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Abstract

This paper investigates the least squares approach for finding
approximate solutions to differential equations using discrete method.
Our goal is to develop efficient numerical method (discrete method)

for solving ordinary differential equations (ODEs). The L, norm

along with the discrete least squares method (DLSM) has been used
to obtain the least approximation error and numerical approximate
solution, respectively. Some examples are given to support the explicit

results.
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1. Introduction

In differential equation, the least squares method, also known as least
squares approximation, is a method for estimating the true value of a
quantity by considering errors in observations or measurements. The
criterion for least squares is a formula used to calculate the precision of a
straight line in the representation of the data used to produce it. That is,
the formula decides the best-fit rows. The action of the dependent variables
is predicted using this mathematical model. The method is also called the
regression line of least squares. The criterion of least squares is estimated by

minimizing the number of squares that a mathematical function produces.

The DLSM is an important issue in solving ODEs, which plays a great
role in mathematical physics. The mixed discrete least squares meshless
method for planar elasticity problems using regular and irregular nodal
distributions was studied in [1, 2]. The discrete least squares meshless
method with sampling points for the solution of elliptic partial differential
equations was introduced in [3]. The reference [4] found the approximate
solutions of first and second-order differential equations using continuous
least squares method (CLSM). For comparison, some numerical methods
for solving ordinary differential equations (ODEs), fractional differential
equations (FDEs) and partial differential equations (PDEs) are studied in
[5, 7]. The references [6-11] introduce numerical approximation approach
that involves curves and surfaces which play a vital role in numerical
analysis. As an application, references [12-16] made use of commutativity
to study the relation and the sensitivity between systems. The idea can be
extended to investigate the commutativity and sensitivity using the DLSM

approach.
The aim of this paper is to promote numerical technique (discrete
method) for ODEs. The L, norm along with the DLSM has been used to

obtain the least approximation error and numerical approximate solution,

respectively. The paper is scheduled as: Section 2 provides basic definitions
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and mathematical formulas. Section 3 introduces the CLSM and DLSM.
Results and discussion form the content of Section 4. Finally, conclusion is

given in Section 5.
2. Mathematical Preludes

CLSM is used to solve complex problems involving ODEs, FDEs and
PDEs. In this work, the DLSM for solving ODE:s is considered as:

L(y) = f(x) for x O domain Q,

W(y) = g(x) for x O domain 3Q,

where L stands for differential operator and Q indicates the domain in R!

or R? or R3, while W refers to the boundary operator. The approximate

solution of ODEs can be written as
n .
¥ = 4C(X), 2.1)
i=1

where C i(X ) and g¢; represent the weighted basis function and the
coefficients (weights), respectively, the g; is realized using the DLSM. Let
the residual R; (X) and Ry, (X) be defined as

Ry (x, y) = L(¥) = f(x) for x O domain Q, (2.2)
Ry (x, ) = w(¥) = g(x) for x O boundary Q. (2.3)

Substitution of y,.,; into equation (2.2) and equation (2.3) leads to

RL(X’ yexact) =0 and RW (x’ yexact) =0.

3. Least Square Method

In this section, we introduce the CLSM and DLSM for solving ODE:s.
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3.1. Continuous least square method

The CLSM is a numerical approximation method that can be used to

solve ODEs, the ¢;’s from equation (2.1) are obtained using the CLSM.

This can be done by considering the L, norm:
E = J R%(x, y)dx + I RVZV (x, ¥)dx. (3.1)
Q aQ

Minimizing the error function

We obtain the best numerical approximate solution along with minimal
error E.
The first derivative of equation (3.1) with respect to g; equated to zero

yields

a—E=0, fori=1,.., N,

dq;
which, in turn, yields

~\ OR
dx"'J‘GQRW(x’ ) aql.d

1

oR,
0g;

IQ R, (x, ) dx=0, i=1.,N. (32

Equations in (3.2) are algebraic equations which can be written in the
form of
Ma = b. (3.3)

Note that M is an n X n matrix, a = [ql, Qs G3s e qn]T, and b is some

column vector.
3.2. Discrete least square method

The DLSM and the squared residuals are considered at finite points

x;,1<i <k, indomain, and x;, k +1<i < m. Let

E= Zj;l Ri(xi. )+ Zm RE(x;, 7). (3.4)

i=k+1
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Using (I)i(x), 1<i< N, the solution of ODEs that present basic functions

of an approximate solution of DLSM is expressed as:

RL(Cf, xp) Ly(a, x) = f(x)

Ry (a, x;) Ly(a, x;) = f(x)
Ry (a, xg41) Ly(a, xp41) = f(x41) |

RW(a’ xm) Lj;(a’ xm) - f(xm)

The solution of DLSM, which minimizes E = rTr, is obtained by

9E _ ) fori=1..N. 3.5)
0q;

4. Results and Discussion

The explicit results obtained using DLSM in previous section are
applied to show the effectiveness of our method.

