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Abstract: One of the important problems in mathematics is finding the analytic solution and numerical 

solution of the differential equation using various methods and techniques. Most of the researchers tackled 

different numerical approaches to solve ordinary differential equations. These methods such as the Runge 

Kutta method, Euler’s method, and Taylor’s polynomial method have so many issues like difficulties in 

finding the solution that can lead to singularities or no solution. In this work, we considered Newton’s 

interpolation and Lagrange’s interpolation polynomial method (LIPM). These studies combine both 

Newton’s interpolation method and Lagrange method (NIPM) to solve first-order differential equations. 

The results obtained provide minimum approximative error. The result is supported by solving an 

example. 

Keywords: Differential Equation, Lagrange Interpolation Method, Newton Interpolation First-order 

Differential Equation 

1. Introduction 

A differential equation is a mathematical statement that compares the derivatives of one or more 

variables. Functions that indicate physical values, and derivatives explain their rates of change, and 

differential equations define the relationship between the differences in most situations. Differential 

equation plays a critical part in many areas, including physics, engineering, biology, and economics, 

because such interactions are frequent (Zill, 2012). The language in which the laws of nature are 

described is differential equations. Understanding the concept of differential equation solutions is 

essential to most modern science and engineering. The ordinary differential equations (ODEs) deal 

with derivatives of a single variable, which is sometimes called time. The solution to first-order ODEs 

using analytical, graphical, and numerical approaches is one of the issues discussed. ODEs have 

constant variables, typically second-order ODEs; Variation of variables and unknown variables; 

Variations, damping, reflection in sinusoidal, exponential signals; Complex numbers and exponentials; 

Delta functions, convolution, and Laplace transform techniques; Fourier line, periodic solutions; 

Fourier series, periodic equation and imaginary part in matrices and first-order linear systems; and 

critical point analysis and phase plane drawings for nonlinear intelligent devices 

Many issues in real life may be represented in the form of ODEs, particularly those of first degree. To 

solve numerical issues, a numerical method is used.  
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Several methods for finding numerical solutions to ODEs are studied ( Faith, & Seeam, 2018; Cuneyt, 

Cansun, Ibrahim, Tuncay, Oktay, 2004; Ide, 2008; Islam, Khan, Faraz, & Austin, 2010; Kreuzberger, 

et al., 2020; Weber, 1975)  differential equations (ODEs), typically the first and 2nd - order equations, 

and indeed the ability to solve differential calculus is critical. The study of exact and projected 

numerical methods to nonlinear finite difference methods of first and second-order is becoming 

increasingly important in a variety of physical-mathematical sciences, including applied mathematics, 

mechatronics, electrical engineering, computational physics, summarized matter physics, particle 

physics, and, as a result, particle physics. (Islam, & Akbar, 2020). Differential equations are among 

the most important subjects in mathematics, with a number of different approaches and solutions. We 

have research techniques and numerical methods; different techniques are only effective for a limited 

set of equations; hence numerical approaches are often employed. (Faith, 2018). 

But the problem of finding a solution to some difficult differential equations has been a major problem 

for scientists to deal with, tackling these kinds of problems necessitates the authors in [Ibrahim, 2020; 

Ibrahim, & Isah, 2021; Ibrahim, & Isah, 2022; Isah, & Ibrahim, 2021; Salisu, 2022b] to introduced a 

numerical method for solving ODEs, partial differential equations (PDEs), and fractional differential 

equations (FDEs). Therefore, commutativity is very important from a practical point of view. 

The authors in (Ibrahim, & Koksal, 2021a) studied the commutativity with non-zero initial conditions 

(ICs) and their effects on the sensitivity was studied in [Salisu, I, 2022a; Salisu, I, 2022c] while the 

realization and decomposition of a fourth-order LTVSs with nonzero ICs by cascaded two Second-

Order commutative pairs was introduced by (Ibrahim, & Koksal, 2021b; Salisu, & Rababah, 2022). 

The authors in (Rababah, & Ibrahim, 2016a; Rababah, & Ibrahim, 2016b; Rababah, & Ibrahim, 2018) 

come up with a numerical approximative process for degree reduction of curves and surface which 

approaches can be used to solve complex ODES, PDEs, and FDEs. 

