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Exact solutions of κ‑dependent 
Schrödinger equation 
with quantum pseudo‑harmonic 
oscillator and its applications 
for the thermodynamic properties 
in normal and superstatistics
Uduakobong S. Okorie 1, Akpan N. Ikot 2, Ituen B. Okon 3, Lewis F. Obagboye 4, 
Ridha Horchani 5*, Hewa Y. Abdullah 6, Karwan W. Qadir 7 & Abdel‑Haleem Abdel‑Aty 8

The effects of the curvature parameters on the energy eigenvalues and thermodynamic properties 
of quantum pseudoharmonic oscillator are investigated within the framework of nonrelativistic 
quantum mechanics. By employing Nikiforov‑Uvarov method, the energy spectra are obtained and 
used to study the ordinary statistics and q‑deformed superstatistics as a function of temperature in 
the presence and absence of the curvature parameters. It is shown that the q‑deformed supertatistics 
properties of the quantum pseudoharmonic oscillator reduce to the ordinary statistical properties 
in the absence of the deformation parameter. Finally, our results are illustrated graphically to 
show the behaviour of the energy spectra and thermodynamic properties for the three curvature 
parameters:κ = −1, κ = 1 and κ = 0.

In 1940, Schrödinger initiated the study of quantum systems on curved  spaces1, using the factorization formal-
ism. This study sparked further investigations and many authors started investigating the quantum system on 
curved spaces both in negative and positive curvatures in spherical  geometry2–4. Later on, different studies were 
carried out on hyperbolic space, specifically on quantum harmonic oscillator by employing the geodesic spherical 
 coordinates5–11. In all these considerations, the curvature parameter, κ and its influence on the system considered 
was the focal point. Harmonic oscillator has been employed over the decades to study atomic vibrations in dif-
ferent molecular  systems12 both in the relativistic and nonrelativistic regimes. Details of the studies on harmonic 
oscillator can be found in Ref.13 and other literatures on the reference list. Different authors have engaged various 
methods to evaluate the thermodynamic functions of different potential functions before  now14–21. In recent 
times, macroscopic theories of these thermodynamic functions are much explained using abstract microscopic 
statistical  mechanics22.

The concept of thermodynamic studies was later generalized by Beck and  Cohen23,24, using the phenomenon 
called superstatistics. In this formalism, two different statistics were superimposed to explain non-equilibrium 
 systems25–27. Much study have been carried out with superstatistics within equilibrium and non-equilibrium 
statistical mechanics  framework28–32. The effects of cosmic-string parameters on harmonic oscillator have been 
considered using both ordinary statistics and superstatistics  formalism33. Most recently, Edet and  Ikot34 studied 
some diatomic molecules with shifted Deng-Fan potential, by employing the q-deformed superstatistics approach. 
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In addition, Hassanabadi et al.35 employed the superstatistics formalism to study the effects of harmonic oscilla-
tor potential parameters with Dunkl derivative on thermodynamic functions. Their results were all reduced to 
the ordinary statistical mechanics as limiting cases. Three different types of superstatistics were comparatively 
studied by Chung et al.36. Here, internal energies for continuous and quantum discrete energies were considered 
as regards magnetic and paramagnetic models. As mentioned earlier, much research work has been carried out 
on superstatistics and thermodynamic properties, however, we decided to study both the superstatistics and 
normal statistics of pseudoharmonic oscillator using κ-dependent Schrödinger wave equation which is different 
from the conventional Schrödinger equation.

In this study, we shall first obtain the κ-dependent energy eigenvalues expression for quantum pseudo-
harmonic oscillator within the framework of non-relativistic quantum mechanics. Thereafter, the energy eigen-
values expression obtained will be used to deduce the κ-dependent thermodynamic function expressions for the 
quantum pseudo-harmonic oscillator. In addition, the κ-dependent superstatistics properties of the quantum 
pseudo-harmonic oscillator will be obtained as well. We can confirmed to the best of our knowledge that no 
studies have been undertaken or reported concerning the influence of the curvature parameter on ordinary 
statistics and superstatistics of quantum pseudo-harmonic oscillator.

