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Abstract 

Membrane vesicles having a diameter of 30–150 nm are known as exosomes. Several cancer types secrete exosomes, 
which may contain proteins, circular RNAs (circRNAs), microRNAs, or DNA. CircRNAs are endogenous RNAs that do not 
code for proteins and can create continuous and covalently closed loops. In cancer pathogenesis, especially metas‑
tasis, exosomal circRNAs (exo‑circRNAs) have a crucial role mainly due to the frequently aberrant expression levels 
within tumors. However, neither the activities nor the regulatory mechanisms of exo‑circRNAs in advancing lung 
cancer (LC) are obvious. A better understanding of the regulation and network connections of exo‑circRNAs will lead 
to better treatment for LCs. The main objective of the current review is to highlight the functions and mechanisms of 
exo‑circRNAs in LC and assess the relationships between exo‑circRNA dysregulation and LC progression. In addition, 
underline the possible therapeutic targets based on exo‑circRNA modulating.
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Introduction
Lung cancer (LC) is the most frequent type of cancer 
worldwide and the leading cause of cancer mortality 
[1]. An essential factor in LC deaths is the invasion and 
metastasis  of cancer cells through the circulation or 
lymphatic systems, Which is a significant cause of mor-
tality in patients [2]. Tumor-derived exosomes (TDEs) 
play a vital function in the tumor microenvironment by 
facilitating the development of a pre-metastatic niche 
[3]. Exosomes are small membrane vesicles with a diam-
eter of 30–150 nm that are made in the endosomal part 
of a cell. They are involved in the intercellular regulation 
of pathophysiologic processes and serve as intercellu-
lar messengers that transport a variety of substances in 

a phospholipid bilayer membrane [4]. Exosomal circR-
NAs (exo-circRNAs) refer to the circRNAs discovered 
in exosomes [5]. When exosomes are released from cells, 
they are taken up by  distant cells. Exosomes containing 
circRNAs regulate the TME to promote tumor cell prolif-
eration, invasion, and metastasis [6, 7].

CircRNAs are closed, single-stranded RNA molecules 
without poly (A) tails and 5′-3′ ends, and compared to 
linear transcripts, they are more stable as they resist exo-
nuclease-mediated destruction [8]. In 1979, endogenous 
circRNAs were discovered to be a byproduct of eukary-
otic RNA splicing [9]. In 1986, the hepatitis delta virus 
caused circRNAs to be found in humans [10]. Almost 
10,000 circRNAs have been identified, occurring natu-
rally in many different organisms, from fungi to plants 
to vertebrates [11]. Currently, circRNAs are categorized 
into four classes: intergenic circRNAs, ecircRNAs, EIciR-
NAs, and exon–intron circRNAs [12]. Several studies 
have indicated that circRNAs are associated with vari-
ous human disorders, including malignancies [13–17]. 
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However, the mechanism and function of circRNAs have 
not been completely understood.

Exosomes are vesicles released from cancer cells; they 
carry circRNAs, which play an important role in cancer 
progression at multiple stages, including the proliferation 
of malignant tumors, formation of premetastatic niches, 
and metastasis  of cancer cells to distant places [18, 19]. 
Li and his colleagues published the first study to know 
the expression levels of circRNAs in extracellular vesicles 
using the RNA-seq technique. They found that circRNAs 
are abundant at least twofold in exosomes than in cells 
and more stable [20]. In humans, around 60% of genes 
can express circRNA [21]. However, the tissue expression 
of these genes is still low, making up  just 5–10% of the 
average mRNA expression in a specific tissue [22, 23].

Nevertheless, the relationship between exo-circRNAs 
and the promotion or inhibition of LC is still not well 
understood. Hence, this study provides recent studies 
on the functions and mechanisms of exo-circRNAs in 
LC and explains the connections between the dysregula-
tion of exo-circRNAs and lung  cancer progression. We 
also  focused on possible therapeutic targets based on 

circRNA modulation and their potential function in pro-
moting or inhibiting LC progression.

Biogenesis of exosomes
Exosomes originate from late endosomes, formed by 
the inward budding of the limited multivesicular body 
(MVB)  membrane. The invagination of late endosomal 
membranes leads to the release of intraluminal vesicles 
(ILVs) inside massive MVBs [24]. Several proteins are 
taken to the invaginating membrane during this pro-
cess. Meanwhile, the cytosolic components are taken 
up by the ILVs. Following fusion with the plasma mem-
brane, most ILVs are discharged into the extracellular 
space, called  exosomes, and move into body fluids [25, 
26]. Eventually, these elements are taken by lysosomes, 
where they are broken down or released into the extra-
cellular space after fusion with the plasma membrane 
[27] (Fig. 1). Endosomal-sorting complex that is required 
for transport (ESCRT) is necessary for both exosome 
biosynthesis and secretion [28]. Proteins such as ALIX, 
Tsg101, VPS4, and the four subunits of ESCRT (ESCRT-
0, ESCRT-I, ESCRT-II, and ESCRT-III), make up ESCRT. 

Fig. 1 This illustration shows how exosomes are formed in the body and then released. Three processes contribute to exosome secretion: exosome 
biosynthesis, MVB transport to the cell membrane, and MVB fusion with the cell membrane
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ESCRT-0 carries out the sorting of cargo proteins into the 
lipid domain. Membrane deformation is carried out by 
the other ESCRTs I and II; the VPS4 complex is recruited 
to ESCRT-III, responsible for the vesicle neck scission 
and the dissociation or recycling of the ESCRT-III com-
plex [29–31]. Through its interaction with the syndecan 
receptor, the exosomal protein Alix has been demon-
strated to play a role in endosomal membrane budding 
and abscission and the selection of specific exosomal 
cargo [32]. In light of these findings, it was hypothesized 
that the ESCRT has a vital role in exosomal biogenesis.

