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Abstract: In this paper, first we define a matrix operator A = (ank) by

an,k =

{ 1
2 (k = n,n−1) (n = 0,1,2....)
0 otherwise,

and we show that A = (ank) is a linear and bounded operator on Hahn sequence space h. Then we calculate the fine
spectrum of matrix operator A = (ank) on the Hahn sequence space h. We also determine the point spectrum, the
residual spectrum and continuous spectrum of matrix operator A = (ank) on Hahn sequence space h.
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1. Preliminaries, Background and Notation

We denote the space of all complex valued sequences by ω . Each vector subspace of ω is called as
a sequence space, as well. The spaces of all bounded, convergent and null sequences are denoted by
`∞, c and c0, respectively. By φ , we mean the space of all finitely non-zero sequences. A sequence
space µ is called an FK-space if it is a complete linear metric space with continuous coordinates
pn : µ → C with pn(x) = xn for all x = (xn) ∈ µ and every n ∈ N, where C denotes the complex field
and N = {0,1,2, . . .}. If λ is an FK-space, φ ⊂ λ and (ek) is a basis for λ then λ is said to have AK
property, where ek is a sequence whose only term in kth place is 1 the others are zero for each k ∈ N
and φ = span{ek}. If φ is dense in λ , then λ is called AD-space, thus AK implies AD.
A normed FK-spaces is called a BK-space, that is, a BK-space is a Banach space with continuous co-
ordinates, (Choudhary & Nanda, 1989, pp. 272-273). The sequence spaces `∞, c and c0 are BK-spaces
with the usual sup-norm defined by ‖x‖∞ = supk∈N |xk|. By `1, `p, cs, cs0 and bs, we denote the spaces
of all absolutely convergent, p-absolutely convergent, convergent, convergent to zero and bounded se-
ries, respectively; where 1 < p < ∞. Moreover, the space of all bounded variation sequences bv and the
absolutely summable sequence space σ∞ are defined, respectively by
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bv =

{
x = (xk) ∈ ω :

∞

∑
k=1
|xk− xk−1|< ∞

}
,

σ∞ =

{
x = (xk) ∈ ω :

∞

∑
k=1

1
k
|xk|< ∞

}

The alpha-dual λ α , beta-dual λ β and gamma-dual λ γ of a sequence space λ are defined by

λ
α := {x = (xk) ∈ ω : xy = (xkyk) ∈ `1 for all y = (yk) ∈ λ} ,

λ
β := {x = (xk) ∈ ω : xy = (xkyk) ∈ cs for all y = (yk) ∈ λ} ,

λ
γ := {x = (xk) ∈ ω : xy = (xkyk) ∈ bs for all y = (yk) ∈ λ} .

Let λ , µ be any two sequence spaces and A = (ank) be an infinite matrix of complex numbers ank,
where k,n ∈N. Then, we say that A defines a matrix transformation from λ into µ and we denote it by
writing A : λ → µ, if for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform of
x, is in µ; where

(Ax)n = ∑
k

ankxk (1)

provided the series on the right side of (1) converges for each n ∈ N. For simplicity in notation, here
and in what follows, the summation without limits runs from 0 to ∞. By (λ : µ), we denote the class of
all matrices A such that A : λ → µ . Thus, A ∈ (λ : µ) if and only if Ax exists, i.e. An ∈ λ β for all n ∈N
and belongs to µ for all x ∈ λ , where An denotes the sequence in the n-th row of A.

2. Investigation on Hahn Sequence Space

Hahn sequence space is defined by Hahn Hahn (1922) as BK−space h of all sequences x = (xk) as
follow

h =

{
x = (xk) ∈ ω :

∞

∑
k=1

k|∆xk|< ∞, and lim
k→∞

xk = 0

}
, (2)

where ∆ denotes the forward difference operator, that is, ∆xk = xk− xk+1, for all k ∈ N. Hahn Hahn
(1922) proved that the sequence space h is a BK−space with the following norm