The article is organized as follow: In Section “κ-dependent Schrödinger equation solutions of quantum pseu-
doharmonic oscillator”, the κ-dependent Schrödinger equation with the quantum pseudoharmonic oscillator is 
solved and its energy spectra expressions in the presence and absence of the curvature parameters obtained. In 
Section “Evaluation of normal thermodynamic properties”, the closed form thermodynamic properties expres-
sions of quantum pseudoharmonic oscillator are deduced for both κ  = 0 and κ = 0 . The superstatistics 
properties of the quantum pseudoharmonic oscillator are evaluated in Section “Evaluation of thermodynamic 
properties of superstatistics”, using the modified Dirac delta distribution formalism, both in the presence and 
absence of the curvature parameters. The discussion of the results obtained is presented in Section “Results and 
discussion”. Section “Concluding remarks” finally gives the concluding remarks.

κ‑dependent Schrödinger equation solutions of quantum pseudoharmonic oscillator
The κ-dependent radial Schrödinger equation is defined  as11

Here, Enl represents the energy eigenvalues of the κ-dependent quantum pseudo-harmonic oscillator, µ is the 
reduced mass and Vκ (r) is the κ-dependent quantum pseudo-harmonic oscillator, which is defined as

where A, B and C are potential parameters. The curvature parameter κ can either be greater than zero (spherical 
space), equal to zero (Euclidean Space) or less than zero (hyperbolic Space).

Substituting Eq. (2) into Eq. (1) gives

With the help of the coordinate transformation s = κ r2 , Eq. (3) reduces to the following:

Here, the following abbreviations are defined:

We employ the Nikiforov-Uvarov (NU)  method37 in Eq. (4), where the details are outlined in the ref.37 and 
the references therein. Hence, the analytical form of the energy eigenvalues for κ-dependent quantum pseudo-
harmonic oscillator is obtained as 

When κ = 0 , Eq. (6) reduces to the energy spectrum for the standard pseudoharmonic oscillator as
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Evaluation of normal thermodynamic properties
To determine the thermodynamic properties of the quantum pseudoharmonic oscillator, we first evaluate its 
partition function defined  as16–19,

where kB is the Boltzmann constant and En is energy of the nth bound state. Substituting Eqs. (6) and (7) into 
Eq. (8), we obtain the following respective expressions for partition functions:

Here,

Other thermodynamic properties are obtained using the following expressions:

Evaluation of thermodynamic properties of superstatistics
Superstatistics is known to be a superposition of different statistical models in statistical physics, which helps in 
studying non-linear and non-equilibrium  systems23,24. By taking a Laplace’s transform of the probability density 
function f

(

β ′,β
)

 within the concept of superstatistics, one can obtain the generalized Boltzmann factor defined 
 as31,32

The probability density function obeys the normalization condition f
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)

= δ
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)

 . Thus, the effective 
Boltzmann factor for the modified delta distribution function is given  as31,32,

Here, q is the deformation parameter which lies between 0 ≤ q ≤ 1 , E is the energy level of the system. It can 
be seen in Eq. (14) that when q → 0 , the superstatistics reduced to ordinary statistic  mechanics31,32. Within the 
superstatistics, the thermodynamics functions of the system are valid for all values of q and all the thermody-
namic functions as well as the energy depend on the system.

Thus, the partition function within the superstatistics formalism is defined  as34,

Hence, the partition function for the modified delta distribution can be written  as34
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By substituting Eqs. (6) and (7) into Eq. (16) and employing the Mathematica  software38, we obtain the 
q-deformed partition function in superstatistics for the quantum pseudo-harmonic potential, both in the absence 
and presence of the kappa parameter, respectively as

where the parameters G1, G2, G3, G4 and H are defined in Eq. (11) above.
With the help of Eqs. (17) and (18) , other q-deformed thermodynamic properties in superstatistics regime 

can be obtained using the expressions below:

