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Abstract: This paper proposes a stiffness method based structural analysis algorithm for geometrically
non-linear structures. In this study, the applied load on the joints has been discretized to a sequence of
a few loadings applied. Each loading step produces incremental external nodal displacements, which
are added to the corresponding coordinates to get a new geometrical shape of the structure. This
process is iteratively repeated until the sum of the loading of all iterations matches the total initial
applied loading. The size of the increments affects the technique’s accuracy, subsequently affecting
the number of iterations. The configuration of non-linear geometrical structures is vital in the work;
a slight change of the coordinates makes a considerable variation of nodal displacements. In this
paper, three pin-jointed assemblies and a cantilever beam have been examined using the proposed
technique; significantly reasonable outcomes emerged, compared to the non-linear approaches, such
as Dynamic Relaxation Method (DRM) and Non-linear approach by Kwan. In a numerical sense,
the dissimilarity between the results of the conventional Stiffness Matrix (SM) method and the non-
linear method is about 228%, while the maximum discrepancy between the proposed approach and
the non-linear methods is just above 15%.

Keywords: stiffness matrix method; dynamic relaxation; geometrically non-linear structures; truss
structures; cantilever

1. Introduction

In general, there are three primary sources of non-linearity in the structures that
are generally identified. Material non-linearity concerns structures made of an elastic-
plastic material. The second case, boundary non-linearity, involves structures which deflect
linearly until they contact unexpected supports. The last one is geometric non-linearity;
in this case, structure’s stiffness changes due to large deflections. The last case is the one
regarded in this study.

Nowadays, large space structures are very popular; they are made mostly of cable
members, which are geometrically a kind of non-linear structure. A deep understanding of
their structural performance yields from their structural analysis. Direct linear methods,
such as the Force Method (FM) and Stiffness Method (SM), are linear techniques and cannot
accurately cover non-linear structures. Theoretical nodal displacements and internal bar
forces show significant inconsistency with the practical results [1]

The proposed approach is a straightforward technique, simple enough to be studied
in undergraduate courses for civil engineering students. The system is adapted from a
direct linear method, namely, the Stiffness Method. The modification concerns the load and
updates the structure’s geometry after each incremental loading. In the conventional linear
method, the entire load is directly applied to the joints all at once, so the joint displacements
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are given instantly. However, in the current technique, the load is incrementally applied (δP)
to the joints to obtain incremental displacements (δd). The problem of direct linear methods
arises here; the nodal displacements of geometrically non-linear structures obtained from
linear methods are substantially far from practical results. The linear stiffness method
involves a single iteration, while the proposed approach involves two or more repeated
steps. When the displacements are achieved in each iteration, they subsequently update
the corresponding joint coordinates; hence, the structure geometry is updated. When the
sum of the discretized loading matches the full load, this will be the last step of loading;
then, the nodal displacements are summed up. The novelty of the current work means that
the approach of linear stiffness is applied to analyze geometrically non-linear structures
with coordinated updating of the structures, which, in fact, is a partial non-linear technique.
The advantages of the proposed approach are twofold. The method is straightforward
compared to other non-linear approaches; it is an effective routine for geometrically non-
linear pin-joined assemblies and flexural structures. Its accuracy has been evaluated in the
light of the previously proved non-linear methods. This approach can be easily included
in educational courses for undergraduate students to pave the way for other advanced
non-linear methods.

2. Review the Literature of the Studies

For some time, researchers have been dealing with analyzing structures utilizing
and modifying numerical methods such as the force method and stiffness matrix method.
Przemieniecki [2], and Skelton and De Oliveira [3] described the use of the SM in detail
to analyze tensile structures (most of the members of tensile structures are in tension).
The method was used for various purposes, such as for stability analysis of complex
structures [4,5], for dealing with self-stress states and mechanisms of structures [6], and for
the design and detailing of hogging moment regions in reinforced concrete flat plates [7].
Furthermore, SM has been used to find the response of prestressed pin-jointed structures
due to loading and to change the stiffness of tensegrity structure (tensegrity structures
consist of continuous tension members and discontinuous compression members) in two
ways; namely, altering bar length and reorientation of internal forces [8,9]. At the same time,
Zhang and Ohsaki [10] formulated the stiffness matrix to show that the equilibrium matrix
and stiffness matrix are equivalent in analyzing linear structures. Moreover, the effect of
the elastic stiffness and internal force of each cable on the total stiffness of the structure is
detailed by Azadi, et al. [11], and Xia and Wu [12].