‖x‖h = ∑
k

k|∆xk|+ sup
k
|xk| (3)

which was defined by Hahn Hahn (1922) and by Goes Goes and Goes (1970). Rao (Rao, 1990, Propo-
sition 2.1) defined a new norm on Hahn sequence space h as ‖x‖= ∑k k|∆xk|
Hahn has also proved the followings;

h⊂ `1∩
∫

c0, where
∫

λ = {x = (xk) ∈ ω : (kxk) ∈ λ}, (4)

hβ = σ∞. (5)

Goes (Goes & Goes, 1970, heorem 3.5) proved that the space h is a BK−space with AK. Moreover he
proved that h = `1∩

∫
bv = `1∩

∫
bv0 and h = (σ∞)

β (see (Goes & Goes, 1970, heorem 3.2 and 3.4)).
Then, some topological properties and results has been proved by distinguished mathematicians (see
Rao (1990); Rao and Subramanian (2002a, 2002b)). Especially, Rao Rao (1990) characterized some
matrix classes from Hahn sequence space h into some classical sequence spaces c, c0, `∞, `1, and he
characterized the matrix transformation from h into itself.
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Theorem 0.1. Rao (1990) A ∈ (h : c0) if and only if

lim
n→∞

ank = 0, (k = 1,2, ...) (6)

sup
n,k

1
k

k

∑
v=1

anv < ∞ (7)

Theorem 0.2. Rao (1990) A ∈ (h : c) if and only if (7) holds and

lim
n→∞

ank exists, (k = 1,2, ...). (8)

Theorem 0.3. Rao (1990) A ∈ (h : `∞) if and only if (7) holds.

Theorem 0.4. Rao (1990) A ∈ (h : `1) if and only if

∞

∑
n=1
|ank| converges, (k = 1,2, ...) (9)

sup
m

1
m

∞

∑
n=1

∣∣∣∣∣ m

∑
k=1

ank

∣∣∣∣∣< ∞ (10)

Theorem 0.5. Rao (1990) A ∈ (h : h) if and only if (6) holds and

∞

∑
n=1

n|ank−an+1,k| converges, (k = 1,2, ...) (11)

sup
m

1
m

∞

∑
n=1

n

∣∣∣∣∣ m

∑
k=1

(ank−an+1,k)

∣∣∣∣∣< ∞ (12)

Remark 0.1. It was shown in (Malkowsky, Rakočević, & Tuǧ, 2021, Remark 3.10) that the condition
in (11) is redundant, so A ∈ (h,h) if and only if the conditions in (6) and (12) are satisfied.

3. Spectrum of Bounded Operators

Let X be a linear space. The set of all linear operators T : X → X is denoted by L(X). By B(X), we
denote the set of all bounded linear operators on X into itself. Suppose that X is a Banach space. Then,
if T ∈ B(X), the adjoint operator T ∗ of T is in B(X∗), where X∗ is dual space of X , defined by

(T ∗y∗)(x) = y∗(T x) f or all y∗ ∈ X∗ and x ∈ X . (13)

Let T : D(T )→ X be a linear operator on its domain D(T ) ⊂ X into the complex normed space X .
For T ∈ B(X) we associate a complex number λ with the operator (T −λ I) denoted by Tλ which is
called the perturbed operator on the same domain D(T ) as T where I denotes the identity operator. The
inverse (T −λ I)−1, which is denoted by T−1

λ
is called the resolvent operator of Tλ .

A regular value of β is a complex number λ of T such that

(R1) T−1
λ

exists,

(R2) T−1
λ

is bounded and

(R3) T−1
λ

is defined on a set which is dense in X .

Definition 0.6. The resolvent set of T is the set of such regular values β of T and it is denoted by ρ(T ),
that is,

ρ(T ) = {λ ∈ C : α(T −λ I) = 0, R(T −λ I) = X}. (14)
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Definition 0.7. The spectrum of T denoted by σ(T ) consist of all scalars which are not in ρ(T ), that
is

σ(T ) = C\ρ(T ). (15)

Thus the spectrum σ(T ) consist of those values of λ ∈ C, for which Tλ is not invertible.
It is possible to define the spectrum σ(T ) as partitioned into three disjoint sets as follows:

(i) σp(T,X)(Point-Discrete spectrum) is the set such that T−1
λ

does not exist. A λ ∈ σp(T ) is said
to be an eigenvalue of T .

