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Abstract. This paper aims to propose the semi implicit finite difference method for discretizing Cahn-

Allen equation. The stability and convergence analysis are proved. It is shown that the suggest scheme is 

stable for the usage of the Fourier-Von Neumann technique. The accuracy of the proposed method is first 

order in time and second order in space. A comparison between the numerical and the exact solutions is 

supported with two examples. Numerical results are shown that there is a good agreement between the 

approximate solution and exact solution.  
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1. Introduction 

This paper is devoted to study the numerical analysis of Allen equation. Allen-Cahn equation was 

originally introduced by Allen and Cahn (1979) and can be regarded as a second-order stiff nonlinear 

partial differential equation that is utilized in material sciences as a reaction-diffusion equation and in 

computational fluid dynamics as a convection-diffusion equation. In crystalline materials, the Allen–

Cahn model is used to describe the migration of phase boundaries. (Allen & Cahn, 1979). 

Consider the following generalized Allen’s equation  

               
∂𝑢(𝑥, 𝑡)

∂𝑡
− 𝐷

∂2𝑢(𝑥, 𝑡)

∂𝑥2
= 𝑓(𝑢, 𝑥, 𝑢(𝑥, 𝑡) )    ,  (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇],                      [1] 

𝑢(𝑥, 0) = 𝑓(𝑥), 

x ∈  [𝑎, 𝑏],                                                                                     [2]   

𝑢(𝑎, 𝑡) = −1,  𝑢(𝑏, 𝑡) = 1, 

  x ∈ [𝑎, 𝑏].                                                                                     [3]                

The nonlinear source term 𝑓(𝑢, 𝑥, 𝑢(𝑥, 𝑡) ) satisfies Lipschtiz condition with respect to 𝑢 that is  
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             |𝑓(𝑢, 𝑥, 𝑢 ) − 𝑓(𝑢, 𝑥, 𝑣 )| ≤ 𝐿𝐹|𝑢 − 𝑣|.   

For  𝑓(𝑢 ) = 𝑢(1 − 𝑢2) Eq. (1) becomes Allen’s equation . Most recently, some serious methods have 

been developed in order to solve nonlinear differential equation for example see, Manaa, 

Moheemmeed, and Hussien (2010); Hussein (2011); Sabawi, Pirdawood, and Khalaf (2021); Sabawi, 

Pirdawood, and Rasool (2021); Sabawi, Pirdawood, and Sadeeq (2021); Pirdawood & Sabawi, (2021), 

Sabawi (2017); Sabawi, Dhumal, & Kiwne, (2018), Sabawi, (2020); Sabawi, (2021). Various 

numerical methods have been used to solve Allen-Cahn equation one of which is the finite difference 

method (Huang & Abduwali, 2011; Bulut, 2017; Villarreal, 2020). 

The aim of this work is to recommend a numerical method for solving (1-3) that is first order accurate 

time compound and second order in space. The idea is use Euler’s backward method to discretize time 

derivative and lagging nonlinearity to the previous known level of time. The stability is given. 

Furthermore, the accuracy in terms of the errors is analyzed.  

The rest of this paper is structured as follows. In Section 2, the model problem and semi implicit finite 

difference method are introduced. Section 3, the stability and convergence analysis are considered. 

Numerical results are shown in section 4. Finally, conclusion is given in section 5.   

2. Semi Implicit Finite Difference Method 

We describe the domain with uniform mesh, we can consider a numerical method of implicit-explicit 

nature: the linear terms are treated implicitly whereas the non-linear coefficients are treated explicitly. 