4.1. Example 1

Application of the DLSM to solve 1st order ODE:

1 dy 3 _
(1+\/§j5+xy(x)'0’ »0) =1, (4.1)

where 0 < x < 1.

Let

_ 1 dy
L(x, y) = (1 " @ja + xy. 4.2)

Step 1. Apply the polynomial

N
y = qu—xl + ¥o- 4.3)
i=1
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Step 2. We set yj =1 in equation (4.3) to satisfy the boundary

condition.

Step 3. The residual is given by

_ 1 dy . -
R(x) —(1+J§)E+xy. (4.4)

By replacing y(x) from equation (4.3) into equation (4.4), we get

R(x) = ( 1 jd(lezl g;ix; + 1) + x{ﬁ: gix; + 1]. (4.5)
i=1

1+/3 dx

Step 4. The least error is obtained by considering

k m
E=Y Ri(x. 5)+ > Ri(x. 7). (4.6)
i=1 i=k+1

Step S. The discrete least square solution is obtained by solving equation
4.8):

9F =0, fori=1,.., N, 4.7)
0q;
k ~ m ~
— ORy (x;, — OR; (x;, .
ZRL(xi’ y)—Léql, . Z R (%, y)% =0,i=1..,N.
i=1 ! izk+1 !
4.8)

The solutions obtained from (4.8) form a linear system. By choosing
three discrete points x; =0, x, =0.5, x3 =1 and considering equation
(4.5) with equation (4.8) for N = 3, with the help of MATLAB program, we

obtain the matrix:

47589 5.3370 6.1472 3.3481 q
D =|53372 64822 75989 |, b=|39551|, a=|q,| (4.9)
6.1472  7.5989 9.0310 4.5331 q3
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Solving equation (4.9) helps to obtain ¢;’s:

g =1.9072, g, =15947, g3 = 0.8399.

The approximate solution is given as

5 =0.8399x> —1.5947x> —1.9072x + 1. (4.10)
The exact solution is given by
1 2
——(1+\/§)x
Yexact = € 2 . “4.11)

The following figures depict the exact solution, DLSM and the error for
N =3.

1.0 | — \ Output Plot
— -~ - Exact
s DLSM with N = 3
os -
06 \ -~
B
04 .
-
O.b ) O.é ) ) 0.4 ) ) O.é ) ) O.é ) ) 1.6
Figure 4.1. Results of equation (4.1) with N = 3.
The error is defined as
error = abs|y e = )- (4.12)
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Figure 4.2. Error plot of equation (4.1) with N = 3.
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For N =6, we obtain the following matrix by choosing six discrete

points x; =0, xp =0.2, x3 =04, x4 = 0.6, x5 = 0.8, x5 =1

8.0
8.4
9.0
9.6
10.2
10.9

8.4
9.6
10.6
11.5
12.4
13.4

9.0
10.6
12.0
13.2
14.4
15.7

9.6
11.5
13.2
14.8
16.4
18.0

The approximate solution is

10.2
12.4
14.4
16.4
18.2
20.1

10.9
13.4
15.7
17.9
20.1
222

5.8
6.4
6.8
7.2
7.7
8.1

q3
q3
qq |- (4.13)
qs
de6

$ = —0.7268x" +1.50769x* - 0.1831x> - 1.3426x2

+53532x10 4y +1.

(4.14)

The following figures depict the exact solution, DLSM and the error for

N =6.
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Figure 4.3. Results of equation (4.1) with N = 6.
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Figure 4.4. Error plot of equation (4.1) with N = 6.
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The following figures depict the exact solution, DLSM and the error plot
for N =3 and N =6.
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Figure 4.5. Results of equation (4.1) with N =3 and N = 6.
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Figure 4.6. Error plots of equation (4.1) with N =3 and N = 6.

Table 4.1. Data of errors analysis with N =3 and N =6 for Ist order

ODE

B y exact y-DLSM | y-DLSM Errors with Errors with
with N =3 |with N =6 N =3 N =6
0 1 1 1 0 0
0.1 | 0.986433 0.984892 0.972952 0.00154029 0.0134802
0.2 | 0.946825 0.942929 0.931079 0.00389601 0.0157463
0.3 | 0.884315 0.879149 0.870665 0.00516528 0.0136498
0.4 | 0.803672 0.798593 0.79209 0.00507886 0.0115819
0.5 | 0.710699 0.7063 0.699549 0.00439934 0.0111498
0.6 | 0.611544 0.607308 0.600776 0.00423521 0.0107671
0.7 0.51204 0.506659 0.506769 0.00538129 0.00527143
0.8 | 0417172 0.40939 0.431508 0.0077818 0.0143362
0.9 | 0.330721 0.320543 0.391687 0.0101782 0.0609662
1. 0.255119 0.245155 0.406429 0.0099638 0.15131
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4.2. Example 2
Application of DLSM to solve 2nd order ODE:
d 2)’ dy x — — 1 —
—2+—+(e +02)y=0, y0)=1, y'(0)=1, (4.15)
dx dx
where 0 < x < 1.
Let
d? y

L(x, y) ==
dx

dy | ( x
+ dx+(e +0.2)y. (4.16)

Step 1. Apply the polynomial
N .
¥ = g + (4.17)
i=1

Step 2. We set yy =11 and g; =1 in equation (4.17) to satisfy the

boundary condition.