(ii) σc(T,X)(Continuous spectrum) is the set such that T−1
λ

exists and satisfies (R3) but not (R2) that
is T−1

λ
is unbounded and its domain is dense in X.

(iii) σr(T,X)(Residual spectrum) is the set such that T−1
λ

may be bounded or not but exists and does
not satisfies (R3), that is, the domain of T−1

λ
is not dense in X.

Since these subsets are three subdivision disjoint sets, we have

σ(T,X) = σp(T,X)∪σr(T,X)∪σc(T,X). (16)

It is well know that some of these sets defined above can be empty. The problem that we have to discuss
is an existence problem. If X is finite-dimensional space, then the spectrum σ(T,X) consists of only
the set σp(T,X), that is, σr(T,X) = σc(T,X) = /0. Moreover, only the point spectrum σp(T,X) can be
empty for some operator on sequence spaces. Thus, we should consider to prove all sub-spectrum of
an operator in the infinite dimensional case.
Now the definition of three more subdivision of spectrum of an operator named as approximate spec-
trum, defect spectrum and compression spectrum which were defined by Appell at al Appell, De Pas-
cale, and Vignoli (2008).

Definition 0.8. Appell et al. (2008) Let X is a Banach space and T ∈ B(X). An x = (xk) Weyl sequence
for T defined by ‖x‖= 1 and ‖T xk‖ → 0, as k→ ∞. Then the approximate spectrum, defect spectrum
and compression spectrum are defined as follow

(i) The approximate spectrum is the set of λ ∈ C such that there exists a Weyl sequence for λ I−T ,
that is,

σap(T,X) = {λ ∈ C : there exists a Weyl sequence for λ I−T} (17)

(ii) The defect spectrum of T is the set of λ ∈ C such that λ I−T is not surjective, thet is,

σδ (T,X) = {λ ∈ C : λ I−T is not surjective } (18)

(iii) The compression spectrum is the set of λ ∈ C such that the range of λ I−T id not dense in X,
that is,

σco(T,X) =
{

λ ∈ C : R(λ I−T ) 6= X
}
. (19)

The first two spectrum defined as (0.8) and (0.8) which are not needed to be disjoint gives the following

σ(T,X) = σap(T,X)∪σδ (T,X), (20)

and the compression spectrum gives another(not necessarily disjoint) decomposition of the spectrum
as

σ(T,X) = σap(T,X)∪σco(T,X). (21)
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Proposition 0.9. Let X is a Banach space and T ∈ B(X). Then the followings hold.

(i) σp(T,X)⊆ σap(T,X),

(ii) σap(T,X)⊆ σδ (T,X),

(iii) σr(T,X) = σco(T,X)\σp(T,X),

(iv) σc(T,X) = σ(T,X)\ [σp(T,X)∪σco(T,X)]

Sometimes it is useful to connect the spectrum of a bounded linear operator with its adjoint and to set
up existence and uniqueness results for linear operator equations in Banach spaces and their adjoints.
The following proposition gives this relation.

Proposition 0.10. (Appell et al., 2008, Proposition 1.3, p. 28) The following relations on the spectrum
and subspectrum of an operator T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) hold:

(i) σ(T ∗,X∗) = σ(T,X).

(ii) σc(T ∗,X∗)⊆ σap(T,X).

(iii) σap(T ∗,X∗) = σδ (T,X).

(iv) σδ (T ∗,X∗) = σap(T,X).

(v) σp(T ∗,X∗) = σco(T,X).

(vi) σco(T ∗,X∗)⊇ σp(T,X).

(vii) σ(T,X) = σap(T,X)∪σp(T ∗,X∗) = σp(T,X)∪σap(T ∗,X∗).