Results and discussion
In Fig. 1, we consider the variation of energy eigenvalues of the quantum pseudoharmonic oscillator given in 
Eqs. (6) and (7), with different potential parameters and quantum numbers. It is observed that the energy eigen-
values increases with an increase in potential parameters values for the selected κ values (as seen in Fig. 1a,b 
and c respectively). In Fig. 1d, the energy eigenvalues decrease monotonously with increase in the reduced mass 
for the various κ values. It is also observed that there exists an insignificant increase in energy eigenvalues as 
both principal quantum number and angular momentum quantum number increases, in the absence of the κ 
values (see Fig. 1e and f, respectively). In the presence of the kappa values, the energy eigenvalues increases 
with an increase in both principal quantum number and angular momentum quantum number, for κ = 1 . 
For κ = − 1 , the energy eigenvalues decrease with increase in both principal quantum number, n and angular 
momentum quantum number, l  . Figure 1a–d physically describe the vibrational mode of pseudoharmonic 
oscillator atoms. Here both the vibrational and translational energies of the atom increases monotonically with 
an increase in the potential parameter.

Figure 2 shows the variation of thermodynamic properties of quantum pseudoharmonic oscillator with tem-
perature, for various κ values. The thermodynamic properties expressions employed are given in Eqs. (9), (10) 
and (12). In Fig. 2a, the partition function of quantum pseudoharmonic oscillator remains constant for certain 
temperature values. As the temperature is enhanced further, the partition function for κ = 0 increases, but the 
partition functions for both κ = 1, − 1 decreases. In Fig. 2b, the free energy increases first and later decreases 
monotonously as temperature increases, for the selected κ values. Figure 2c shows a monotonous increase in 
internal energy as the temperature is enhanced, for the various κ values selected. The internal energy plots tend 
to converge as the temperature values increases. The same trend is observed in Fig. 2d as entropy varies with 
temperature. Here, the entropy plots are seen to diverge as the temperature is enhanced more. In Fig. 2e, the 
specific heat capacity of quantum pseudoharmonic oscillator is seen to decrease with increase in temperature 
for the selected κ values.

Figures 3, 4 and 5 show the variation of different q-deformed superstatistics properties of quantum pseudo-
harmonic oscillator with temperature for selected κ values, respectively. In Fig. 3a, the q-deformed partition func-
tion first remains constant and later increases sharply with increase in temperature, for the selected q-values. In 
Fig. 3b, the q-deformed free energy decreases sharply with increase in temperature. It is seen that the q-deformed 
free energy plots for the selected q-values tend to converge as the temperature is enhanced more. Figure 3c shows 
a sharp decrease in q-deformed internal energy for a specific temperature, corresponding to a unique q-value. As 
the temperature is enhanced, the q-deformed internal energy increases monotonously and tends to converge at a 
higher temperature value. This same trend is observed as q-deformed entropy varies with temperature in Fig. 3d. 
But the q-deformed entropy plots are seen to diverge at higher temperature values. In Fig. 3e, it is seen that the 
q-deformed specific heat capacity increases at a unique temperature value, corresponding to the selected q-values. 
As the temperature is enhanced, the q-deformed specific heat capacity plots are seen to decrease monotonously. 
The q-deformed specific heat capacity plots are seen to converge at much enhanced temperature values. The 
trend obtained in Figs. 4a–e for κ = 1 are similar to that obtained in Figs. 3a–e for κ = 0 , as shown below:

Figure 5 show the variation of different q-deformed superstatistics properties of quantum pseudoharmonic 
oscillator with temperature for κ = − 1 . In Fig. 5a, the q-deformed partition function increases monotonously 
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with increase in temperature, for the selected q-values. In Fig. 5b, the q-deformed free energy decreases sharply 
with increase in temperature for q = 0 . It is also observed that there exists an increase in the q-deformed 
free energy plots for q = 0.5, 1 and later a sharp decrease as the temperature increases. Figure 5c shows a 
monotonous increase in q-deformed internal energy as temperature increases for q = 0 . In the presence of the 
q-values, the q-deformed internal energy plots first increases, later decreases sharply and finally increases as the 
temperature is enhanced. It is seen that the entire q-deformed specific heat capacity plots converges at enhanced 
temperature values. Figure 5d shows a monotonous increase in the q-deformed entropy plots for the selected 
q-values, as temperature is increased. In Fig. 5e, it is seen that the q-deformed specific heat capacity for q = 0 
decreases monotonously as temperature is increased. In the presence of the q-values, the q-deformed specific 
heat capacity plots first decreases, later increases sharply and finally decreases as the temperature is enhanced. It 
is seen that the entire q-deformed specific heat capacity plots converge at enhanced temperature values.