 Newton's interpolation is used extensively in numerical analysis and picture processing. This study 

introduces univariate and bivariate parameterized Newton-type polynomial interpolation algorithms. 

Because the proposed new interpolation functions are parametric, they are not information.”( Zou, et 

al., 2020; Zhao, et al 2021). 

Lagrange's equations include a systematic approach to defining the differential equation of a 

mechanical device or a (flexible) main structural with many degrees of freedom. By stating the scalar 

quantities, a scalar method is produced in basis of geometric parameters of energy of a system (Sauer, 

2004). This report's discussion of Lagrange's approach is limited, yet it contains enough information. 

Background information for the flexible structure's vibration signals in the laboratory course for the 

mean absolute error. The above study will look closely at differentiation and solve a first and second 

order differential equations using Newton interpolation and the Lagrange interpolation approach. The 

purpose of this work is to find the numerical approximation of the first and second order differential 

equations using Newton interpolation and the Lagrange interpolation approach. 

2. Preliminaries 

In this section we introduce the first-order differential equation, second-order differential equation and 

Euler’s method for solving the first and second-order differential equation, we also show the formula 

of Taylor polynomial and Runge-Kutta method for solving ODEs, PDEs and FDEs, all this are 

numerical techniques that proof to be the best numerical method for finding the solution of first and 

second differential equation, but in this work we are going to consider Lagrange interpolation 
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polynomial and Newton interpolation method to solve first-order ODEs, which will be explain the next 

sectional. 

Considering the first and second-order systems described as  

𝒚′(𝑥) + 𝑄(𝑥)𝑦(𝑥)  = f(𝑥),                                        [1] 

𝑦𝐵
″(𝑥) + P(𝑥)𝒚′(𝑥) + Q(𝑥)𝑦(𝑥)  = f(𝑥),                                 [2] 

where P(𝑥), Q(𝑥) 𝑎𝑛𝑑 f(𝑥) are function of 𝑥. 

2.1 Euler Method 

Euler’s method is a developed numerical solution to an initial value problem of the type 

𝑦′(𝑡)𝑓(𝑥, 𝑦),                                                      [3] 

𝑦(𝑥o) = 𝑦0.                                                      [4] 

Beginning with the initial condition 𝑦0, we create the rest of the solution using repeated formulas. To 

develop a numerical solution to an initial value issue of the form: 

𝑥𝑛+1 = 𝑥𝑛 + ℎ,                                                   [5] 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛),                                           [6] 

where ℎ is the step function, 𝑥𝑛+1 is the independent value that can be divided into ℎ sub intervals and 

𝑦𝑛+1 is the solution numerical solution. 

2.2 Taylor Series 

The Taylor series can be defined as 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 +, ...                 [7] 

To determine a condition that must be true for a Taylor series to exist for a function, we first construct 

the nth degree Taylor mathematical model of that function. 

𝑓(𝑥) = ∑𝑖=0
𝑛  

𝑓(𝑖)(𝑎)

𝑖!
(𝑥 − 𝑎)𝑖.                                              [8] 

This polynomial has a maximum degree of n and it is called the Taylor polynomial. 

2.3 Runge-Kutta Method 

We do have deferential expression as first, second, third, fourth and so on of Runge-kutta methods as 

yield in Eq. (9)  

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛), 

𝑘2 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
), 

𝑘3 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
),                                                   [9] 

𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3), 
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𝑘 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4). 

3. Material and Methods 

3.1 Lagrange Interpolation Polynomial 

The LIPM is numerical approximation that involve interval of a given endpoints. 