In terms of complex and non-linear structures, Przemieniecki and Denke [13], and
Pellegrino [14] used the linear force method to obtain stress and deflection in complex
structures by partitioning the structure into several substructures. Meanwhile, the linear
force method for the purpose of analyzing statically and kinematically indeterminate
structures has been used by Pellegrino and Calladine [15]. Ma, et al. [16] used unbalanced
force iteration, based on both equilibrium and stiffness equations, to remove the unbalanced
force and make the structure feasible for prestressing. Furthermore, Jenkins, et al. [17],
Kwan [18], and Vaezzadeh and Ahmadizadeh [19] developed their non-linear techniques
from linear methods to analyze cable structures. Non-linear structures might not be
accurately analyzed by direct linear methods [19], and most non-linear methods are not
straightforward.

Meanwhile, more than a few methods exist for the static analysis of geometrically
non-linear structures, such as Dynamic Relaxation Method (DRM) [18,20–25], SM [26],
and Minimizing total potential energy [14,27]. In this study, the Dynamic Relaxation
Method [25] and Non-linear approach [18] have been chosen for the purpose of analyzing
non-linear structures and comparing the proposed method (simple non-linear technique
based on the stiffness matrix method) with them. Moreover, there is a chance to use any
other techniques mentioned before in order to calculate displacements of the non-linear
geometrical structures. Therefore, a brief introduction of these methods is presented below.
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2.1. Dynamic Relaxation Method (DRM)

DRM [25] is one of the methods of analyzing non-linear structures, which presents it-
self as an attractive method for analyzing non-linear geometrical structures since both form-
finding and analysis can be performed by only an analytical framework [18]. The DRM
was previously applied by Rushton [24] to the non-linear analysis of structures. From
1970 until now, a large number of investigations have been conducted in this field [22].
Zhang, et al. [28] are among those researchers who have verified that the DRM can be
used as a powerful and reliable technique for analyzing engineering problems. In addition,
Rezaiee and Alamatian [23] stated that the abilities of this technique are wonderful in
comparison with other methods and have a high ability in intense non-linear behaviors.

DRM is based on the motion of the structure geometry, which starts from the point of
loading to the final stable equilibrium state, which is reached to the minimum energy vis
using the principle D’Alembert as:

P(h) = [M]d′′ + [C]d′ + [K]d (1)

in which, P(h) is the time-dependent vector of externally applied load, and the expressions
of M, C, and K are a mass, damping coefficient, and stiffness matrix of the structure,
respectively. Furthermore, d′′ , d′, and d are the vectors of acceleration, velocity, and joint
displacements respectively. The detailed application of the technique for analyzing non-
linear truss structures is presented by Rezaiee and Taghavian [22].

2.2. Non-Linear Approach by Kwan

The method [18] is based on conventional FM; it is one of the accurate methods to
analyze geometrically non-linear structures. The author explicitly derived the non-linear
static response to loads as presented in Equation (2), and he applied the technique through
a simple two-leg structure, flat net in three-dimensional space, Saddle net, and Hyperbolic
paraboloid net. The two-leg structure has also been implemented in this paper (Figure 1).
He validated the approach by Geometric Stiffness Matrix, Dynamic Relaxation, and General
Minimum Energy.

Z =
EA
L3

o
∆3 +

2to

Lo
∆ (2)

in which Z is the external load, E&A are bar modulus of elasticity and cross-sectional area, Lo
is the bar’s initial length, to is the pretension force in the bar, and ∆ is the joint displacement.
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Figure 1. Geometry and loading of Structure 1, the y-coordinate of joint 2 is 10 mm below the other joints.