4. The Spectrum of the Matrix Operator A = (ank) on Hahn Sequence Space h

Operator theory is one of the part of Functional analysis where significant applications have been done
in several sciences. One of the mathematical application is spectral theory. Literature includes many
significant works on spectrum of bounded operators on sequence spaces.
The Hahn sequence space defined by Hahn Hahn (1922) and studied by many mathematician (see Rao
(1990); Rao and Subramanian (2002a, 2002b)). Kirišci Kirişci (2013); Kirisci (2013); Kirişci (2014)
compiled all works on Hahn sequence space in his remarkable papers. In Kirişci (2013), he defined a
new Hahn sequence space derived by Cesàro Mean. Moreover, in Kirişci (2014) he defined p−Hahn
sequence space. Yeşilkayagil and Kirişci Yeşilkayagil and Kirişci (2014) studied the fine spectrum of
forward difference operator ∆ on the Hahn Space h.
Most recently Malkowsky et al Malkowsky, Rakočević, and Tuǧ (2021) and Malkowsky Malkowsky
(2021) studied the generalized Hahn sequence space hd , where d = (kk) is monotonically increas-
ing sequence, and showed some compact operators on the new Hahn sequence space. Moreover,
Malkowsky et al Malkowsky, Milovanović, Rakočević, and Tuğ (2021) and Tuǧ et al Tuǧ, Rakočević,
and Malkowsky (2021) studied the spectrum of the generalized difference operator ∆3

i of order three op-
erator on Hahn sequence space h and the generalized difference operator ∆3

i domain on Hahn sequence
space h and some matrix transformations from and into the space h, respectively.
In this section, we define the matrix operator A and then we show that this operator is a bounded
operator on h. Then we calculate the spectrum and subdivision of spectrum of the operator A on Hahn
sequence space h.
Let the matrix A = (ank)

∞

n,k=0 is defined as Anx = 1
2 (xn + xn−1) for all n = {0,1,2, ...}, that is,

an,k =

{ 1
2 (k = n,n−1) (n = 0,1,2....)
0 (otherwise),

Then the following holds:
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Proposition 0.11. We have A ∈ (h,h) and

‖LA‖(h,h) = 1, where LA(x) = Ax f or all x ∈ h. (22)

Proof. We write

h(z) =
∞

∑
k=1

k|zk− zk+1| f or all z ∈ (k−1 ∗ `1)

and

‖z‖∞ = sup
k≥0
|zk| f or all z ∈ c0

hence

‖z‖h = h(z)+‖z‖∞ f or all z ∈ h

By (Goes & Goes, 1970, Theorem 3.5), h is a BK space with AK with respect to ‖x‖h(x∈ h). Thus every
B∈ (h,h) defines an operator LB ∈ B(h,h), where LB(x) = Bx f or all x∈ h (Wilansky, 2000, Theorem
4.2.8) and conversely, every operator L ∈ B(h,h) is given by a matrix B ∈ (h,h), where Bx = L(x) for
every x ∈ h (Jarrah & Malkowsky, 2003, Theorem 1.9).
We write y = Ax f or allx ∈ h. Then obviously y ∈ c0 and ‖y‖∞ ≤ ‖x‖∞, and

h(y) =
∞

∑
k=1

k|∆yk| =
∞

∑
k=1

k|Akx−Ak+1x|= 1
2

∞

∑
k=1

k|xk + xk+1− (xk+1 + xk+2)|

=
1
2

∞

∑
k=1

k|xk− xk+2| ≤
1
2

(
h(x)+

∞

∑
k=2

(k−1)|xk− xk+1|

)
≤ h(x)

and so LA ∈ B(h,h) with

‖LB‖h,h ≤ 1. (23)

Let ε > 0 be given. We choose m∈N such that m> 1
(2ε)−1 . We put x= e[m] =∑

m
k=0 e(k). Then obviously

x ∈ h and we obtain

‖x‖h =
∞

∑
k=1

k|xk− xk+1|+1 = m+1,

h(y) =
1
2

∞

∑
k=1

k|xk− xk+2|=
1
2
(m−1+m),

hence

‖y‖(h,h) = m+
1
2
.

Then we have

‖y‖h

‖x‖h
=

m+ 1
2

m+1
= 1− 1

2(m+1)
> 1− ε.