Theorem 1: If  x0, x1, ..., xn are  𝑛 + 1  difference numbers and 𝑓(𝑥) is a function, then there exist a 

unique polynomial 𝑃(𝑥) of degree at most 𝑛 with 

𝑓(𝑥𝑘) = 𝑃(𝑥𝑘),   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑘 = 0, 1, … , 𝑛.                                                    [10] 

And  

P(x) =  f (𝑥0)𝐿𝑛,0 (x) + ··· + f (𝑥𝑛)𝐿𝑛,𝑛 (x) = ∑ f (𝑥𝑘)𝐿𝑛,𝑘 (x)
𝑛

𝑘=0
,                 [11] 

where, for each k = 0, 1, ..., n, 

𝐿𝑛,𝑘  (x) =
(x − x0)(x −  x1) ··· (x − x𝑘−1)(x −  x𝑘+1) ··· (x − x𝑛)

(x𝑘  − x0)(x𝑘  −  x1) ··· (x𝑘  − x𝑘−1)(x𝑘  −  x𝑘+1) ··· (x𝑘  −  x𝑛)
.         [12] 

                                    = ∏
(x −  x𝑖)

(x𝑘  −  x𝑖)

𝑛

𝑖=0
𝑖≠𝑘

. 

By substituting 𝑛 = 3 in Eq. (11), we obtained the Lagrange interpolating polynomials by the use of 

Mathematica software through four points: 

𝑃 (x) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥𝑜 − 𝑥1)(𝑥𝑜 − 𝑥2)(𝑥𝑜 − 𝑥3)
𝑦0 +

(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥𝑜 − 𝑥1)(𝑥𝑜 − 𝑥2)(𝑥𝑜 − 𝑥3)
𝑦1 + 

(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥𝑜 − 𝑥1)(𝑥𝑜 − 𝑥2)(𝑥𝑜 − 𝑥3)
𝑦2 +

(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥𝑜 − 𝑥1)(𝑥𝑜 − 𝑥2)(𝑥𝑜 − 𝑥3)
𝑦3. 

3.2 Newton's Interpolation Method  

Newton interpolation is a quadratic interpolation methodology used in numerical methods and 

outcomes. The interpolation formula in most classic procedures is particular to the data. This paper 

discusses single and multivariable generalized Newton type polynomial interpolation approaches. 

The forward difference formula and the backward difference formula are used in Newton polynomial 

interpolation. 

𝑦0(𝑥) = 𝑎0,                                                 [13] 

𝑦1(𝑥) =  𝑎0 + 𝑎1(𝑥 − 𝑥0),                                   [14] 

𝑦2(𝑥) =  𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1),                    [15] 

𝑦𝑛(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0) + ⋯ … . +𝑎𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1) … … … (𝑥 − 𝑥𝑛−1), 

[16] 
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where 

𝑎0 = 𝑦0,                                                             [17] 

𝑎1 =
𝑓(𝑥1) − 𝑓(𝑥0)

(𝑥1 − 𝑥0)
 ,                                                 [18] 

𝑎2 =

𝑓(𝑥2) − 𝑓(𝑥1)
(𝑥2 − 𝑥1)

−
𝑓(𝑥1) − 𝑓(𝑥0)

(𝑥1 − 𝑥0)

(𝑥2 − 𝑥0)
 ,                                     [19] 

𝑎3 =

𝑓(𝑥3) − 𝑓(𝑥2)
𝑥3 − 𝑥2

−
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
𝑥3 − 𝑥1

−

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
𝑥2 − 𝑥0

𝑥3 − 𝑥0
,                  [20] 

    𝑎𝑛 = 𝑓[𝑥𝑘 , 𝑥𝑘−1, … , 𝑥1, 𝑥0] =
𝑓[𝑥𝑘,𝑥𝑘−1,…,𝑥2,𝑥1]−𝑓[𝑥𝑘−1,𝑥𝑘−2,…,𝑥1,𝑥0]

𝑥𝑘−𝑥0
.                    [21] 

3.3 Forward Difference Table  

The value inside the boxes of the following difference in Table 1 is used in deriving the newton forward 

difference interpolation formula by setting 𝑥 = 𝑥0 + 𝑝ℎ and 𝑎0, 𝑎1′⋯𝑎𝑛
, the newton forward difference 

equation is given as  

𝑝𝑛(𝑥) = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2𝑖
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3𝑖
Δ3𝑦0 + ⋯                             

+  
𝑝(𝑝 − 1)(𝑝 − 2) ⋯ (𝑝 − 𝑛 + 1)