3. Establishing the Proposed Approach
3.1. Formulation of the Technique

The proposed algorithm is based on the stiffness matrix method [29]. Strain can be
expressed as Equation (3) through the displacement of nodes.

ε = B d (3)
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where ε is the strain at any point, d is nodal displacement, and B is the strain displacement
matrix. The statement of virtual work for a body of the volume with boundary surfaces is
as follows: ∫

V

εTσ =
∫
V

d
T

b +
∫
S

d
T

p + ∑
np

di
T pi (4)

Here, d is the virtual displacement vector
[

dx dy dz
]T , b = body force per unit

volume (this often relates to the weight density), di = Virtual nodal displacement, σ = Stress
at any point, p = surface load per unit area (example a pressure), pi = point loads, V = body
of the volume, and S = boundary surfaces.

The stress in the above equations can be expressed as follows:

σ = Eε (5)

The stiffness of an element can be written as below.

K =
∫
V

BTEB dV (6)

The detailed derivation can be found in Nikishkov [29], then the assembled stiffness
matrix becomes

P = Kd (7)

where P is the applied load, K is the stiffness matrix, and d is the external nodal displace-
ment vector. Equation (7) is no longer valid for geometrically non-linear structures; hence,
the proposed technique suggests that the loads should be incremented in order to obtain
partial displacements such that the equation becomes

δP = Kδdi (8)

The stiffness matrix depends on the geometry of the structure, so K is changed in each
iteration due to the relocation of the coordinates after updating; therefore, the obtained
displacements are added to the old coordinate to generate the new geometry.

coornew = coorold + δdi (9)

Now a new K is generated and Equation (8) is applied until ∑ δP = P; then, the
cumulative displacement can be found from Equation (10).

dcom =
n

∑
i=1

δdi (10)

The way of working of the current technique has been illustrated in Figure 2. The flowchart
clearly explains the strategy of the work. Firstly, the geometry of the structure is entered by
providing the nodal coordinates and bar connectivity. Secondly, the physical properties
of the structure and the total loading are provided, and thirdly, the number of iterations
is inputted. This information calculates the local and global stiffness matrix; then, load
increments are manipulated. After that, the discretized load is applied, and the partial
external nodal displacements are obtained. These incremented displacements are added
to the former coordinates; hence, a new geometrical structure is achieved. This process is
iteratively repeated until the summation of the discretized loadings is equal to the total
applied load. Finally, the cumulative nodal displacements are obtained that will be the
final results.

3.2. Stiffness Matrix Establishment

The stiffness matrix of a pin–pin-element based on the presented approach can be
presented as follows.
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The geometry of the member before loading that shown in Figure 3a can be found
as follows:

ho = x2 − x1 and vo = y2 − y1 while Lo =
√

ho2 − vo2, where ho and vo are the
horizontal and vertical distance between the two joints of the element, respectively, while
Lo is the initial length of the member before loading. Moreover, the element stiffness matrix
can be expressed as follows.
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Figure 3. The geometry of a hinged member (a) before and (b) after loading in step (i).

The stiffness matrix for the member before loading can be written as

ko =
EA
Lo


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2


where, c and s are cosine and sine of the oriented angle of the element and they can be
found as c = ho

Lo
and s = vo

Lo
, respectively.

After applying Equations (3)–(9), the geometry of the element will be changed as
presented in Figure 3b and the procedure will be as follows:
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hi = (x2 + dx2)− (x1 + dx1) and vi = (y2 + dy2)− (y1 + dy1) while Li =
√

hi
2 − vi

2

The stiffness matrix for member 1 can be written as ki =
EA
Li


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2


Here, c = hi

Li
and s = vi

Li
.