Step 3. The residual is given by

d’y dy |, « -
R(x)=—+—=+ (" +0.2)7. (4.18)
dr? dx

By replacing y(x) from equation (4.17) into equation (4.18), we obtain:

N N
dz(zizl qi%; + 1) d(zz:l qi%; + 1)
R(x) = > + p
d

N
+(e* +0.2) {Z qix; + IJ.

. i=1
(4.19)
Step 4. The least error is obtained by considering
k m
E=Y Ri(x, 5)+ > Ri(% 7). (4.20)

i=1 i=k+1
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Step 5. The discrete least square solution is obtained by solving equation

(4.20):

0E
9q;

=0, fori=1,.., N, (4.21)

k ~ m
— OR;y (x:, — ORy (x:, :
i=1 ! i=k+1 l

(4.22)

The solutions obtained from (4.22) form a linear system. By choosing

three discrete points x; =0, xp =0.5, x3 =1 and considering equation
(4.19) with equation (4.22) for N = 3, with the help of MATLAB program,

we obtain the matrix:

127.699 1924745 129.521 q>
D = , b= , a= . (4.23)
192.475 315.789 193.002 q3

The approximate solution is
5 = 0.0863998x —1.1445x% + x +1. (4.24)

The exact solution is given by

YVoraer = —3.61363 x 2.71828™ 0% (Bessel [-0.447214, 2/2.71828* ]

— 0.185917 Bessel) [-0.447214, 2v2.71828"]). (4.25)

The approximate exact solution and the error are depicted in Figure 4.7
and Figure 4.8 for N = 3.
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Figure 4.8. Error plots of equation (4.15) with N = 3.
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Figure 4.7. Result of equation (4.15) with N = 3.
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For N =6, we obtain the following matrix by choosing six discrete

points x; =0, xp, =0.2, x3 =04, x4 =0.6, x5 =0.8 and xg = 1:

218.6 312.0 4312 571.0 7323 226.0 qn

312.0 484.6 692.0 9352 1215 319.1 q3
D=]4312 692.0 1015 1399 1844 |, b=]437.6|, a=|q4 |. (4.26)

5709 9352 1399 1957 2610 576.1 qs

7323 1215 1844 2610 3513 735.5 de

The approximate solution is

$ =0.00932378x° +0.0257951x° — 0.0166895x"

+0.00053x° —1.10001x2 + x +1. (4.27)
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The approximate exact solution and the error are depicted in Figure 4.9
and Figure 4.10 for N = 6.

1.20 S =
’/ ™~
115 / . Output Plot \\
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Figure 4.9. Results of equation (4.15) with N = 6.
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Figure 4.10. Error plots of equation (4.15) with N = 6.

The comparison between the exact DLSM and error is depicted in Figure
4.11 and Figure 4.12 for N =3 and N = 6.
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Figure 4.11. Results of equation (4.15) with N =3 and N = 6.
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Figure 4.12. Error plots of equation (4.15) with N =3 and N = 6.

Table 4.2. Data of error analysis with N =3 and N = 6 for 2nd order ODE

y-DLSM. | y-DLSM. Errors with )
ol Yot it N =3 | with N =6 N=3 Errors with V-= 6
0 1 1 1 0 0
01| 1.08 1.08864 1.089 0.000357 3.1102 x 1077
02| 115598 | 115491 | 1.15599 0.001073 17184 x 1076
03 | 120004 | 1.19933 | 1.20095 0.001616 3.4918 x 107
04 | 12239 122241 | 122391 0.00149 4.43531 x 107
05| 122497 | 122468 | 122497 0.000293 421863 x 107
06 | 120439 | 120664 | 1.20439 0.002258 37113 x 107
07 | 11626 1.16883 1.1626 0.006232 417652 x 10
08 | 110032 | 111176 | 1.10033 0.01144 574019 x 10
09 | 101861 | 103594 | 1.01862 0.01733 6.36734 x 10
1.0 | 091895 | 0941904 | 0.918953 0.02296 3.70363 x 10

5. Conclusion

This paper investigates the discrete least square method (DLSM) for
solving differential equations. The DLSM was introduced along with the L,
norm in order to obtain better numerical approximation results with least
error. We consider first order and second order ODEs with N =3, 6 to

verify the effectiveness of the DLSM. Our method to obtain results is seen to

outperform the existing methods with small error.
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