Since ε > 0 was arbitrary, this implies

‖y‖h ≥ ‖x‖h,

and then

‖LA‖(h,h) ≥ 1 (24)

So (24) and (23) together imply (22) as proposed in the theorem.
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Theorem 0.12. σ(A,h) =
{

λ ∈ C : |λ − 1
2 | ≤

1
2

}
Proof. Suppose that |λ − 1

2 |>
1
2 . Since the matrix A is triangular, then (A−λ I)−1 = B = (bnk) is given

by

(bnk) =


1
2 −λ 0 0 · · ·

1
2

1
2 −λ 0 · · ·

0 1
2

1
2 −λ · · ·

...
...

. . . . . .


−1

=


2

1−2λ
0 0 · · ·

−2
(1−2λ )2

2
1−2λ

0 · · ·
2

(1−2λ )3
−2

(1−2λ )2
2

1−2λ
· · ·

...
...

. . . . . .


where

bnk =


2

1−2λ
, k = n

(−1)n−k 2
(1−2λ )n−k+1 , k ≤ n−1
0 , otherwise

The aim of us here is to show that the matrix B is a bounded linear operator on h. To see this, we apply
the Theorem 0.5 and Remark 0.1. Thus, we should show that the following conditions

(i) lim
n→∞

bnk = 0, f or each k = 1,2, ...

(ii) sup
m

1
m

∞

∑
n=1

n

∣∣∣∣∣ m

∑
k=1

(bnk−bn+1,k)

∣∣∣∣∣< ∞

are satisfied for the matrix B.
Since we have

bnk =
2

1−2λ

(
−1

1−2λ

)n−k

. (25)

for each k ∈ N, and |λ − 1
2 | >

1
2 , then the expression

∣∣ −1
1−2λ

∣∣ < 1. Therefore, we can easily see that
limn→∞ bnk = 0 for each k. It proves that (i) is satisfied.
To see the condition (ii) is also satisfied we have

sup
m

1
m

∞

∑
n=1

n

∣∣∣∣∣ m

∑
k=1

(bnk−bn+1,k)

∣∣∣∣∣
= sup

m

1
m

∞

∑
n=1

n

∣∣∣∣∣ m

∑
k=1

(
2

1−2λ

(
−1

1−2λ

)n−k

− 2
1−2λ

(
−1

1−2λ

)n−k+1
)∣∣∣∣∣

=

∣∣∣∣ 4−4λ

(1−2λ )2

∣∣∣∣sup
m

1
m

∞

∑
n=1

n

∣∣∣∣∣ m

∑
k=1

(
−1

1−2λ

)n−k
∣∣∣∣∣

=

∣∣∣∣ 2−2λ

λ (1−2λ )2

∣∣∣∣sup
m

1
m

∞

∑
n=1

n

∣∣∣∣∣
(
−1

1−2λ

)n

−
(
−1

1−2λ

)n−m−1
∣∣∣∣∣

≤
∣∣∣∣ 2−2λ

λ (1−2λ )2

∣∣∣∣
(

sup
m

1
m

∞

∑
n=1

n
∣∣∣∣( −1

1−2λ

)n∣∣∣∣+ sup
m

1
m

∞

∑
n=1

n

∣∣∣∣∣
(
−1

1−2λ

)n−m−1
∣∣∣∣∣
)

Since |λ − 1
2 |>

1
2 and by using the ratio test we can say that

‖B‖(h;h) = sup
m

1
m

∞

∑
n=1

n

∣∣∣∣∣ m

∑
k=1

(bnk−bn+1,k)

∣∣∣∣∣< ∞.
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Now suppose that λ ∈ C which satisfies |λ − 1
2 | ≤

1
2 . If λ 6= 1

2 , then A−λ I is triangular and has the
inverse (A−λ I)−1. Let decide y = (1,0,0,0, · · ·) which is in h, then (A−λ I)−1y = x gives

xn =
2

1−2λ

(
−1

1−2λ

)n

. (26)

Since |λ − 1
2 | ≤

1
2 , the sequence xn does not convergence to 0 and we may say that x = (xn) /∈ h. Thus

the inverse (A−λ I)−1 is not a map in the class (h : h) and so λ ∈ σ(A,h).
If λ = 1

2 , then the operator A−λ I which is represented as

A−λ I =


0 0 0 0 · · ·
1
2 0 0 0 · · ·
0 1

2 0 0 · · ·
0 0 1

2 0 · · ·
...