More specifically, we seek approximations 𝑢𝑖
𝑛 of the function values u(𝑡𝑛, 𝑥𝑖 ) for 𝑛 = 0,… ,𝑁𝑡−1and 

𝑖 = 1,… ,𝑁𝑥 satisfying the following system of linear equations: 

 To start with, using Euler’s backward method to discretize time derivative and lagging nonlinearity 

to the previous known level of time, we have the following fully discrete problem: 

∂𝑢

∂𝑡
− 𝐷

∂2𝑢

∂𝑥2
= 𝑢(1 − 𝑢2)    ,  (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇],                                            [4] 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝑘
− 𝐷

𝑢𝑖+1
𝑛+1 − 2𝑢𝑖

𝑛+1 + 𝑢𝑖−1
𝑛+1

ℎ2
= 𝑢𝑖

𝑛+1(1 − (𝑢𝑖
𝑛)2),                                        [5] 

which leads to the following 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛 =
𝑘𝐷

ℎ2
(𝑢𝑖+1

𝑛+1 − 2𝑢𝑖
𝑛+1 + 𝑢𝑖−1

𝑛+1) + 𝑘𝑢𝑖
𝑛+1(1 − (𝑢𝑖

𝑛)2), 

𝑢𝑖
𝑛+1 = 𝑅(𝑢𝑖+1

𝑛+1 − 2𝑢𝑖
𝑛+1 + 𝑢𝑖−1

𝑛+1) + 𝑘𝑢𝑖
𝑛+1(1 − (𝑢𝑖

𝑛)2) + 𝑢𝑖
𝑛, 

where 𝑅 =
𝑘𝐷

ℎ2 . Above equation can be written in tridiagonal form as, 

𝐴𝑖𝑢𝑖−1
𝑛+1 + 𝐵𝑖𝑢𝑖

𝑛+1 + 𝐶𝑖𝑢𝑖+1
𝑛+1 = 𝐷𝑖,                                                                    [6] 

where 𝐴𝑖 and 𝐶𝑖 are constants, so 𝐴𝑖 = 𝐶𝑖 = (−𝑅) and 𝐵𝑖 = 1 + 2 𝑅 − 𝑘(1 − (𝑢𝑖
𝑛)2). 

Assembling the entire system of equations and applied boundary conditions, gives  
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[
 
 
 
 
𝐵1 −𝑅 0   
−𝑅 𝐵2 −𝑅   
 ⋱ ⋱ ⋱  
  −𝑅 𝐵𝑀−1 −𝑅
  0 −𝑅 𝐵𝑀 ]

 
 
 
 

(

 
 
 
 

𝑢1
𝑛+1

𝑢2
𝑛+1

⋮
⋮

𝑢N−1
𝑛+1

𝑢N
𝑛+1)

 
 
 
 

=

(

 
 
 

𝑢1
𝑛

𝑢2
𝑛

⋮
⋮

𝑢N−1
𝑛

𝑢N
𝑛 )

 
 
 

. 

3. Stability and Convergence Analysis of the of the Semi Implicit Method   

3.1 Stability Analysis  

In this section, we proved stability of a numerical scheme. The stability of numerical schemes can be 

investigated by performing von Neumann stability.  

𝑢𝑖
𝑛 = 𝜉𝑛𝑒𝑗𝛼𝑖 

into the approximate difference scheme and then to find a characteristic equation for the amplification 

factor 𝜉. 

Lemma 3.1. The semi-implicit finite different scheme for (1) is stable under the condition 

𝑘 ≤
ℎ2

(4 − ℎ2)
. 

Proof: To begin with, we recall (2), such that  

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝑅(𝑢𝑖+1
𝑛+1 − 2𝑢𝑖

𝑛+1 + 𝑢𝑖−1
𝑛+1) + 𝑘𝑢𝑖

𝑛+1(1 − (𝑢𝑖
𝑛)2),                                        [7] 

which can be rearranged as 

𝑢𝑖
𝑛+1 =

1

(1 + 2𝑅)
𝑢𝑖

𝑛 +
𝑅

(1 + 2𝑅)
(𝑢𝑖+1

𝑛+1 + 𝑢𝑖−1
𝑛+1) +

1

(1 + 2𝑅)
𝑘𝑢𝑖

𝑛+1(1 − (𝑢𝑖
𝑛)2).                 [8] 

Using trial solution of the form 

 𝑢𝑖
𝑛 = 𝜉𝑛𝑒𝑗𝛼𝑖 , 𝑢𝑖+1

𝑛+1 = 𝜉𝑛+1𝑒𝑗𝛼(𝑖+1) = 𝑢𝑖
𝑛+1𝑒𝑗𝛼 , 𝑢𝑖−1

𝑛+1 = 𝑢𝑖
𝑛+1𝑒−𝑗𝛼   and substituting back in (8) reads  

𝜉𝑢𝑖
𝑛 =

1

(1 + 2𝑅)
𝑢𝑖

𝑛 +
𝑅

(1 + 2𝑅)
(𝜉𝑛+1𝑒𝑗𝛼(𝑖+1) + 𝜉𝑛+1𝑒𝑗𝛼(𝑖−1)) +

1

(1 + 2𝑅)
𝑘𝜉𝑛+1𝑒𝑗𝛼𝑖(1 − (𝜉𝑛𝑒𝑗𝛼𝑖)2). 