𝑛𝑖
Δ𝑛𝑦0.                                                                      [22] 

Table 1: Forward difference interpolation formula 

 

 
3.4 Backward Difference Table  

The value inside the boxes of the following difference Table 2 is used in deriving the newton backward 

difference interpolation formula which is given as 

 
Value of 𝑥 

Value of 

𝑦 = 𝑓(𝑥) 

First 

Difference 

Δ𝑓(𝑥) 

Second 

Difference 

Δ2𝑓(𝑥) 

Third 

Difference 

Δ3𝑓(𝑥) 

Fourth 

Difference 

Δ4𝑓(𝑥) 

𝑥0  
 

   

𝑥0 + ℎ 𝑦1 
 

 
 

 

𝑥0 + 2ℎ 𝑦2 
 

Δ2𝑦1 
  

𝑥0 + 3ℎ 𝑦3 
    

𝑥0 + 4ℎ 𝑦4     

𝑦0 

Δ𝑦0 

Δ𝑦1 

Δ2𝑦0 

Δ3𝑦0 

Δ𝑦2 Δ3𝑦1 

Δ4𝑦0 

Δ𝑦3 

Δ2𝑦2 
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𝑝𝑛(𝑥) = 𝑦𝑛 + 𝑝∇𝑦0 +
𝑝(𝑝 + 1)

2𝑖
∇2𝑦𝑛 +

𝑝(𝑝 + 1)(𝑝 − 2)

3𝑖
∇3𝑦0 + ⋯                              

+  
𝑝(𝑝 + 1)(𝑝 − 2) ⋯ (𝑝 + 𝑛 − 1)

𝑛𝑖
∇𝑛𝑦𝑛.                                                                      [23] 

Table 2: Backward difference interpolation formula 

 

4. Application  

In this section, we make use of the formula and conditions obtained from the previous section and 

illustrate the numerical solution of first-order differential equations. 

Example 1. Let us first consider the following first-order differential equations 

𝑐𝑜𝑠𝑥 − 𝑥2𝑦 = 𝑓(𝑥)           𝑦(0) = 0           ℎ = 0.01.                   [24] 

By applying the Newton interpolation of Eqs. (13-21), we obtain the following 

𝑎𝑜 = 0 = 𝑦𝑜 ,                                                            [25] 

𝑎1 =
𝑓(𝑥1) − 𝑓(𝑥𝑜)

𝑥1 − 𝑥𝑜
= [

𝑑𝑦

𝑑𝑥
]

0,0
    = 𝑐𝑜𝑠(0) − (0)2(0)   = 1 − 0 = 1                    [26] 

𝑦1 = 𝑎𝑜 + 𝑎1(𝑥 − 𝑥𝑜) =   0 + 1(0.01 − 0) = 0.01                                        [27] 

𝑎2 =

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

 −  
𝑓(𝑥1) − 𝑓(𝑥𝑜)

𝑥1 − 𝑥𝑜

𝑥2 − 𝑥𝑜
=

[
𝑑𝑦
𝑑𝑥

]
0.01,   0.01

−  [
𝑑𝑦
𝑑𝑥

]
0,0

 

0.02 − 0
 

𝑎2 =
𝑐𝑜𝑠(0.01)−(0.01)2(0.01)−(𝑐𝑜𝑠(0)−(0)2(1))

0.02−0
=

0.9999492−1

0.02
= −0.00254998           [28] 

𝑦2 = 0 + 1(0.02 − 0) + (−0.00254998)(0.02 − 0)(0.02 − 0.01) 

= 0.02 − 5.09996 × 10−7 = 0.0199995                                        [29] 

By substituting 𝑛 = 2 in the Lagrange interpolation polynomial in Eq. (11), we obtain  

 

Value of 𝑥 
Value of 

𝑦 = 𝑓(𝑥) 

First 

Difference 

∇𝑓(𝑥) 

Second 

Difference 

∇2𝑓(𝑥) 

Third 

Difference 

∇3𝑓(𝑥) 

Fourth 

Difference 

∇4𝑓(𝑥) 

𝑥0  
 

   