After exosomes are released, they can send signals to 
target cells through endocytosis, a fusion of membranes, 
and interactions between receptors and ligands. Clathrin, 
caveolin, and lipid raft-mediated endocytosis can engulf 
exosomes into specific cells [33]. Endocytosed exosomes 
can either combine with nearby endosomes or be trans-
ported to lysosomes, where they are degraded [34]. The 
exosomal membrane also can bind to particular receptors 
on the plasma membrane of the recipient cell to initiate 
signaling pathways or to fuse with the plasma membrane 
of the recipient cell to distribute its contents [35–37].

Biogenesis of circRNAs
Synthesis of circRNAs from segments of pre-messenger 
RNAs can occur by back-splicing, a process in which the 
5’ splice donor joins with the 3’ splice receiver through 
a phosphodiester bond. This biological process can cre-
ate a circular structure with one or more exonic/intronic 
regions [38]. Numerous nuclear back-splicing and linear 
splicing processes have been described, including exon 
skipping, intron pairing, and RNA-binding proteins 
(RBPs) [39] (Fig. 2). The first is an RBP-assisted circulari-
zation process that generally involves the association of 
two neighboring exons and skipping the intronic region, 
producing an exonic-circRNA. Numerous RBPs regulate 
this process, including RNA helicase DHX9 [40], FUS 
[41], ADAR1 [42], NF90/NF110 [43], MBL [44], QKI [45], 
and heterogeneous nuclear ribonucleoprotein L [46].

Exon–intron circRNAs are made when two or more 
exons and their correlating introns circle.  Intron pair-
ing back-splicing is a popular approach in the conserved 
RNAs with many Alu repetitions in the sequences on 
either side. These Alu components work well together, 
promoting the configuration of hairpins and more back-
splicing, leading to mono-EcircRNAs [47]. Another type 
of this category is the intronic circRNAs, but it is still 
unknown how these molecules are produced.

CircRNAs are exported into the cytoplasm after being 
synthesized in the nucleus. According to recent studies, 
the UAP56/URH49 helicases are actively involved in this 
size-mediated mechanism. Transferring molecules larger 
than 1300 nucleotides requires UAP55, whereas URH49 

only interferes with short transcript exports [48]. Fol-
lowing their entry into the cytoplasm, circRNAs accu-
mulate and regulate transcription by sponging certain 
types of  miRNAs, as seems to be usual for most cells. 
Although the process by which circRNA degrades is still 
unknown, recent research has provided insights into this 
issue and shown some exciting pathways that explain cir-
cRNA disintegration. For example, Hansen et al. revealed 
a mechanism whereby Ago2 and miR-671 degrade cir-
cRNA-CDR1as [49]. Likewise, Park and his colleagues 
showed that a circRNA cleavage process is  mediated 
by RNase P/MRP and  outlined in N6-methyladenosine 
(m6A)-enriched circRNAs [50]. In recent work, Liu et al. 
[51] showed that certain circRNAs tend to form com-
plicated duplexes, which renders them vulnerable to 
destruction by RNase L during viral infection.

Biological functions of circRNAs
Many studies have highlighted that circRNAs may con-
trol gene expression either directly or indirectly by 
binding to miRNAs, RBPs, and other regulators of gene 
expression and managing various biological processes 
(Fig.  3). The mechanisms of circRNAs that are used in 
regulating gene expression are as follows.

As miRNA sponge
The most critical function of circRNAs is to act as a 
miRNA sponge to regulate the expression of a target gene 
by inhibiting the activity of miRNA [52]. A single cir-
cRNA can bind to one or more miRNAs at one or more 
locations by perfect or near-perfect binding [53]. ‘‘Super 
sponges’’ like circRNAs are selectively attracted to miR-
NAs rather than other ceRNAs, such as lncRNAs and 
pseudogenes. The first example of a circRNA that func-
tions as a miRNA sponge is CDR1as [54]. It has 74 miR-7 
binding sites and is closely attached to AGO proteins. 
[55]. Gao and Ye et al. found that circ-SOX4 stimulated 
the growth of LUAD and activated the WNT axis by 
sponging miRNA-1270 and altering PLAGL2, providing 
a relevant conceptual framework for studying the thera-
peutic LUAD  targets [56]. Additionally, circHIPK3 is 
derived from Exon2 of the HIPK3 gene, a key player in 
cell proliferation in human cancer, by sponging nine miR-
NAs with 18 binding sites into cells [57].

Despite the above, according to Militello et  al. [58], 
some types of circRNAs, such as (circ_0005939 and 
circ_0013647) are unable to act as miRNA sponges. 
Therefore, additional work is needed to determine how 
circRNAs, miRNAs, and mRNAs work together.

