

Theorem 0.10. The y—dual of the spaces g(‘ﬁf) and B[€] is the set di NCSy, ie., {E(%f)}y =
{B[€f]}Y =diNCSy

Proof. Suppose that @ = (@) € Q and x = (x,,,) € B[€]. We need to show that the (m,n)"—partial
sum of the series Y;; ayxy; is in the space A.7 for these sequences a = (dpy,) € Q and x = (X, ) € B (€]
where y = Bxe [€]. By considering the similar way used in proving Theorem 0.9, we can summarize
the rest of the proof as follows; we can say that ax € 2.7 whenever x = (x,,) € B[%] if and only if
Dy € .4, whenever y = (ymn) € [€¥], where the matrix D= (cfi:,mkl) was defined by (20). This means
that the conditions of Lemma 0.8 hold with the matrix D = (c};,mkl) instead of the matrix A = (@ )-
That is, Dy, € [€7]P(®) for each fixed m,n € N and

mn g i—1 j—1 —Sy —up
ap Y| Y HH( )()aij<oo.
mneN'CT (i, jmk Tl x=kp=1 \ Tm Ip
Thus, the y—dual {B[%}]}? of the space B[] is the set d; UCSy. This completes the proof. O

4. Matrix Transformations on the New Sequence Spaces B(%) and B[%]

In this section, first we summarize the literature concerning the matrix transformations from and into
the sequence spaces ¢ and [¢]. Then we state some corollaries, without their proofs, which include
characterization of some new four-dimensional matrix classes. We conclude the section with some
significant results after stating the matrix classes (B(t) : A) and (A : B(u)) which characterized by Tug
et al. (2020) in general form.

Lemma 0.11. (Zeltser, Mursaleen, & Mohiuddine, 2009, Theorem 3.1., p. 5) The following statements
hold:

(a) A four-dimensional matrix A = (Gunk1) is almost €y, —conservative, i.e., A € (6, : €y) if and only
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if the condition in (10), and the following conditions hold
Ja;; € Cobp— lim al(i,j,q,q ,m,n) = a;j, (20)
4,q' e

uniformly in m,n € N for each i, j € N

JueC>sbp— lim Za(i,j,q,q',m,n):u, 2D
q,q' —oo ij

uniformly in m,n € N

Ja;; € C>bp— lim Z]al] q,q ym,n) —a;;| =0, (22)
9.4~

uniformly in m,n € Nfor each jeN
Jda;j € C>bp— lim Z]a(i,j,q,q’,m,n)—a,-j]:0, (23)
q7q/—)oo .
J
uniformly in m,n € N for each i € N

where a(i, j,q,q' ,m,n) = Y Iy 4 aklu/[(q—i— 1)(¢' +1)). In this case, a = (a;;) € £, and

fo—limAx =Y ajx;; + <u —Za,-j> bp— lim x;;,
ij ij

i,j—>o0

that is,
bp—q%}lm Za i,j,q.q ,m,n)x;j —Z“uxu"‘ < Z%) bp—lljlinwxl],
uniformly in m,n € N.
(b) A four-dimensional matrix A = (Qyni) is almost Cyp—regular, i.e., A € (6 1 C€f)reg if and only if
the conditions (10), (20)-(23) hold with a;; = 0 for all i, j € N and u = 1
Lemma 0.12. (Zeltser et al., 2009, Theorem 3.2., p.9) The following statements hold:

(a) A four-dimensional matrix A = (i) is almost 6,—conservative, i.e., A € (€, : €y) if and only if
the conditions in (10), (20) and (21), and the following conditions hold

djoe N>bp— lim Za(i,jo,q,q’,m,n):ujo, (24)
4.4 =5

uniformly in m,n € N,

3ip €N bp— lim Za i0,/,4,4 ym,n) = viy, (25)
aq'—

uniformly in m,n € N,

where a(i, j,q,q',m,n) is defined as in the Lemma 0.11. In this case, a = (a;;) € Zyu; (uj),(vi) € {1 and
fz—limAx = Zaijxij+z <V,'—Zaij) X,“FZ (uj—Za,-j> Xj
ij i j j i
<u+2au Zv, Zu]> r— ljlglwx”
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(b) A four-dimensional matrix A = (@) is almost G,—regular, i.e., A € (€, : C)req If and only if the
conditions in (10), (20), (21), (25) and (25) hold with a;; = u; = v; =0 for all i, j € Nand u = 1.
Lemma 0.13. (Zeltser et al., 2009, Theorem 3.3., p.11) The following statements hold:

(a) A four-dimensional matrix A = (1) is almost €,—conservative, i.e., A € (6, : €r) if and only if
the conditions in (10), (20) and (21) hold, and

VkeN, 3K € N> ayupy =0 forl > K, (m,n € N), (26)
VieN, ILeN3>ayuy =0 fork>L, (myn €N). 27

In this case a = (a;j) € £, (aij,)ieN, (aiyj) jen € @ where @ denotes the space of all finitely non-zero
sequences and

fr —limAx = Zauxu <u — Zaii> hgl Xij
o i,j—ro0
7] l7]

(b) A four-dimensional matrix A = (amup) is almost €,—regular, i.e., A € (€, : Cf)req if and only if the
conditions in (10), (20), (21),(26) and (27) hold with a;; = 0 for all i, j € N and u = 1.

Lemma 0.14. (Mursaleen, 2004, Theorem 2.2., p.527) A four-dimensional matrix A = (Gyup; ) is almost
strongly regular, i.e., A € (€r : € )req if and only if A is almost regular and the following two conditions
hold

lim ZZ‘AIOa i,j,q,q ,mn ‘ = 0 uniformly in m,n € N, (28)
4,4/ e

lim ZZ‘AOW i,j,q,q ,m,n) ‘ = 0 uniformly in m,n € N, (29)
4,4 e

where
AlOa(i7j7CI7q/7m7n) = a<i7j7Qaq/7man) _a(l+ 17j7q7q/7m7n)7
AOla(i’j7q’ q/7m’n) = a(i7j7q’ q/7m’ n) _a(i’j+ l’q’q/7m’n)‘

Lemma 0.15. (Yesilkayagil & Basar, 2016, Theorem 3.5., p,43) The four-dimensional matrix A =
(mnki) € (AMy 2 €y) if and only if the condition (10) and the following conditions hold

Hﬁkl eC> fr— liIB Amnkl = ﬁkl forall k,l € N, (30)
m,n—roo
m+qn+q
Foreverym,n,jeNJGdKe N> ——— ai (31
(¢+1)(¢ +1) kz,;lz,’, v
forallq,q',i > K,
m+qn+q
Foreverym,n,iEN,ElLENB—Z Zakl,,—O (32)
( q +1 k m l=n

forallq,q',j> L.

Lemma 0.16. (Tug, 2018, Theorem 3., p.4) Let A = (ayu; ) be a four-dimensional infinite matrix. Then
the following statements hold.

(a) Let 0 < s < 1. Then, A = (apuut) € (Ly : €¥) if and only if

sup ‘amnkl‘ < oo, (33)
m,n,k,leN
A(aw) € C such that f, — liILl Ankt = agg for all k,1 € N (34)
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(b) Let 1 <s' <oo. Then, A = (ayuut) € (Ly : 6¥) if and only if the condition (34) holds and

sup Z|amnkl|s < oo, (35)
mneN k|

Lemma 0.17. (Tug, 2021, Theorem 4.2., p.13) Four-dimensional matrix A = (auuu) € ([€5] : €f) with
fo—limAx = [fo] — limy xy if and only if A is almost €}, —regulari.e., A = (aynir) € (Cpp : Cr) with
fz —limAx = bp — limklxkl and

Z |Av1@mnki| — 0, as m,n — oo (36)
kICE

for each set E which is uniformly zero density where
A1 @kt = Amnkl = Amn k1,1 — Gmn e +1 F Qn et 1,141 (37)
Now we come up with the following corollaries without their proofs.

Corollary 0.18. The four-dimensional matrix A = (ampit) € (M, : [€y]) if and only if the condition
(10) and the following conditions hold

Elﬁkl eC> [fz] —mlli1I_I>1 Aynkl = Bkl forall k,l € N, (38)
m+qn+q

Forevewm,n,jGN,HKENam— Z Z laij| =0, (39)
k m l=n

forall q,q',i > K,

m+qn+q
Foreverym,n,iec NN4GLENS —F ——— |lakij| = (40)
(g+1)(¢g +1 kz,’,, lZn v

forall q,q',j> L.