Divide the above expression by 𝑢𝑖
𝑛 and considering  𝑒𝑗𝛼 + 𝑒−𝑗𝛼 = 2cos𝛼 = 2 − 4𝑠𝑖𝑛2 1

2
𝛼, imply 

that 

this gives  

𝜉 =
1

(1 + 2𝑅)
+

𝑅

(1 + 2𝑅)
𝜉 (2 − 4𝑠𝑖𝑛2

1

2
𝛼) +

1

(1 + 2𝑅)
𝑘𝜉(1 − (𝑢𝑖

𝑛)2) 

𝜉
1

(1 + 2𝑅)
(𝑅 (2 − 4𝑠𝑖𝑛2

1

2
𝛼) − 𝑘(1 − (𝑢𝑖

𝑛)2)) =
1

(1 + 2𝑅)
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𝜉 =
1

𝑅 (2 − 4𝑠𝑖𝑛2 1
2

𝛼) − 𝑘(1 − (𝑢𝑖
𝑛)2)

   

| 𝜉| ≤ 1 → |
1

𝑅 (2 − 4𝑠𝑖𝑛2 1
2

𝛼) − 𝑘(1 − (𝑢𝑖
𝑛)2)

  | ≤ 1 

−1 ≤
1

𝑅 (2 − 4𝑠𝑖𝑛2 1
2

𝛼) − 𝑘(1 − (𝑢𝑖
𝑛)2)

≤ 1. 

Since 0 ≤ 𝑠𝑖𝑛2 1

2
𝛼 ≤ 1, then  

−1 ≤
1

−2𝑅 − 𝑘(1 − (𝑢𝑖
𝑛)2)

≤ 1. 

Subtracting each side by 1 and multiply by −1 we will obtain 

Therefore,  

0 <
1

2𝑅 − 𝑘(1 − (𝑢𝑚𝑖𝑛)2)
< 2. 

Since 𝑅 =
𝑘

ℎ2, gives  

0 <
1

2𝑅 − 𝑘
< 2 

1 ≤ 4𝑅 − 2𝑘(1 − (𝑢𝑖
𝑛)2) → 𝑘(1 − (𝑢𝑖

𝑛)2) ≤ 4
𝑘

ℎ2
− 1 → 𝑘ℎ2(1 − (𝑢𝑖

𝑛)2) ≤ 4𝑘 − ℎ2. 

This gives 

ℎ2 ≤ 4𝑘 − 𝑘ℎ2(1 − (𝑢𝑖
𝑛)2)  

𝑘 ≤
ℎ2

(4 − ℎ2)
. 

3.2 Convergence Analysis  

First, we analyze the accuracy of the semi implicit scheme. The scheme is expanded by Taylor series 

at the point, respectively. To analyse the error of approximation, we assume that the exact solution u 

is twice continuously exact differentiable with respect to the time variables and four times continuously 

differentiable with respect to the space variable. We define the truncation error for this method the 

truncation error is given if we substitute the solution into the numerical scheme. The following lemma 

describes how well the truncation error approximates the original problem. 