Alternative splicing and transcriptional regulation
One of the most prevalent methods of controlling gene 
expression is alternative splicing, which is essential for 
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enhancing functional proteins’ complexity. Recently, 
it’s been shown that some circRNAs are highly con-
centrated in the nucleus, where they could potentially 
inhibit transcription. For instance, circURI1 may influ-
ence alternative splicing to promote cancer develop-
ment and metastasis [59]. Likewise, EIciRNAs are 
circRNAs that have introns and exons [60]. Therefore, 
EIciRNAs are found in the nucleus and act as transcrip-
tional regulators [61]. Besides, EIciRNAs regulate RNA 

polymerase II (Pol II) activity and trigger the transcrip-
tion of parental genes [62]. EIciRNAs and Pol II work 
together to promote transcriptional initiation by mak-
ing it easier for Pol II to bind with the core promoter of 
EIciRNA parent genes [63]. Similarly, the EIciRNAs and 
the U1 snRNA (small nuclear ribonucleoprotein) attach 
in an RNA-RNA manner, which makes it possible for 
the EIciRNAs and pol II to interact with one another 
[64]. Additionally, circRNAs, such as exon–intron 

Fig. 2 The process of biogenesis that occurs during lung cancer, in addition to the roles that exosomal circRNAs play in the disease
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circular RNAs (circPAIP2, circEIF3J), could attach 
to Pol II and control their host gene expression [65]. 
Accordingly, these studies suggest that intron-derived 
circRNAs are responsible for regulating the transcrip-
tion process in the nucleus.

Translation
Endogenous circRNAs have been shown recently to 
be capable of protein translation. The protein-coding 
capacity of circRNAs was previously thought to be low, 
but it has been proven that circRNAs with IRES  or 

Fig. 3 Structural characteristics and biological functions of circRNAs. Inside the cell, circular RNAs have many multiple roles to do. In the nucleus, 
circRNAs can silence a specific locus by interacting with the histone methylation pattern. They can also control the transcription of their own gene 
by interacting with RNA polymerase II. Finally, alternative splicing can be blocked by their competition with mRNA for splice sites. CircRNAs are 
found in the cytoplasm, where they can function as miRNA sponges, decoy certain transcription factors, be translated into proteins, bind with 
RNA‑binding proteins to regulate translation of particular mRNAs, and serve as protein scaffolds. In addition to promoting cell death by interfering 
with the processing of pre‑rRNA components, circRNAs can bind to some proteins and inhibit their signal transduction activity



Page 6 of 24Hussen et al. Cancer Cell International          (2022) 22:378 

N6-methyladenosine modifications can often be trans-
lated into peptides [66, 67]. In eukaryotic cells, untrans-
lated regions (UTR) are necessary for the beginning of 
the translation process, specifically 5’ and 3’ positions. 
Due to the absence of 5’ and 3’ ends, circRNAs were pre-
viously categorized as ncRNAs. Growing data proved 
that circRNAs might be able to code for proteins since 
they can be coupled to polysomes, and some of them 
have AUG start codon in addition to putative ORFs with 
favorable lengths [68, 69]. According to the Legnini et al. 
study, the back splicing result of ZNF609 exon 2, known 
as circ-ZNF609, can be translated into a protein in both 
a splicing-dependent and a splicing-independent manner 
throughout the process of myogenesis [70]. However, it’s 
not clear how standard circRNA translation occurs yet, 
and it’s also not clear what the translated proteins might 
perform or what components are involved in the process. 
Despite its novelty and significance, the study of how cir-
cRNAs are translated into peptides or proteins has been 
published in only a few studies due to limitations in anal-
ysis and validation methodologies.

CircRNAs and RNA‑binding proteins
Recent research has shown that circRNAs work like 
miRNA sponges, inhibiting miRNA function while also 
taking part in splicing target genes, translating genes 
into proteins, and interacting with RNA-binding proteins 
(RBPs). Interaction with RBPs is a crucial component in 
the actions of circRNAs, which include biogenesis, trans-
lation, control of target genes, and extracellular transport 
[71]. For instance, circBIRC6 is highly represented in 
the Ago2 binding complex and mediates pluripotency in 
hESCs by inhibiting differentiation through direct inter-
actions with miR34a and miR145 [72]. Similarly, stat3 
binding circAmotl1 and increasing nuclear translocation 
enhanced cell activity. Nuclear Stat3 would bind to Dnm-
t3a’s promoter, increasing transcription and translation. 
Then, the miR-17 promoter is demethylated by Dnmt3a, 
which reduces the production of miR-17-5p [73]. These 
show a feedback loop in which circRNA-based RBPs bind 
together and perform different regulatory functions.

Implication of exosomal circRNA in lung cancer 
progression
According to several studies, exosomes contain a vari-
ety of non-coding RNAs (ncRNAs), including miRNA, 
lncRNA, circRNA, and rRNA [74–76]. In contrast to cells 
that release circRNA, also circRNAs are highly concen-
trated and persistent in exosomes, particularly in those 
generated from tumors.

Exosomal circRNAs are involved in several critical 
biological processes that promote or inhibit cancer [77, 
78]. More evidence suggests that exo-circRNAs play a 

crucial role in several malignancies, including lung can-
cer, through different mechanisms (Table  1). Exosomal 
circRNAs have a similar physiological role in malig-
nancies via the miRNA sponge [79]. For instance, circ 
0013958, a molecular sponge for miR-134 in LC, was 
connected with lymphatic metastasis and the TNM 
stage [80]. Likewise, circFARSA  promotes  the progres-
sion of LC through sponging  miR-326 and  miR-330-5p, 
thereby allowing these miRNAs to lose their control of 
the FASN oncogene, which is the gene that causes can-
cer [65, 81]. Moreover, exosomes containing exo-hsa_cir-
cRNA_0056616 were highly expressed in tissues from 
lung adenocarcinomas that had lymph node metastases 
[82]. Similarly, overexpression of circCCDC66 by STAT3 
increases the growth of NSCLC by affecting the miR-
33a-5p/KPNA4 pathway [83]. Furthermore, circABCB10 
altered the miR-584-5p/E2F5 axis to accelerate the devel-
opment of NSCLC [84]. On the other hand, exosomal 
circPVT1, which is produced by LC cells, activates the 
axis of miR-124-3p/EZH2 to polarize macrophages and 
increase lung tumor cell invasion and migration [85]. 
Exo-circRNAs, taken as a whole, might be an impor-
tant factor in the advancement of LC. Table  1 lists the 
patterns of oncogenic exo-circRNA expression, along 
with the genes they target and the mechanisms of actions 
with their functions.