Concluding remarks
In this study, we have obtained the energy spectra of quantum pseudoharmonic oscillator in the curved space 
using the Nikiforov Uvarov method and used the energy spectra to obtain the partition function and other ther-
modynamic properties as a function of temperature both in the presence and absence of curvature parameter. 
With the help of the generalized Boltzmann factor of the modified Dirac delta distribution, the q-deformed 
superstatistics properties of quantum pseudoharmonic oscillator were obtained in the presence and absence 
of κ parameters. In Fig. 2a, it can be observed that the trend of the partition function is largely affected by the 
curvature parameter ( κ ). However, When κ = 0 , the partition function returns to the conventional curve as 

Figure 1.  (a) Variation of energy eigenvalues of quantum pseudoharmonic oscillator with potential parameter 
‘A’ for selected κ-values, (b) Variation of energy eigenvalues of quantum pseudoharmonic oscillator with 
potential parameter ‘B’ for selected κ-values, (c) Variation of energy eigenvalues of quantum pseudoharmonic 
oscillator with potential parameter ‘C’ for selected κ-values, (d) Variation of energy eigenvalues of quantum 
pseudoharmonic oscillator with reduced mass ′µ′ for selected κ-values, (e) Variation of energy eigenvalues 
of quantum pseudoharmonic oscillator with radial quantum number ‘n’ for selected κ-values, (f)Variation 
of energy eigenvalues of quantum pseudoharmonic oscillator with orbital quantum number ‘l’ for selected κ
-values.
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observed in many existing literatures as shown in Fig. 3a. The monotonic increment in the variation of the energy 
against the potential parameter clearly described the vibrational and rotational energies of pseudoharmonic 
oscillator atoms. The variations of energy eigenvalues of the quantum pseudoharmonic oscillator with different 
potential parameters and quantum numbers were discussed extensively for the three values of κ parameters. In 
addition, the variations of the thermodynamic and superstatistics properties with temperature have also been 
discussed in the presence and absence of both the κ parameters and deformation parameters, respectively. It 
can be deduced that the ordinary statistics is obtained when the deformation parameter becomes zero in the 
superstatistics regime.
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Figure 2.  (a) Variation of partition function of quantum pseudoharmonic oscillator with temperature for 
selected κ-values. (b) Variation of free energy of quantum pseudoharmonic oscillator with temperature for 
selected κ-values. (c) Variation of internal energy of quantum pseudoharmonic oscillator with temperature for 
selected κ-values. (d) Variation of entropy of quantum pseudoharmonic oscillator with temperature for selected 
κ-values. (e) Variation of specific heat capacity of quantum pseudoharmonic oscillator with temperature for 
selected κ-values.
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Figure 3.  (a) Variation of partition function of quantum pseudoharmonic oscillator with temperature 
for selected q-values with κ = 0. (b) Variation of free energy of quantum pseudoharmonic oscillator with 
temperature for selected q-values with κ = 0. (c) Variation of internal energy of quantum pseudoharmonic 
oscillator with temperature for selected q-values with κ = 0. (d) Variation of entropy of quantum 
pseudoharmonic oscillator with temperature for selected q-values with κ = 0. (e) Variation of specific heat 
capacity of quantum pseudoharmonic oscillator with temperature for selected q-values with κ = 0.
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Figure 4.  (a) Variation of partition function of quantum pseudoharmonic oscillator with temperature 
for selected q-values with κ = 1. (b) Variation of free energy of quantum pseudoharmonic oscillator with 
temperature for selected q-values with κ = 1. (c) Variation of internal energy of quantum pseudoharmonic 
oscillator with temperature for selected q-values with κ = 1. (d) Variation of entropy of quantum 
pseudoharmonic oscillator with temperature for selected q-values with κ = 1. (e) Variation of specific heat 
capacity of quantum pseudoharmonic oscillator with temperature for selected q-values with κ = 1.
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