...
...

. . . . . .


Since the range of A−λ I is not dense in h, then λ ∈ σ(A,h) which gives us the result{

λ ∈ C : |λ − 1
2
| ≤ 1

2

}
⊆ σ(A,h).

Theorem 0.13. σp(A,h) = /0

Proof. Suppose that Ax = λx for all corresponding eigenvectors x 6= 0 of eigenvalues λ ∈ C in Hahn
sequence space h. When we solve the system of linear equations

1
2 0 0 0 · · ·
1
2

1
2 0 0 · · ·

0 1
2

1
2 0 · · ·

...
...

...
. . . . . .

 .


x0
x1
x2
...

= λ .


x0
x1
x2
...


we have the following iteration

1
2

x0 = λx0 =⇒ λ =
1
2

1
2

x0 +
1
2

x1 = λx1 =⇒ 1
2

x0 +
1
2

x1 =
1
2

x1 =⇒ 1
2

x0 = 0 =⇒ x0 = 0

1
2

x1 +
1
2
.x2 = λx2 =⇒ 1

2
x1 +

1
2

x2 =
1
2

x2 =⇒ 1
2

x1 = 0 =⇒ x1 = 0

...
1
2

xn−1 +
1
2

xn = λxn =⇒ xn = 0

...

We have xk = 0 ∀k ∈N which is a contradict. Moreover, if the first non zero eigenvector is x1, then we
see by the above system of equations that x1 = x2 = ...= 0. Therefore, the set of all point spectrum of
the matrix A is empty set.

If T ∈ B(h) with a matrix A, then the adjoint operator T ∗ : h∗→ h∗ is defined by the transpose At of the
matrix A. So we should note here that the dual space h∗ of h is isometrically isomorphic to the Banach
space σ∞ of absolutely summable sequences which is normed by ‖x‖= supn

1
n |∑

n
k=1 xk|.
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Theorem 0.14. σp(A∗,h∗) =
{

x ∈ C : |λ − 1
2 | ≤

1
2

}
Proof. Suppose that A∗x = λx, s ∈ ρ∞,x 6= 0. Since A is a triangular real valued matrix, so

A∗ = AT =


1
2 0 0 0 · · ·
1
2

1
2 0 0 · · ·

0 1
2

1
2 0 · · ·

...
...

...
. . . . . .


T

=


1
2

1
2 0 0 · · ·

0 1
2

1
2 0 · · ·

0 0 1
2

1
2 · · ·

...
...

...
. . . . . .



A∗x = λx, ∀λ ∈ C, ∀xk 6= 0, ∀k ∈ N =⇒


1
2

1
2 0 0 · · ·

0 1
2

1
2 0 · · ·

0 0 1
2

1
2 · · ·

...
...

...
. . . . . .

 .


x0
x1
x2
...

= λ .


x0
x1
x2
...


gives us the following system and we have the following generalization of xn as

1
2

x0 +
1
2

x1 = λx0 =⇒ 1
2

x1 = (λ − 1
2
)x0 =⇒ x1 = 2(λ − 1

2
)x0

1
2

x1 +
1
2

x2 = λx1 =⇒ 1
2

x2 = (λ − 1
2
)x1 =⇒ x2 = 2(λ − 1

2
)x1 = 22(λ − 1

2
)2x0

...
1
2

xn−1 +
1
2

xn = λxn−1 =⇒ 1
2

xn = (λ − 1
2
)xn−1 =⇒ xn = 2n(λ − 1

2
)nx0.

...