Exosomal circRNAs and EMT
Once epithelial cells gain motility, a process known as 
the epithelial-mesenchymal transition (EMT) takes place 
and adopts a mesenchymal phenotype while retaining 
their invasive abilities [86]. Such an approach has been 
extensively  seen in various biological phenomena, such 
as embryogenesis, fibrosis, cancer growth, and metas-
tasis [87]. Like other malignant tumors, LC can spread 
and invade tissue due to the EMT process [88]. A high 
abundance of circRNAs is observed in LC, and some 
of them play oncogenic functions by promoting EMT 
processes in  vitro (Fig.  4). For example, Inhibition of 
microRNA-137 by circ-LDLRAD3 led to an increase 
in glutamine transporter, a member  of the SLC1A5in 
NSCLC cells, hence promoting proliferation and EMT 
[89]. Specifically, SLC1A5 was crucial for developing and 
controlling LC, and its inactivation was found to reduce 
the viability of LC cells [90]. Additionally, circ 0012673 
enhances the proliferation and invasion of LUADs [91]. 
Reducing circ 0012673 levels inhibited cell growth, motil-
ity, and EMT via upregulation of LIM domain kinase 1in 
LUAD cell lines while simultaneously triggering apop-
tosis via miR-320a targeting [91]. According to Li et al., 
overexpression of hsa circ 0079530 stimulated can-
cer cells to migrate and invade through controlling EMT 
processes [92]. Similarly, EMT-related protein expression 
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is regulated by hsa circ 0023404 through modulation 
of the miR-217/zinc finger E-box-binding homeobox  1 
(ZEB1) axis and promoting LC cell growth [93].

Furthermore, EMT plays a crucial role in LC, and 
numerous in vivo and in vitro studies have demonstrated 
that oncogenic circRNAs speed up this process through 
a number of pathways (Fig. 5). For instance, Qu and col-
leagues revealed that hsa circ 0020123 inhibited LC apop-
tosis by decreasing miRNA-144 and increasing ZEB1 and 
EZH2 expression [94]. Their results demonstrated that 
knocking down hsa_circ_0020123 slowed the growth 
and spread of LC cells. According to a recent study, circ-
PIP5K1A functioned as a miR-600 sponge to increase 
LC development by increasing HIF-1α  and inhibiting 
miR-600’s effect on EMT-related proteins [95]. Similarly, 
in  vitro experiments showed that circP4HB stimulated 
EMT processes in LC via sponging miR-133a-5p, as dem-
onstrated by an increase in vimentin expression [96].

Despite this, a number of circRNAs are significantly 
suppressed in vitro and in vivo in LC, and, through posi-
tively regulating the EMT process, they prevent cancer 
progression (Table 2). For example, circPTK2, a miRNA 
sponge, was positively correlated with TIF1-y expression 

in human NSCLC tissue. [97]. Furthermore, overexpres-
sion of circPTK2 was found to elevate TIF1-y levels and 
suppress the TGF-β signaling pathway (Fig. 6). Addition-
ally, by entrapping miR-96-5p and increasing the expres-
sion of RASSF8, circPTPRA inhibited EMT processes in 
LC cells and decreased cancer cell metastasis in a mouse 
xenograft model [98]. These results  have given  new 
insights into the EMT-mediated perspectives of the func-
tion of circRNAs within LC.

Exosomal circRNAs and cell proliferation
Dysproliferation is a significant contributor to tumor 
progression, therefore the control of cell growth has 
attracted more  attention [99]. Recently, exo-circRNAs 
have been shown to influence cell proliferation in a 
variety of malignancies, including lung cancer. Fig.  7 
For instance, Xu et  al. found that hsa_circ_0014235 
promoted tumor development in non-small cell 
lung cancer through modulating the miR-520a-5p/
CDK4 regulatory axis [100]. They revealed that hsa_
circ_0014235 increased tumor growth by promot-
ing cell proliferation, migration, and DDP resistance 
in  vivo. In addition, Ying et  al. demonstrated that the 