Corollary 0.19. Let A = (@) be a four-dimensional infinite matrix. Then the following statements
hold.

(a) Let 0 < s’ < 1. Then, A = (amuut) € (ZLy : [€5]) if and only if (33) holds and

I(aw) € C such that [f>] — liril Anil = axg for all k,1 € N 41)
m,n—seo

(b) Let 1 <s' < oo. Then, A = (apuut) € (Zy : [€5]) if and only if the condition (41) holds and

!/
sup Y |amnu|” < oo. (42)
mneN k|

Corollary 0.20. The following statements hold:

(a) A four-dimensional matrix A = (Gmnir) is strongly almost 6}, —conservative, i.e., A € (6pp : [€7]) if
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and only if the condition in (10), and the following conditions hold

Jda;j € C>bp— lim ali,j,q,q' ,m,n) = aij, (43)
4,q' e
uniformly in m,n € N for each i, j € N
JueC>bp— lim Zal]q,q m,n) = u, (44)
9.4~

uniformly in m,n € N

Jda;j € C>bp— lim Z]ﬁ(i,j,q,q',m,n)—aij|:0, (45)
a4 =T

uniformly in m,n € N for each j € N

Ja;; € Cobp— lim Y |a(i,j,q,q' ;m,n) —a;j] =0, (46)
4:q' =5
uniformly in m,n € N for each i € N

ﬁzmw "+q Jlawij|- In this case, a = (a;j) € 2, and

where a(i, j,q,q',m,n) = (g+1)(

[f2] —limAx = Zauxu ( Za,j> bp — lim x;j,

i, j—yo0
ij i.j o

that is,

4.4’ — i

bp— lim Za i,j,q,q,m nxl] Za,]x,]—i—( Zau) bp— hm | Xij,

uniformly in m,n € N.

(b) A four-dimensional matrix A = (@) is strongly almost €,p—regular, i.e., A € (€pp : [€F])req if and
only if the conditions (10), (43)-(46) hold with a;; = 0 for all i, j € N and u = 1.

Corollary 0.21. Four-dimensioanl matrix A = (aunut) € ([€7] : [€7]) with [fo] —limAx = [ fo] —limyg xy
if and only if A is strongly almost €j,—regulari.e., A = (1) € (€hp : [€7]) with [fo] —limAx =
bp —limy; xz; and the condition in (36) holds.

Corollary 0.22. A four-dimensional matrix A = (auu) is strongly almost strongly regular, i.e., A €
(€ : [€¥])req if and only if A is strongly almost regular and the following two conditions hold

lim ZZ‘AIW i,j,q.4';m,n)| = 0 uniformly inm,n € N, (47)
q.4'

lim ZZ‘AOI@ i,j,q,4';m,n)| = 0 uniformly in m,n € N, (48)
0.4

~/e . + +
where a(i, j,q,q',m,n) = WZZ! ,ZZ” 7 |aklz]| and

Aloa(i7j7q7q/7m7n) = a(i7.].7q7q/7’/’/l7’,l) _5(i+ 17j7q7q,7m7n)’
A0167(i,j,q,q/,m,n) = a(i7j7Qaq/aman) 7a(la]+ 15Q7q/am7n)'

Now, the following Lemma 0.23 is given by considering four-dimensional dual summability method
for double sequences.
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Lemma 0.23. (Tug et al., 2020, Theorem 13., p.14) Suppose that the four-dimensional matrices A =
(@mnkt) and C = (Cyyuy) are connected with the following relation

~ I B el —up
Cmnkl = Z ZHH< re ) <tp) Amnij (49)

ij=k,t "L 7=k p=i

Sfor any m,n,k,l € N and A is any given double sequence space. Then, A € (E(M) : A) if and only if

A, € {E(,u)}ﬁ(ﬂ)for any m,n € N, (50)
Ce(u:A) (51)

Corollary 0.24. Suppose that the four-dimensional matrices A = (ayur;) and C= (Cpunki) are connected
with the following relation (49). The the followings hold;

(a) A€ (E(%,p) : ) if and only if the conditions in (50) holds, and (10), (20)-(23) hold with Cpnu
instead of @y

(b) Ac (E(‘Kr) : ) if and only if the conditions in (50) holds, and (10), (20), (21), (24), (25) hold
With Cipiq instead of dppp.