Lemma 3.2:  Let the exact solution 𝑢 is twice continuously differentiable with respect to the time 

variables and four times continuously differentiable with respect to the space variable, then truncation 

error of (1) defined as  

𝑇𝑖
𝑛 ≤

𝑘

2
ℳ𝑡𝑡 +

ℎ2

12
ℳ𝑥𝑥𝑥𝑥  
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ℳ𝑡𝑡 = 𝑚𝑎𝑥|𝑢𝑡𝑡(t, x)|, ℳ𝑥𝑥𝑥𝑥 =  𝑚𝑎𝑥|𝑢𝑥𝑥𝑥𝑥(t, x)| and the maxima are taken over all  

(𝑡, 𝑥) ∈ [0, 𝑇𝑓] × [𝑎, 𝑏] 

Proof. Recalling  

𝑇𝑖
𝑛 =

𝑢(𝑡𝑛+1, 𝑥𝑖) − 𝑢(𝑡𝑛, 𝑥𝑖)

𝑘
−

𝑢(𝑡𝑛, 𝑥𝑖+1) − 2𝑢(𝑡𝑛, 𝑥𝑖) + 𝑢(𝑡𝑛, 𝑥𝑖−1)

ℎ2
− 𝑢𝑖

𝑛+1(1 − (𝑢𝑖
𝑛)2).        [9] 

Applying Taylor’s series expansion, this becomes  

𝑢(𝑡𝑛+1, 𝑥𝑖) − 𝑢(𝑡𝑛, 𝑥𝑖)

𝑘
=

𝑢(𝑡𝑛+k, 𝑥𝑖) − 𝑢(𝑡𝑛, 𝑥𝑖)

𝑘
=

𝑢(𝑡𝑛, 𝑥𝑖) + 𝑘
𝑢𝑡(𝑡𝑛, 𝑥𝑖)

1!
+ 𝑘2 𝑢𝑡𝑡(𝑡𝑛, 𝑥𝑖)

2!
+ 𝑘3 𝑢𝑡𝑡𝑡(𝜌𝑛, 𝑥𝑖)

3!
𝑘

= 𝑢𝑡(𝑡𝑛, 𝑥𝑖) +
𝑘

2
𝑢𝑡𝑡(𝜌𝑛, 𝑥𝑖) + 𝑘2

𝑢𝑡𝑡𝑡(𝜌𝑛, 𝑥𝑖)

3!
,      𝜌𝑛 ∈ (𝑡𝑛, 𝑡𝑛+1)                                           [10] 

𝑢(𝑡𝑛, 𝑥𝑖+1)= 𝑢(𝑡𝑛, 𝑥𝑖) + 𝑢𝑥(𝑡𝑛, 𝑥𝑖) +
ℎ2

2!
𝑢𝑥𝑥(𝑡𝑛, 𝑥𝑖) +

ℎ3

3!
𝑢𝑥𝑥𝑥(𝑡𝑛, 𝑥𝑖) +

ℎ4

4!
𝑢𝑥𝑥𝑥𝑥(𝑡𝑛, 𝜁𝑖) , 

                                  
  
𝜁

𝑖
∈ (𝑥𝑖 , 𝑥𝑖+1),                                                                             [11] 

𝑢(𝑡𝑛, 𝑥𝑖−1)= 𝑢(𝑡𝑛, 𝑥𝑖) − 𝑢𝑥(𝑡𝑛, 𝑥𝑖) +
ℎ2

2!
𝑢𝑥𝑥(𝑡𝑛, 𝑥𝑖) −

ℎ3

3!
𝑢𝑥𝑥𝑥(𝑡𝑛, 𝑥𝑖) +

ℎ4

4!
𝑢𝑥𝑥𝑥𝑥(𝑡𝑛, ε𝑖),  

      
 
 𝜉

𝑖
∈ (𝑥𝑖−1, 𝑥𝑖).                                                                           [12] 

Substituting (7), (8) and (9) in (5), gives 

      𝑇𝑖
𝑛 =

∂𝑢

∂𝑡
− 𝐷

∂2𝑢

∂𝑥2
− 𝑢𝑖

𝑛+1(1 − (𝑢𝑖
𝑛)2) +

𝑘

2
𝑢𝑡𝑡(𝜌𝑛, 𝑥𝑖) −

ℎ2

24
(𝑢𝑥𝑥𝑥𝑥(𝑡𝑛, 𝜉𝑖) + 𝑢𝑥𝑥𝑥𝑥(𝑡𝑛, 𝜁𝑖)). 