Fig. 4 This illustration highlights the key roles of exosomal circRNAs in the EMT process in lung cancer. Exosomal circRNAs which are overexpressed 
and play oncogenic functions by promoting EMT processes through promoting or/and inhibiting different pathways in lung cancer
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expression of circPVT1 was upregulated and stimu-
lated cell proliferation in blood-derived exosomes 
isolated from lung cancer patients [85]. They found 
that exo-circPVT1 promotes LC proliferation through 
targeting the miR-124/EZH2 axis and induces mac-
rophage polarization. Furthermore, circ-FOXM1 Table. 
3 increases cell proliferation in NSCLC by targeting 
PPDPF and MACC1 with miR-1304-5p and is directly 
linked to lymph node invasion, a high TNM grade, 
and a poor prognosis [101]. Likewise, in NSCLC tis-
sues and cells, Wei et al. proved that the levels of circ-
FOXM1 and ATG5 were elevated, whereas the level of 
miR-149-5p was downregulated. Circ-FOXM1 knock-
down reduced autophagy and cancer cell survival [102]. 
They observed that miR-149-5p functioned by inhibit-
ing ATG5 expression, and circ-FOXM1 functioned by 
suppressing miR-149-5p expression. Similarly, exo-
circaARHGAP10 expression level was increased in 
NSCLC tissues and serum samples. In  vitro prolifera-
tion and glycolysis of NSCLC cells were suppressed by 
circARHGAP10 knockdown, while tumor growth was 
inhibited in  vivo [103]. Recently, exosomes, accord-
ing to Hongya et  al., were responsible for transmit-
ting circVMP1, which accelerated the proliferation  of 

NSCLC and DDP resistance by targeting the miR-524-
5p-METTL3/SOX2 axis [104].

In contrast to the above, several circRNAs act as 
tumor suppressors, and they inhibit lung cancer cell 
proliferation. For example, the expression level of 
circ_0006677 was lower in LC  cells and NSCLC tis-
sues from patients compared to nearby healthy  tis-
sues. Poorer patient survival was considerably related to 
lower expression of circ 0006677 [105]. Circ_0006677’s 
overexpression drastically reduced NSCLC cells’ 
capacity for proliferating, invading, and metaboliz-
ing glucose. By controlling the expression of the signal 
transducer inhibitor SOSC2 through sponging miR-
578, circ_0006677 could prevent the growth of NSCLC 
and glycolysis [105]. Additionally, Shi et  al. found that 
hsa_circ_0069244 also acts as a sponge for miR-346 to 
limit the proliferation of lung cancer via regulating XPC 
expression [106]. Recently, in both NSCLC tissues and 
cell lines, hsa_circ_0003176 had the typical character-
istics of circRNAs, which were downregulated. Func-
tionally, hsa_circ_0003176 was overexpressed, which 
prevented NSCLC cells from proliferating, invading 
other cells, and growing both in vitro and in vivo [107]. 
These findings might improve our understanding of 

Fig. 5 Illustration shows the connection between oncogenic signaling pathways and exosomal circRNAs in LC. CircRNA can promote tumor cell 
proliferation, invasion, migration, and survival by targeting particular genes and sponging various types of microRNAs, such as miR‑101‑3p, miR‑498, 
miR‑584‑5p, miR‑143‑3p, and miR‑600. CircRNA can act as an oncogene and promote the proliferation of cancer cells by involving in several 
essential signaling pathways in lung cancer, including EGFR/PI3K, miR‑101‑3p/KRAS, and miR‑584‑5p/E2F5 pathways
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the molecular processes behind the development of 
NSCLC into a malignant state.

Exosomal circRNAs mediated regulation of angiogenesis
Tumors are distinguished by their capacity for unre-
stricted reproduction, independent maintenance of their 
nutritional status, and aberrant regulation of their cellu-
lar energy metabolism [108]. Angiogenesis is essential to 
the microenvironment in which this severe and uncon-
trolled growth occurs [109]. When the tumor’s "angio-
genesis switch" is activated, the vascular system responds 
or becomes more dynamic and produces new blood ves-
sels to supply the growing tumor [110]. Exo-circRNAs 
have recently been found to play a crucial role in tumor 
angiogenesis [111]. For example, Yang et  al. showed 
that the abundance of circ_0006988 was increased in 
tissues and NCSLC cells. They proved that the angio-
genesis process was slowed by silencing circ_0006988 
[112]. Circ_0006988 can sponge miR-491-5p, which 
leads to overexpressing of MAP3K3. The growth of xeno-
graft tumors was also inhibited when circ 0006988 was 
silenced or knocked down. This was accomplished by 
reducing tumor-promoting angiogenesis [112]. Moreo-
ver, the expression of circ_0016760 was significantly 

higher in NSCLC tissues and cells than in normal lung 
tissues.  Because of its ability to behave as a miR-29b 
sponge, circ 0016760 was able to prevent miR-29b from 
binding to HIF1A. Furthermore, circ_0016760 silencing 
inhibited cell proliferation, invasion, and angiogenesis or 
tube formation [113].

There has only been a limited of research done on how 
circRNAs participate in the process of LC angiogene-
sis.  However, circRNA-based molecular therapy may be 
an option for treating LC due to its advantages, such as 
its low molecular weight and high stability.

Exosomal circRNAs and metastasis
Tumor metastasis is the term for the spread of malig-
nant tumor cells from their initial site and metastasis 
is the main factor that leads to cancer-related mortality 
[114]. Adhesion, disintegration, and migration are the 
three main steps of tumor cell metastatic progression. 
Through miRNA sponging, circRNAs regulate NSCLC 
invasion and metastasis. For instance, the serum exo-
somal FECR1 circRNA is a novel oncogenic driver that 
promotes tumor metastasis via the miR584-ROCK1 
pathway; it is highly expressed in SCLC tissues and 
is positively correlated with lymph node metastasis 