𝑥0 + ℎ 𝑦1 
 

 
 

 

𝑥0 + 2ℎ 𝑦2 
 

∇2𝑦3 
  

𝑥0 + 3ℎ 𝑦3 
    

𝑥0 + 4ℎ 𝑦4     

∇𝑦1 

𝑦0 

∇3𝑦3 ∇𝑦2 

∇2𝑦2 

∇4𝑦4 
Δ3𝑦4 ∇𝑦3 

∇𝑦4 

∇𝑦4 
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𝑦2 =
(𝑥−𝑥1)(𝑥−𝑥2)

(𝑥𝑜−𝑥1)(𝑥𝑜−𝑥2)
(𝑦𝑜) +

(𝑥−𝑥𝑜)(𝑥−𝑥2)

(𝑥1−𝑥𝑜)(𝑥1−𝑥2)
(𝑦1) +

(𝑥−𝑥𝑜)(𝑥−𝑥1)

(𝑥2−𝑥𝑜)(𝑥2−𝑥1)
(𝑦2),                [30] 

Where  

𝑥𝑜 = 0,   𝑥1 = 0.01,   𝑥2 = 0.02,                                     [31] 

Considering the values 𝑥𝑜, 𝑥1, 𝑥2 of Eq. (31) and 𝑦𝑜, 𝑦1, 𝑦2 of Eq. (25), Eq. (27), and Eq. (29) 

respectively, and inserting them in Eq. (30), we obtain 

𝑦2 =
(𝑥−0.01)(𝑥−0.02)

(0−0.01)(0−0.02)
(0) +

(𝑥−𝑜)(𝑥−0.02)

(0.01−0)(0.01−0.02)
(0.01) +

(𝑥−𝑜)(𝑥−0.01)

(0.02−0)(0.02−0.01)
(0.1999)             

=
𝑥2 − 0.02𝑥

1 × 10−4
(0.01) +

𝑥2 − 0.01𝑥

2 × 10−4
(0.19999999) = −0.00254998𝑥2 + 1.00003𝑥.   [32] 

The exact solution is given by 

𝑦𝑒𝑥𝑎𝑐𝑡 =
1

2
𝑒

1
2

−
𝑥2

2 √
𝜋

2
(Erfi [

−𝑖 + 𝑥

√2
] + Erfi [

𝑖 + 𝑥

√2
]).                        [33] 

The figures below depict the graph of approximate solution with exact solutions and error between. 

 

Figure 4.1: Solution of Example 1 with LIPM and NIPM. 

The error is defined as  

𝑒𝑟𝑟𝑜𝑟 = 𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦2                                                  [4.13] 
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0.00

0.02

0.04

0.06

0.08

0.10

Approx Soln

Exact

Output Plot



Eurasian Journal of Science & Engineering                                                                            

ISSN 2414-5629 (Print), ISSN 2414-5602 (Online) 
EAJSE 

 

Volume 9, Issue 1; February, 2023 
96 

 

Figure 4.2: Error of Example 1 with LIPM and NIPM 

Table 4.2: The Table showing the result of Example 1  

x Exact Values Newtons & Langrage.  

 

Errors  

0 0 0 0 

0.01 0.0099995 0.01 4.99989 × 10−7 

0.02 0.019996 0.0199995 3.48966 × 10−6 

0.03 0.0299865 0.0299985 0.0000119674 

0.04 0.039968 0.0399969 0.0000289289 

0.05 0.0499375 0.0499949 0.0000573662 

0.06 0.0598921 0.0599924 0.000100266 

0.07 0.0698287 0.0699893 0.000160608 

0.08 0.0797444 0.0799857 0.0002413655 

0.09 0.0896361 0.0899816 0.000345501 

0.1 0.0995011  0.0999771 0.000475968 

 
5. Conclusion 

This paper studies the solution of first-order differential equations using the langrage interpolation 

polynomial method and Newton interpolation approached. The result obtained shows that the proposed 

method and approached gives a minimal approximation error and outperforms the existing methods. 

The numerical results are verified to be correct by an example that is computed using Mathematica 

and MATLAB.   
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