Local Truncation error for above equation can be written as, 

        𝑇𝑖
𝑛 = lim

𝑘,ℎ→0
(
𝑘

2
𝑢𝑡𝑡(𝜌𝑛, 𝑥𝑖)

𝑘2

6
𝑢𝑡𝑡(𝜌𝑛, 𝑥𝑖) −

ℎ2

12
𝑢𝑥𝑥𝑥𝑥(𝑡𝑛, 𝜉)) + ⋯ = 0 

Tkeorem 3.1.  Suppose that 𝑢(𝑥, 𝑡) satisfies the smooth condition of lemma 3.2  and the semi  implicit 

scheme for  Allan  Eq (1) is convergent, and we have  

        max
1≤𝑖≤𝑁𝑥

|𝑢(𝑡𝑛, 𝑥𝑖) − 𝑢𝑖
𝑛| ≤

𝑒𝑥𝑝(𝐿𝐹𝑇𝑓) − 1

𝐿𝐹

(
𝑘

2
ℳ𝑡𝑡 +

ℎ2

12
ℳ𝑥𝑥𝑥𝑥), 

for 𝑖 = 1,…𝑁𝑡 . 

Proof.  For brevity, we shall denote by 𝑒𝑖
𝑛 ≔ 𝑢(𝑡𝑛, 𝑥𝑖) − 𝑢𝑖

𝑛 the error on each node (𝑡𝑛, 𝑥𝑖); notice 

that 𝑒𝑖
0 ≔ 𝑢0( 𝑥𝑖) − 𝑢𝑖

0 = 0. From the definition of the truncation error (4), we obtain  

𝑇𝑖
𝑛: =

𝑢(𝑡𝑛+1, 𝑥𝑖) − 𝑢(𝑡𝑛, 𝑥𝑖)

𝑘
−

𝑢(𝑡𝑛+1, 𝑥𝑖+1) − 2𝑢(𝑡𝑛+1, 𝑥𝑖) + 𝑢(𝑡𝑛+1, 𝑥𝑖−1)

ℎ2
− 𝑓(𝑢𝑖

𝑛),           [13] 

and our numerical scheme (5) is equivalent to 
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𝑈𝑖
𝑛+1 − 𝑈𝑖

𝑛

𝑘
− 𝐷

𝑈𝑖+1
𝑛+1 − 2𝑈𝑖

𝑛+1 + 𝑈𝑖−1
𝑛+1

ℎ2
= 𝑓(𝑈𝑖

𝑛).                                    [14] 

Subtracting (10) from (11), gives 

𝑢(𝑡𝑛+1, 𝑥𝑖) − 𝑈𝑖
𝑛+1 − 𝑢(𝑡𝑛, 𝑥𝑖) + 𝑈𝑖

𝑛

𝑘
−

𝑢(𝑡𝑛+1, 𝑥𝑖+1) − 𝑈𝑖
𝑛 − 2𝑢(𝑡𝑛+1, 𝑥𝑖) − 2𝑈𝑖

𝑛+1 + 𝑢(𝑡𝑛+1, 𝑥𝑖−1) − 𝑈𝑖−1
𝑛+1

ℎ2

− 𝑓(𝑢𝑖
𝑛) + 𝑓(𝑈𝑖

𝑛),                                                                                                                                   

Setting 𝑒𝑖
𝑛 ≔ 𝑢(𝑡𝑛, 𝑥𝑖) − 𝑢𝑖

𝑛, this gives 

𝑇𝑖
𝑛 =

𝑒𝑖
𝑛+1 − 𝑒𝑖

𝑛

𝑘
−

𝑒𝑖+1
𝑛+1 − 2𝑒𝑖

𝑛+1 + 𝑒𝑖−1
𝑛+1

ℎ2
− 𝑓(𝑢𝑖

𝑛) + 𝑓(𝑈𝑖
𝑛) 

k(𝑓(𝑢𝑖
𝑛) − 𝑓(𝑈𝑖

𝑛)) + 𝑘𝑇𝑖
𝑛 + 𝑒𝑖

𝑛 = (1 + 2R)𝑒𝑖
𝑛+1 + 𝑅𝑒𝑖+1

𝑛+1 + R𝑒𝑖−1
𝑛+1. 