Fig. 6 Illustration shows the relationship between tumor suppressor signaling pathways and exosomal circRNAs in lung cancer
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[115]. Additionally, Chen et  al. found that the PTEN/
PI3K/AKT pathway is used by tumor-derived exosomal 
circFARSA to polarize M2 macrophages and promote 
NSCLC metastasis [116]. Moreover, using TGF-β as a 
model, Wang et  al. demonstrated that circPTK2 sup-
presses TGF-β induced EMT and metastasis in NSCLC 
by regulating TIF1 [97]. Overexpression of circPTK2 
may offer a treatment option for advanced non-small 
cell lung cancer and illuminate a novel approach by 
which circRNA regulates TGF-β induced EMT and 
tumor metastasis. Circ_0000519, another oncogenic 
circRNAs, overexpression of circ_0000519 promoted 
metastasis by targeting miR-1258 in NSCLC. Mean-
while, circ_0000519 inhibition decreased cell metas-
tasis by reducing cyclin D1, vimentin, and MMP-9 
expression levels. CircRNA hsa_circ_0020123 promotes 
metastasis via sponging miR-144 to relieve ZEB1 and 
EZH2 from inhibition [94]. In  vitro and in  vivo, sup-
pressing hsa_circ_0020123 decreased NSCLC develop-
ment and metastasis.

Further, circRNAs bind to RBPs in non-small cell 
lung cancer, which then allows them to influence EMT, 
invasion, and metastasis. CircLARP4 is a La-related 
RNA-binding protein and inhibits cell proliferation and 
metastasis by regulating SMAD7 expression [117]. A 
worse prognosis is related to reduced expression of cir-
cLARP4 in NSCLC.  Moreover, the capacity for SPCA1 
cells to metastasize is inhibited by overexpression of the 
circLARP4 gene [118]. Another circRNA down-regu-
lated in NSCLC that may prevent lymphatic metastasis 
is hsa_circ_0033155. Inhibition of tumor growth, colony 
formation, and migration occur after ectopic expression 
of hsa_circ_0033155 [119].

Exosomal circRNAs and apoptosis
The development of LC is linked to circRNAs, which 
have been implicated in several cellular processes, includ-
ing proliferation, growth, metastasis, aging, and apop-
tosis [120]. Exo-circRNAs that are increased in LC have 
been found in several studies to decrease the apoptotic 
process and enhance tumor growth by sponging miR-
NAs. Recently, Li Chuankui and his colleagues showed 
that exosomal circPLK1 upregulation enhances the pro-
liferation of NSCLC via acting on the miRNA-1294/
high mobility cluster protein A1 pathway and inhibits 
apoptotic cell death [121]. According to Yang et al., cir-
cRNA TUBA1C sponging miR-143-3p increased the pro-
gression of NSCLC [122]. Furthermore, they found that 
circTUBA1C silencing led to elevated levels of cleaved 
caspase-3 and Bax protein expression which makes 
increasing apoptosis. Additionally, hsa circ 0012673 cir-
cular RNA, through regulating the miR-320a/LIMK18521 
pathway, promotes LC cell growth  and invasion [91]. 

By targeting miR-320a and upregulating LIM domain 
kinase 1, circ 0012673 could reduce proliferation, motil-
ity, and EMT and increase apoptosis in LUAD cell lines 
upon knockdown [91]. Likewise, according to Ding et al., 
increased circ-MEMO1 levels boosted aerobic glycolysis, 
cell cycle progression, and proliferation while inhibiting 
LC cell death through the miR-101-3p/KRAS pathway 
and was associated with poor prognosis [123].

Several studies have revealed that circular RNAs that 
are overexpressed in LC make tumors grow by increasing 
the expression of Bcl-2 or decreasing the expression of 
Bax, which inhibits the process of apoptosis. For example, 
by sponging miR-195 and triggering Bcl-2, circVANGL1 
overexpression was found to behave as an oncogene and 
suppress LC apoptosis [124]. Furthermore, inhibition of 
apoptosis in LC cells was achieved by has_circ_0109320’s 
ability to upregulate Bcl-2, downregulate Bax, and cleave 
caspase 3 and by its ability to sponge miR-595, induce 
E2F transcription factor 7 expression [125]. According 
to  Qin et  al. work, circPVT1 facilitates the progression 
of NSCLC cells by suppressing apoptosis and modulat-
ing the miR-497/Bcl-2 pathway. They discovered that 
circPVT1 controls the miR-497/Bcl-2 pathway and inhib-
its cell death by sponging miR-497 [126].

Despite this, several circRNAs are downregulated in 
LC and appear to have an antagonistic role in LC growth 
by inhibiting the Wnt axis. For example, through down-
regulating Wnt/β-catenin signaling and elevating ITCH 
expression, circ-ITCH served as a sponge for the expres-
sion of oncogenic miR-7 and miR-214 [127]. Tian et  al. 
also revealed that the hsa circ 0043256 serves as a miR-
1252 sponge, allowing it to bind ITCH and interfere with 
the Wnt/β-catenin pathway. They found that cinnamal-
dehyde-treated LC cells increased circ 0043256, which 
decreased cell growth and triggered apoptosis through 
ITCH in LUAD cell lines [128].

In contrast, the expression of circNOL10 was shown to 
be suppressed in LC, and it was also shown to promote 
apoptosis, which reduced LC proliferation in both in vivo 
and in vitro studies [129]. The molecular mechanism by 
which circNOL10 influenced SCML1’s regulation of the 
human polypeptide family was the inhibition of tran-
scription factor ubiquitination. Ultimately, circNOL10 
induced cell death by upregulating the expression of Bax 
and caspase-9  while downregulating Bcl-2 expression 
[129]. Through interactions with members of the Bcl-2 
family, circRNAs were found to regulate apoptosis in 
lung cancer. This finding opens the new approach for the 
development of targeted therapies.