(c) A€ (g(%p) : 6y) if and only if the conditions in (50) holds, and (10), (20), (21), (26), (27) hold

With Cui instead of apup.

(d) Ac (E(Dﬁ) 1 €r), (0 <s" <1) ifand only if the conditions in (50) holds, and (33) and (34) hold
With Coyni instead of dpyp.

(e) Ae (B(L): %r), (1 <s' <o) ifand only if the conditions in (50) holds, and (34) and (35) hold
With Cpnit instead of ayup.

(f) Ae (E(‘Kf) : €r) if and only if the conditions in (50) holds, and (10), (20)-(23) hold with a;; =0
foralli,j e Nandu=1, and (28) and (29) hold with C,i; instead of dpyp.

Corollary 0.25. Suppose that the four-dimensional matrices A = (ayup; ) and C= (Conki ) are connected
with the following relation (49). The the followings hold;

(a) Ac (g(%,p) : [€]) if and only if the conditions in (50) holds, and (10), (43)-(46) hold with Cu
instead of ayi.

(b) Ac (§(QZ§) :[€%]), (0 <’ <1) ifand only if the conditions in (50) holds, and (33) and (41) hold
With Cpup instead of apup.

(c) Ae (B(L): [€%]), (1 <" < eo) if and only if the conditions in (50) holds, and (41) and (42)
hold with ¢y instead of .

(d) A€ (B(€y): [€y)) if and only if the conditions in (50) holds, and (10), (43)-(46) hold with a;; = 0
foralli,j € Nandu=1, and (30)-(32) hold with ¢, instead of ani.

(e) Ac (E(///,,) 2 [€]) if and only if the conditions in (50) holds, and (10), (38)-(40) hold with Cuu
instead of aypp-

(f) A= (Gmnt) € (E[%f] 2 [€r]) with [fo] —limAx = [fo] — lim xy if and only if A = (amuu) €
(B(Gbp) : [€F]) with [fo] —limAx = bp — limy x; and the condition in (36) holds with Cyui
instead of Ay
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Corollary 0.26. Suppose that the four-dimensional matrices A = (ayur;) and C= (Cpunki) are connected
with the following relation (49). The the followings hold;

(a) Ac (E(%f) : €hp) if and only if the conditions in (50) holds, and (10)-(16) hold with Cyy instead
Ofamnkl-

(b) Ac (E((gf) s M) if and only if the conditions in (50) holds, and (10) holds with ¢y instead of

Amnkl-

(c) A€ (E[%”f] : €) if and only if the conditions in (50) holds, and (20)-(23) and (36) hold with ¢
instead of @y

(d) Ac (E[‘Kf] : Gbp) if and only if the conditions in (50) holds, and (11)-(14) hold with a;; = 0 for
alli,j € Nand u =1, and (18)-(19) hold with ¢, instead of Gk

(e) A€ (ﬁ[‘ff] s M) if and only if the conditions in (50) holds, and (10) holds with ¢,k instead of

Amnkl-

Lemma 0.27. (Tug et al., 2020, Theorem 14., p.15) Suppose that the four-dimensional infinite matrices
A = (amnir) and G = (gmur1) are connected with the following relation

mn
Skl = Y bmnijaiju (52)
=0

= Sm—1Un—10m—1n—1 k] T Sm—1In0m—1 0kl T YmUn—1mn—1 k] + T'mInQmnki
for all m,n,k,l € N. Then, A € (A : B(1)) if and only if
Ge(A:u) (53)

Corollary 0.28. Suppose that the four-dimensional matrices A = (ayup; ) and G= (&mnk1) are connected
with the following relation (49). The the followings hold;

(a) A€ (Cpp: E(‘Kf)) if and only if the conditions in (10), (20)-(23) hold with g, instead of apup.
(b) A€ (%, : §(<€f)) if and only if the conditions in (10), (20), (21), (24), (25) hold with g, instead
Ofamnkl~

(c) A€ (C,: E(%f)) if and only if the conditions in (10), (20), (21), (26), (27) hold with g, instead
Ofamnkl-

(d) Ae (% E(Cgf)) (0 < s’ < 1) if and only if the conditions in (33) and (34) hold with g
instead of ayni;.