4. An Example for Illustrating the Technique

In this section, a simple example, which was a two-leg structure, has been tested using
the current approach. The structure was supported at the two far ends; all members had
EA = 108N [30], as shown in Figure 1. The structure has been loaded at the mid joint
with 8000 N downward in 15 steps sequentially (i.e., each step the structure was loaded
with 8000/15 N), as shown in Table 1. Furthermore, the step-by-step configurations of the
structure are presented in Figure 4.

Table 1. Step-by-step loading and corresponding displacements of Structure 1 in Figure 1.

Iterations y-Coordinates of J2 mm Load N Vertical Displacement of J2 mm

1 −10 533.33 −2.4318
2 −12.4318 533.33 −1.5741
3 −14.0059 533.33 −1.2406
4 −15.2465 533.33 −1.0472
5 −16.2936 533.33 −0.9171
6 −17.2107 533.33 −0.8222
7 −18.0329 533.33 −0.7491
8 −18.7820 533.33 −0.6906
9 −19.4726 533.33 −0.6427
10 −20.1153 533.33 −0.6024
11 −20.7176 533.33 −0.5679
12 −21.2856 533.33 −0.5381
13 −21.8237 533.33 −0.5120
14 −22.3357 533.33 −0.4889
15 −22.8246 533.33 −0.4682

Total 8000 −13.2929
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Table 1 shows the series of loading of the structure when it had different geometries.
In the first iteration, the structure had the initial coordinates, and it was loaded with the
first increment (8000/15 = −533.33) N. As a result, only the free joint moved downward
with 2.4318 mm, then the displacement was added to the former coordinates. The change
occurred only in the y-coordinate of joint 2 with the amount (10 + (2.4318)) mm; the process
was continually running until the number of iterations became 15. As it is clear from
Figure 5, the amount of displacement in each step declined significantly from the first to
the last iteration while the incremented loading was unchanged. This is due to the fact that
the structure was stiffened by displacement [18,30].

The results of different iteration numbers have been compared with conventional
linear (SM), and geometrically non-linear approaches (DRM), in order to show the effect of
the number of iterations on the accuracy of the method. The current approach results get
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closer and closer to the results from the referenced methods by increasing iteration numbers,
as presented in Figure 6. The figure clearly shows that the accuracy of the technique with
respect to DRM is enhanced by increasing the number of iterations. Such that, when the
number of iterations was one (i.e., when SM is applied), the end of the straight line was
noticeably far from the Dynamic Relaxation curve, whereas, the curves of the results of
the proposed approach got nearer to the non-linear curve by increasing the number of
iterations. One can see that the most comparable curve from the solid line is the 15-iteration
curve. It can be concluded that 15 iterations would be enough to get reasonable results.
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5. Results and Discussion

In this section, three pin jointed structures and a cantilever beam have been tested
using the current technique, conventional SM, and two quoted geometrically non-linear
methods. In the following sub-sections, the results are discussed in detail.

5.1. Structure 1

The two-bar structure was tested to see the validity of the proposed technique. From
this manner, the proposed approach was applied to the structure, then its displacement
results were compared with the results of SM and non-linear methods. Table 2 shows that
there was a noticeable inconsistency between the displacements obtained from SM and that
from geometrically non-linear methods. For this reason, it can be said that the structure
behaves non-linearly.
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Table 2. The displacement of y-coordinate of joint 2 of Structure 1 using the current technique and
the quoted methods.

Methods Joint SM (mm) Current Study (mm) Kwan (1998) (mm) Lewis et al., (1984) (mm)

Downward
displacement (mm) 2 −36.4770 −12.9887 −11.1120 −11.1168

Table 2 displays that the results of SM are significantly far from those of geometrically
non-linear methods (Lewis et al., 1984; Kwan 1998), in which their discrepancy is about
228%, whereas the dissimilarity of the current study was only 16% that is reasonably close
to the exact methods.