Exosomal circRNAs modulate drug resistance
Drug resistance is a significant concern in the manage-
ment of cancer patients. Cancer cells can show resistance 
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to treatment in a number of ways. Exosomes have gained 
universal attention as a novel therapeutic to treat can-
cer [130, 131]. Importantly, exosomes deliver non-cod-
ing RNAs (including circRNAs) and proteins linked 
with multi-drug resistance (MDR) to target cells [132]. 
Two MDR phenotypes exist. The first is the fundamen-
tal chemoresistance that predated medication exposure. 
However, the other is acquired resistance, which devel-
ops after extensive treatment [133]. Acquired MDR often 
develops during clinical cancer therapy and is a signifi-
cant barrier to effectively inhibiting metastasis and cell 
proliferation, leading to a poor prognosis and short over-
all survival [134]. In addition, exosomes send functional 
P-glycoprotein to drug-sensitive recipient cells. This pro-
tein is a crucial part of the signaling pathways that help 
drug-sensitive recipient cells become resistant to drugs 
[135].

Numerous studies have found that circRNAs have 
a regulatory function in the resistance to cancers. For 
instance, lung adenocarcinoma (LAD) patients with 
high circPVT1 expression are less likely to respond to 
cisplatin and pemetrexed. CircPVT1 also leads to treat-
ment resistance against these drugs by targeting the miR-
145-5p/ABCC1 pathway [136]. Furthermore, Cao et  al. 
found that inhibiting circ-PVT1 through the miR-429/

FOXK1 signaling axis slowed LC growth and increased 
sensitivity to cisplatin [137]. Similarly, the lung cancer 
cell line circular RNA CDR1-AS promotes resistance to 
cisplatin and pemetrexed via activating the EGFR signal-
ing pathway [138]. Additionally, the production of PD-L1 
exosomes by NSCLC cells increased cell stemness, which 
in turn made tumor cells more resistant to cisplatin. By 
inhibiting PD-L1, chemoresistant tumor  cells could be 
more sensitive to chemotherapy drugs such as cisplatin 
[139].

Recently, circRNAs that are increased in NSCLC have 
been identified to increase cisplatin resistance by pro-
moting the expression of STAT3. For instance, circ 
0076305 targeted miR-296-5p to actively modulate cis-
platin  resistance by overexpressing STAT3 in NSCLC 
[140]. Likewise, in LC cells, circAKT3 inhibited glycolysis 
and cisplatin resistance by controlling the miR-516b-5p/
STAT3 pathway [141]. Meanwhile, Ma et  al. observed 
that hsa_circRNA_0002130 had a high level of expres-
sion in the serum exosomes of osimertinib-resistant LC 
patients and osimertinib-resistant LC cells [142]. Accord-
ingly, it has been hypothesized that circRNAs are criti-
cally involved in LC resistance pathways. Nevertheless, 
additional investigations will be needed to study those 

Table 3 The potential role of exo‑circRNAs as biomarkers in the diagnosis and treatment of lung cancer

CircRNA Role/Function Regulation Mechanism Sample Refs

Circ_0047921 Biomarker ↑ – Serum Exosome [204]

Circ_005628 Biomarker ↑ Circ_005628/miR‑1244/TRIM44 Serum Exosome [205]

circ_0001492 
circ_0001346 
circ_0000690

Biomarker ↑ circ_0001492/miR‑93‑5p Plasma Exosome [206]

Circ_0001439 Biomarker ↑ – Plasma Exosome [207]

CircFARSA Biomarker/ enhances NSCLC metastasis ↑ CircFARSA/PTEN/PI3K/AKT axis Cell Line Exosome [116]

hsa_circ_0069313 Biomarker ↑ – Serum Exosome [208]

Circ_0043278 Increased expression of ROCK1, CDKN1B, and 
AKT3 promotes proliferation, invasion, and 
migration

↑ miR‑520f /ROCK1/CDKN1B/AKT3 axis Cell Line Exosome [209]

Circ CDYL Sponges miR‑185‑5p and controls TNRC6A to 
suppress cell growth and trigger cell death

↓ Circ CDYL/miR‑185‑5p/TNRC6A axis Cell Line Exosome [210]

CircARHGAP10 Boost cell division, migration, invasion, and 
glucose metabolism

↑ CircARHGAP10/miR‑638/FAM83F axis Serum Exosome [211]

hsa_circ_0002130 Involves facilitating resistance to osimertinib ↑ Hsa_circ_0002130/miR‑498 axis Serum Exosome [192]

Circ_0008928 Upregulation of miR‑488 and HK2 in CDDP‑
resistant LC promotes cell proliferation, migra‑
tion, and glycolysis metabolism

↑ Circ_0008928/miR‑488/HK2 axis Serum Exosome [212]

CircSETDB1 Promotes growth and metastasis ↑ CircSETDB1/miR‑7/Sp1 axis Cell Line Exosome [213]

circRNA‑002178 Immune escape ↑ CircRNA‑002178/miR‑34/PDL1 Plasma Exosome [168]

Circ_0076305 DDP resistance in NSCLC is controlled by 
upregulating ABCC1 expression via miR‑186‑5p 
sponging

↑ Circ_0076305/miR‑186‑5p/ABCC1 axis Cell Line Exosome [214]

CircVMP1 miR‑524‑5p‑METTL3/SOX2 axis targeting pro‑
motes NSCLC development and DDP resistance

↑ miR‑524‑5p‑METTL3/SOX2 axis Cell Line Exosome [104]
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pathways that are triggered by exo-circRNAs in cancer 
patients.