Now we should show that xn ∈ h∗ = σ∞ =
{

xk : supn
1
n |∑

n
k=1 xk|< ∞

}
. For this

sup
n

1
n

∣∣∣∣∣ n

∑
k=1

2k
(

λ − 1
2

)k

x0

∣∣∣∣∣ ≤ sup
n

1
n

n

∑
k=1

∣∣∣∣∣2k
(

λ − 1
2

)k
∣∣∣∣∣ |x0|

≤ |x0|sup
n

1
n

n

∑
k=1

∣∣2k
∣∣ ∣∣∣∣λ − 1

2

∣∣∣∣k
≤ |x0|sup

n

1
n

n

∑
k=1

2k 1
2k

≤ |x0|< ∞

Which gives us the expected result.

Lemma 0.15. (Goldberg, 2006, p. 59) An operator T has dense range if and only if T ∗ is one to one.

Lemma 0.16. (Goldberg, 2006, p. 60) The adjoint operator T ∗ of T is onto if and only if T has a
bounded inverse.

Theorem 0.17. σr(A,h) = σp(A∗,h∗)

Proof. If λ 6= 1
2 , then the operator A−λ I is triangular matrix and has an inverse, that is, (A−λ I)−1

exists. If λ = 1
2 then x1 = x2 = ... = xk = 0 which says that x = 0. It can be said from the above

argument that A−λ I has an inverse for λ ∈ σp(A∗,h∗). Since A∗−λ I is not one-to-one by Theorem
(0.14), Lemma (0.15) says the result that the range A− λ I is not dense in h. This concludes the
proof.

Theorem 0.18. σc(A,h) =
{

λ ∈ C :
∣∣λ − 1

2

∣∣= 1
2

}
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Proof. Suppose that λ ∈ C such that
∣∣λ − 1

2

∣∣= 1
2 . Since λ 6= 1

2 , A−λ I is triangular and hence has an
inverse. Consider the adjoint operator A∗−λ I. Then the linear system of homogeneous equations in
the matrix form (A∗−λ I)x = 0 gives us that

xn = 2n
(

λ − 1
2

)n

x0, f or n≥ 1. (27)

Since λ 6= 1
2 , we have x = (x1,x2, ...,xn, ...) ∈ h if and only if x = 0. So, A∗− λ I is one-to-one. By

Lemma (0.15) we can say that the range of A−λ I is dense in h. This is what we wished to prove.

Corollary 0.19. The following consequences hold:

(i) σap(A,h) = σ(A,h).

(ii) σδ (A,h) = σ(A,h).

(iii) σco(A,h) = {λ ∈ C :
∣∣λ − 1

2

∣∣< 1
2}.

5. Conclusion

Spectral theory of linear and bounded operators is one of the aplied areas of the matrix and summability
theory. Many significant papers have been delivered on spectrum of several linear and bounded opera-
tors on several sequence spaces. The fine spectrum and its subdivision of some linear and bounded op-
erators on Hahn sequence space h have been calculated by some distinguised mathematicians (see Das
(2017); Durna (2020); El-Shabrawy and Abu-Janah (2018); Malkowsky, Milovanović, et al. (2021);
Yeşilkayagil and Kirişci (2014)).
In this paper, we defined the matrix operator A = (ank) and calculated the fine spectrum and its some
subdivisions of the matrix operator A on the Hahn sequence space h. The results that we optained is an
application of the paper studied by Das Das (2017).
As a natural continuation of this paper, the fine spectrum and its subdivisions of the matrix operator

an,k =

{ 1
3 (k = n,n−1,n−2) (n = 0,1,2....)
0 otherwise,

can be calculated on Hahn sequence space h. Moreover, the operator can be generalized to the operator
A` = (a`nk), where A`

nx = 1
`+1 ∑

l
k=0 xn−k for all n = 0,1,2,3, ... and for every x ∈ ω. Then the fine

spectrum of the operator A` = (a`nk) can be calculated on the sequence space h or generalized Hahn
sequence space hd which defined by Malkowsky, Rakočević, and Tuǧ (2021) and recently studeied by
several mathematicians (see Dolićanin-Dekić and Gilić (2022); Veličković, Malkowsky, and Dolićanin
(2022); Yaying, Kirişçi, Hazarika, and Tuǧ (2022)).
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