5.2. Structure 2

In this subsection, a 3D structure has been examined; the structure consists of four
bars with four restrained joints and a free joint at the middle. The properties were the
same as structure 1. However, the 3D structure has been loaded with P = 16,000 N in three
directions at Joint 2, as shown in Figure 7. It can be seen from Table 3 that there is a negligible
movement of Joint 2 in X- and Y-directions due to the response of the supports. The table
also shows the validity of the proposed approach; the value of Z-direction displacement of
joint 2 obtained from the current technique has a slight discrepancy with that of non-linear
approaches, while the linear approach failed to get an accurate result.
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Table 3. The displacement of y-coordinate of joint 2 of Structure 2 using the current technique and
the quoted methods.

Displacement of
Joint (2) SM (mm) Current Study (mm) Kwan (1998)

(mm)
Lewis et al., (1984)

(mm)

x −0.03 −0.03 −0.03 −0.03
Y −0.03 −0.03 −0.03 −0.03
Z −36.47 −12.87 −11.11 −11.11

5.3. Structure 3

In this part, a linear pin-jointed assembly was tested, containing six joints and ten
bars, as shown in Figure 8. The bars had EA = 4× 105 N. Joints 3 and 5 were loaded
downward with 3000 and 9000 N, respectively, in 100 steps; the reason for applying the
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massive loading is to get noticeable displacement. Table 4 gives the displacements of the
two end joints (Joints 5 and 6) by the linear SM, the proposed approach and the quoted
methods. The results prove that the maximum discrepancy of the referenced non-linear
techniques with the proposed approach was only 5%, while the dissimilarity between
non-linear techniques and the linear SM is 88%. The results demonstrate that the method is
also pragmatic and accurate for linear structures with massive loading.
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Table 4. Vertical displacements in mm of Joints 5 and 6 of Structure 3, using the proposed approach
and the quoted methods.

Joint Direction
Methods

SM (mm) Curren Study (mm) Kwan (1998) (mm) Lewis et al., (1984) (mm)

5
x 3.75 1.989 1.99 1.988
y −27.857 −28.144 −27.61 −28.221

6
x −6 −7.601 −7.54 −7.812
y −25.607 −25.487 −24.95 −25.510

Furthermore, Figure 9 clearly shows that by increasing the iteration numbers, the pro-
posed approach results get close to the outcomes of the non-linear (DRM) method. It can be
seen that from the figure, in 15 iterations, that the approach gives results reasonably close
to DRM ones.
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In summary, on the basis of the results of Tables 2–4 of the preceding three examined
structures, it can be concluded that the results of the proposed approach are in good
agreement with the non-linear techniques in literature, while the results of the dependent
linear technique are far from those results.

5.4. Structure 4

In this subsection, a simple cantilever beam with EI = 166.67 N.m2, shown in Figure 10,
is examined to validate the accuracy of the current technique for analyzing geometrically
non-linear flexural members. The results show that the technique is roughly in agreement
with the previous non-linear technique by Lewis et al. (1984), as shown in Table 5. It can be
seen that the linear stiffness method has zero horizontal displacements, while the current
approach and non-linear is clearly giving some results that are concise with the reality.
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Figure 10. Cantilever beam under vertical loading.

Table 5. Analysis of the cantilever beam using several techniques.

Methods

Joint Direction SM (mm) Current Study (mm) Lewis et al., (1984) (mm)

2 X 0 −6.05 −6.01
Y −135 −134.64 −134.05

6. Conclusions

In this paper, a straightforward technique which is a partially non-linear approach has
been developed from SM to analyze geometrically non-linear structures. A comparison has
been made among the current technique, SM, and the two non-linear quoted methods to
evaluate the accuracy of the proposed approach. The outcomes are:

â The results of the proposed technique are in good agreement with the non-linear
techniques’ ones, with a slight discrepancy, while the dissimilarity between of the
nodal displacements of SM and the quoted non-linear methods is 228%;

â It can be concluded that the proposed technique is accurate and applicable for geo-
metrically non-linear structures;

â The accuracy of the technique is enhanced by increasing the number of iterations;
however, the number of iterations could be assumed to be 15 to get reasonable results.
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