Therapeutic potential of exo‑circRNAs
Exosomes are a promising therapeutic tool for many dis-
eases because of their practical ability to transport small 
molecules between cells [143]. They may also be useful 
as biomarkers in a variety of diseases via modulating cell 
communications [144]. Due to their unique properties, 
such as their nano size, double lipid membrane, ability to 
act as multiple carriers, strong histocompatibility [145], 
high bioavailability [146], low cytotoxicity, and immuno-
genicity [147], exosomes can be used to deliver therapeu-
tics to cancer cells. Furthermore, surface receptors make 
it easier for exosomes to target tumor cells and have less 
of a negative effect on healthy tissue [148].

Recent advancements in RNA-based therapies and 
altered RNA expression in cancers offer promising thera-
peutic strategies [149–151]. A new method is to develop 
synthesized circRNAs with high-affinity domains for spe-
cific oncogenic proteins, mRNAs, lncRNAs, and miRNAs 
that might be delivered exogenously to restore the cell’s 
normal signaling pathway and inhibit tumor progres-
sion [152, 153] (Fig.  7). Additionally, exosomes, which 
are thought to be circRNA transporters, may be able to 
increase the number of circRNAs in cancer cells [154]. 
This will probably make cancer less aggressive and may 
act as a biomarker.

The production of synthetic circRNA sequences that 
can inhibit oncogenic miRNAs has become a very effec-
tive way to treat cancer because it can reduce the effec-
tiveness of cancer’s compensatory mechanisms. For 
example, Kristensen et  al. found that hybrid circRNAs 
might target oncogenic miRNAs and oncoproteins of the 
same pathway [155].

Additionally, circRNAs can also be used as sponges for 
oncomiRs [156]. Their expression level is also considered 
a treatment approach, such as sponging miRNA-9 via 
circMTO1, which makes it possible for p21 expression 
and inhibits cancer progression [157]. Similarly, Liu et al. 
revealed that synthetic circRNA named scRNA21 acts 
as a miR-21 sponge to inhibit the proliferation of cancer 
cells [158].

Furthermore, circRNAs can target oncoproteins and 
leads to inhibit the proliferation of tumor cells. For 
instance, inhibiting the Wnt/β-catenin axis with circular 
RNA-ITCH could also be used to treat different types of 
cancer [15]. Molecular analysis showed that oncogenic 
miR-7 and miR-214 were found to behave as a sponge 
for circRNA-ITCH, which increased ITCH expression 
and consequently reduced Wnt/β-catenin signaling in LC 
[127]. Likewise, by attaching to cell cycle proteins CDK2 

and p21, circ-Foxo3 suppressed cell cycle progression 
when it was overexpressed [159].

Other circRNAs sponge miRNAs and mRNAs also 
proposed as a therapeutic option. The relevant mRNA 
expression in physiologic processes and pathological 
mechanisms was controlled by cross-talk between circR-
NAs and miRNAs [160]. The relative processes of inter-
action between circRNAs, miRNAs, and mRNAs are still 
being argued. However, two types of strategies have been 
described: (1) circRNAs  sponge microRNAs, such as 
circHMCU can sponge the let-7 family and lead to can-
cer development and metastasis [161]. (2) Circular RNA 
is mediated by miRNAs. For example, in an Ago2-slicer-
dependent manner, miR-671 cleaves a circular antisense 
transcript of the Cerebellar Degeneration-Related pro-
tein 1 locus (CDR1) [49]. CDR1 mRNA levels decreased 
due to circular antisense downregulation, even if hetero-
chromatin does not occur.

In another way, some circRNAs are upregulated in 
malignant cells and can sponge tumor suppressor miR-
NAs, such as circGFRA1 and miR-34a [162]; and circU-
BAP2 and miR-143 [163], could be subjected to inhibition 
as a strategic way in cancer therapeutics. Furthermore, 
circRNA-MYLK acts as a ceRNA by binding miR-29a and 
facilitating the production of VEGFA [164]. The treat-
ment of cancer has also been proposed for the silencing 
of this circRNA. The above studies consider that exoso-
mal cirRNA-modulating may have potential applications 
in cancer therapies.

Conclusion
Exosomes originating from LC cells, known as Lung can-
cer cell derived-exosomes (LCCDEs), play a role in the 
progression of LC. Exosomes, the smallest vesicle, deliver 
important cargo such as nucleic acids, lipids, and pro-
teins. These molecules perform critical functions in cell-
to-cell communication and are identified as promising 
markers for their diagnostic properties.

Exo-circRNAs are enriched in tumors and, with mul-
tiple configurations, have also recently received interest 
in their crucial function in LC carcinogenesis. It acts as 
sponge for microRNAs, binds to proteins, and interacts 
with the tumor microenvironment (TME). In addition, 
exo-circRNAs can be used in early diagnosis, therapeutic 
response, exosome drug-delivery design for target ther-
apy, and prognosis.

Although the future holds great promise, various chal-
lenges should be overcome. Despite ongoing studies, 
several open concerns remain about the clinical use of 
mRNAs and exosomal  circRNAs. From our perspec-
tive, exo-circRNAs will be one of the most hotly debated 
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topics in the future, and further studies will be required 
to verify their clinical applications.
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