(e) Ac (% g(‘ff)), (1 <5 < o) if and only if the conditions in (34) and (35) hold with g
instead of @y

(f) Ae (Cr: Bv((ﬁf)) if and only if the conditions in (10), (20)-(23) hold with a;j =0 for all i, j € N
and u =1, and (28) and (29) hold with g1 instead of apup.

Corollary 0.29. Suppose that the four-dimensional matrices A = (ayu;) and G= (gmnki) are connected
with the following relation (49). The the followings hold;

(a) Ae (Cpp: g[%f]) if and only if the conditions in (10), (43)-(46) hold with g, instead of G-

(b) A€ (% :B[€}]), (0<s' <1)ifand only if the conditions in (33) and (41) hold with gy instead
Ofamnkl-
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(c) Ae (% g[‘za”f]) (1 < s’ < o) if and only if the conditions in (41) and (42) hold with guni
instead of @i

(d) Ae (€ E[(ﬁf]) if and only if the conditions in (10), (43)-(46) hold with a;; = 0 for all i, j € N
and u = 1, and (30)-(32) hold with g, instead of @

(e) Ac (My: g[%f]) if and only if the conditions in (10), (38)-(40) hold with g, instead of apyup.

(f) 4: (amnkl) € ([%f] : E[%f]) with [fz] —limAx = [fz] —limk[ Xkl ifal’ld only ifA = (amnkl) € (%bp :
B[€y]) with [f>] —limAx = bp — limy xi; and the condition in (36) holds with gun instead of

Amnkl-

Corollary 0.30. Suppose that the four-dimensional matrices A = (apur;) and G= (gmnki) are connected
with the following relation (49). The the followings hold;

(a) Ac (Cr: g(%,p)) if and only if (10)-(16) hold with g, instead of Gy
(b) Ae (65 g(//lu)) if and only if (10) holds with g, instead of @y
(c) A€ ([€f]: E(‘Kf)) if and only if (20)-(23) and (36) hold with g instead of ap.

(d) A € ([¢F] : E((gbp)) if and only if (11)-(14) hold with a;; = 0 for all i,j € N and u = 1, and
(18)-(19) hold with g instead of dpp.

(e) A€ ([€f]: E(///u)) if and only if (10) holds with g, instead of .

5. Conclusion

Lorentz (1948) introduced almost convergence for single sequence and then M. Mursaleen (2010) in-
vestigated the certain properties of the space of almost convergent sequences denoted by f. Then
many of the mathematician has studied the matrix domain on almost null and almost convergent
sequences spaces (see Basar and Kiris¢i (2011), Tug and Basar (2016), Kayaduman and Sengoniil
(2012), Sengoniil and Kayaduman (2012).RhoadesMoricz and Rhoades (1988) introduced and stud-
ied almost convergence for double sequences. Then many significant contributions have been done
by several mathematicians (see Tug (2018), Tug (2018), Tug (2021), Mdricz and Rhoades (1990),
Mursaleen and Savag (2003), Cunjalo (2007), M. Mursaleen and Mohiuddine (2009), M. Mursaleen
and Mohiuddine (2010).In this paper, we defined the spaces g(%f), E(%fo), §[‘€f] and E[‘Kfo], where
the matrix B(?,SN,ZIT[) was defined by Tug et al. (2020) as four-dimensional sequential band matrix.
Then we state some topological properties beside some strict inclusion relations. In the third sec-
tion, we calculated the a—,bp— and y—dual spaces of E(%f) and E[‘Kf] In the last section, we
stated the known matrix classes from or into the spaces B(%) and B[], and then we characterized
some new matrix classes (B(it) : A) and (A : B(11)), where A,y are any sequence spaces from the set
{Cgf’ [Cgf]fgbw%’%ﬁ’%’v‘%[u}
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