Define  

𝐸𝑛 = max
1≤𝑖≤𝑁𝑥

{|𝑒𝑖
𝑛+1|} 

i.e., the maximum error at the n-th time-step, then taking the maximum with respect to 𝑖 on the right-

hand side of (4.12), we arrive to 

 Applying Lipchitz condition on the nonlinear term, gives  

|𝑓(𝑢𝑖
𝑛) − 𝑓(𝑈𝑖

𝑛)| ≤ 𝐿𝐹|𝑢𝑖
𝑛 − 𝑈𝑖

𝑛| ≤ 𝐿𝐹|𝑒𝑖
𝑛| 

which implies  

                                     𝑒𝑖
𝑛+1 ≤

(1+k𝐿𝐹)

(1+2R)
𝐸𝑛 + 𝑘𝑇𝑖

𝑛, 

Or  taking the maximum with respect to 𝑖, and using lemma 3.1, gives  

             𝐸𝑛+1 ≤
(1 + k𝐿𝐹)

(1 + 2R)
𝐸𝑛 + 𝑘𝒯𝐸 , 

where 𝒯𝐸 =
𝑘

2
ℳ𝑡𝑡 +

ℎ2

12
ℳ𝑥𝑥𝑥𝑥 , 

for 𝑛 = 0,… ,𝑁𝑡 − 1. This means that we have inductively 

                     𝐸𝑛+1 ≤ (1 + k𝐿𝐹)𝐸𝑛+ 𝑘𝒯𝐸 , 

showing that 

    𝐸𝑛 ≤ (
(1 + k𝐿𝐹)

(1 + 2R)
)

𝑛

𝐸0 + [1 + (
(1 + k𝐿𝐹)

(1 + 2R)
) + ⋯+ (

(1 + k𝐿𝐹)

(1 + 2R)
)

𝑛−1

] 𝑘𝒯 

as 𝐸0 = 0, being the maximum of 𝑒𝑖
0 = 0 with respect to 𝑖 and 𝑛𝑘 ≤ 𝑛𝑁𝑡  = 𝑇𝑓, so we have    

𝐸𝑛 ≤
(
(1 + k𝐿𝐹)
(1 + 2R)

)
𝑛

− 1

k𝐿𝐹

  𝑘𝒯𝐸 ≤
(
(1 + k𝐿𝐹)
(1 + 2R)

)

𝑇𝑓

𝑘
− 1

𝐿𝐹

  𝒯𝐸 ≤
𝑒𝑥𝑝(𝐿𝐹𝑇𝑓) − 1

𝐿𝐹

  𝒯𝐸       
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The result now follows 

4. Numerical Results 

The goal of this section is to illustrate the performance of a presented method, through an 

implementation based on Mathematica programming. We measure the error between exact and 

approximation by  

𝐿𝑎𝑏𝑐 = |𝑢(𝑥𝑖) − 𝑢ℎ| 

4.1 Example 1 

We consider the initial boundary value problem (IBVP), the initial condition and boundary condition 

are 

𝑢𝑡 − 𝐷𝑢𝑥𝑥 = 0 

𝑢(𝑥, 0) = 𝑠𝑖𝑛𝑥 

𝑢(0, 𝑡) 

  𝑢(1, 𝑡) = 0     𝑡 > 0. 

The exact solution to this IBVP is  𝑢(𝑥, 𝑡) = 𝑒−𝐷𝜋2𝑡 sin(𝜋𝑥). 

Table 1: Semi implicit finite difference method where the number of intervals is N = 20, D = 0.01, t 

= 0.01. 

𝑥𝑖 Semi implicit Exact present 

Munguia, M., & 

Bhatta, D. 

(2015). 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

   

 0.1562805251     

0.3087129049     

0.4535437485     

0.5872068398     

0.7064109499     

0.8082208779     

0.8901297256     

0.9501206252     

0.9867164018     

0.9990159459     

0.9867164018     

0.9501206252     

0.8901297256     

0.8082208779     

0.7064109499     

0.5872068398     

0.4535437485     

0.3087129049 

0.1562805251 

 

0.1562801466 

0.3087121573 

0.4535426501 

0.5872054177 

0.7064092390 

0.8082189205 

0.8901275698 

0.9501183242 

0.9867140122 

0.9990135264 

0.9867140122 

0.9501183242 

0.8901275698 

0.8082189205 

0.7064092390 

0.5872054177 

0.4535426501 

  0.3087121573 

  0.1562801466 

    

0.0000003785 

0.0000007477 

0.0000010984 

0.0000014221 

0.0000017108 

0.0000019574 

0.0000021558 

0.0000023011 

0.0000023897 

0.0000024195 

0.0000023897 

0.0000023011 

0.0000021558 

0.0000019574 

0.0000017108 

0.0000014221 

0.0000010984 

0.0000007477 

0.0000003785 

 

0.0006416721 

0.0012675441 

0.0018622049 

0.0024110121 

0.0029004522 

0.0033184735 

0.0036547829 

0.0039010995 

0.0040513581 

0.0041018588 

0.0040513581 

0.0039010995 

0.0036547829 

0.0033184735 

0.0029004522 

0.0024110121 

0.0018622049 

0.0012675441 

0.0006416721 
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Figure 1: Numerical solution for 4.1 Example 1 by using semi implicit finite difference method 

4.2 Example 2 

Consider the following Allen’s equation  

𝑢𝑡 − 𝜀𝑢𝑥𝑥 = 𝑢 − 𝑢3     𝑥 ∈ [−1,1] , 𝑡 ∈ (0, 𝑇] 

    Ω = [−1,1] × (0, 𝑇] 

Initial condition: 

𝑢(𝑥, 0) = 0.53𝑥 + 0.47sin (−1.5𝜋𝑥) 

Boundary condition:              𝑢(−1, 𝑡) = −1,          𝑢(1, 𝑡) = 1 

 

Exact Solution: 

𝑢(𝑥, 𝑡) = 0.53𝑥 + 0.47sin (𝑡 − 1.5𝜋𝑥) 
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Table 2: Semi implicit finite difference method where the number of intervals is N = 20, D = 0.01, t 

= 0.01. 

𝑥𝑖 Semi implicit Exact Absolute Error 

-0.9 

-0.8 

-0.7 

-0.6 

-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

-0.8992193047 

-0.7037407666 

-0.4467567832 

-0.1736673927 

0.0676087332 

0.2360882955 

0.3066566963 

0.2755426936 

0.1611404822 

0.0000000000 

-0.1611404822 

-0.2755426936 

-0.3066566963 

-0.2360882955 

-0.0676087332 

0.1736673927 

0.4467567832 

0.7037407666 

0.8992193047 

-0.8978858477 

-0.7040475722 

-0.4491625802 

-0.1772391656 

0.0640002238 

0.2335218573 

0.3059255393 

0.2769815203 

0.1645525271 

0.0046999217 

-0.1561772053 

-0.2714564310 

-0.3044550799 

-0.2364265687 

-0.0706469168 

0.1682993834 

0.4398784646 

0.6964429392 

0.8936184081 

0.0013334570 

0.0003068057 

0.0024057971 

0.0035717730 

0.0036085094 

0.0025664381 

0.0007311570 

0.0014388267 

0.0034120448 

0.0046999217 

0.0049632769 

0.0040862626 

0.0022016164 

0.0003382732 

0.0030381836 

0.0053680093 

0.0068783186 

0.0072978273 

0.0056008966 

 

 
Figure 2: Numerical solution for 4.2 Example 2 by using semi implicit finite difference method 

In Table 1, we have compared the absolute error with Munguia, M., & Bhatta, D. (2015). As it is seen 

from the table, the results obtained in the present study agree with in other studies and become better 

as time increases. In table 2, it is seen that there is a good agreement between approximate and exact 

solution that is mesh size decreases, the error decreases.  

4. Conclusion 

This study aims to apply semi implicit finite difference method in combination with the method of 

lagging in approximating the numerical solutions to the Cahn-Allen equation. Error analysis and 

stability are analyzed. The proposed method is first order in time and second order in space. 
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Furthermore, the behavior of the exact solution and approximate solution are examined graphically. 

The numerical results obtained by the proposed method are quite satisfactory from exact solution.  
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