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 ABSTRACT 

Many complex cell signalling pathways and chemical reaction networks include many variables and 

parameters; this is sometimes a big issue for identifying critical model elements and describing the model 

dynamics. Therefore, model reduction approaches can be employed as a mathematical tool to reduce the 

number of elements. In this study, we use a new technique for model reduction: the Lumping of parameters 

for the simple linear chemical reaction network and the complex cell signalling pathway that is 

extracellular-signal-regulated kinase (ERK) pathways. Moreover, we propose a high-order and accurate 

method for solving stiff nonlinear ordinary differential equations. The curtail idea of this scheme is based 

on splitting the problem into stiff and non-stiff terms. More specifically, stiff discretization uses the implicit 

method, and nonlinear discretization uses the explicit method. This is consequently leading to a reduction 

in the computational cost of the scheme. 

The main aim of this study is to reduce the complex cell signalling pathway models by proposing an 

accurate numerical approximation Runge-Kutta method. This improves one's understanding of such 

behaviour of these systems and gives an accurate approximate solution. Based on the suggested technique, 

the simple model's parameters are minimized from 6 to 3, and the complex models from 11 to 8. Results 

show that there is a good agreement between the original models and the simplified models. 

 

KEYWORDS: ERK Cell signalling pathways, Mathematical model, Runge-Kutta method, 
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1 INTRODUCTION 

Mathematical modelling is a helpful tool for describing the model dynamics of different cell 

signalling pathways. They may be expressed as equations with constant rates of change. While most of 

these systems are nonlinear and have many dimensional components, they require certain model 

simplifications and reductions to determine approximate analytical solutions and describe model dynamics. 

There are many methods and technique for model reduction, readers can see more applied techniques in [1-

4]. Lumping of parameter technique is suggested to simplified the number of parameters in this study, and 

to evaluate the difference between the original and reduced models at each stage we use function of 

deviation, for more detail of this formulas readers can see [5]. In this study we work on the complex cell 

signalling pathways ERK pathway, the signalling system under investigation regulates ERK (extracellular 

signal-regulated kinase) signalling [6]. Furthermore, cell signalling pathway models can be modelled as 

system of stiff ordinary differential equations. The key idea of stiff problems is to give a great role in 

understanding and identifying these effects on the model dynamics. Because of their difficulties, most of 

these problems do not have exact analytic. Furthermore, these problems have very different time scales 

occurring simultaneously. Consequently, a lot of study has garnered interest, and over the years, a lot of 

numerical systems have been developed, such as Runge kutta method, Euler method, multistep methods [7-

9], Finite difference method [10], Finite element methods [11]. Runge Kutta method is one of the most 

applicable methods for solving stiff problems. Disadvantages of the of these methods are not work well for 

stiff differential equations in spite of it is provide a good understanding for the model dynamical behaviour. 

In addition, we propose a method to avoid the difficulties that appear when the models of ERK cell 

signalling pathway transfer to stiff nonlinear equations with an implicit method. This method is called 

Implicit - Explicit (IMEX) schemes for more details [12-15]. Consider the numerical method of the 

following system of stiff ordinary differential equation:  

         
d𝒖

∂t
= 𝐹(𝑡, 𝒖(𝑡)) + 𝐺(𝑡, 𝒖(𝑡)),                                                                                                                      (1.1) 

A main factor of the suggested technique is the separation of the right-hand side of (1) into stiff F(t, 𝐮(t)) 

and no stiff G(t, 𝐮(t)). Note that an explicit Runge-Kutta (ERK) method is used to solve the non-stiff part 

𝐹 and a diagonally implicit Runge-Kutta (DIRK) method is employed to solve the stiff part 𝐺. Popular 

family of IMEX schemes for DIRK and ERK terms take the follow form: 
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(𝐸𝑥) and (Im)  are denoted to the explicit and implicit components. Implicit-Explicit scheme, 

defined by its Butcher coefficients (𝐴[𝐸𝑥], 𝐴[𝐼𝑚], 𝑏[𝐸𝑥], 𝑏[𝐼𝑚], 𝑐[𝐸𝑥], 𝑐[𝐼𝑚]) is given by: 

𝒖𝑛+1 = 𝒖𝑛 + ∆𝑡 ∑(𝑏𝑖
[𝐼𝑚]

𝒌𝑖
[𝐼𝑚]

+ 𝑏𝑖
[𝐸𝑥]

𝒌𝑖
[𝐸𝑥]

)

𝑠

𝑖=1

,                                                                                    (1.2) 

where 𝒌𝑖
[𝐼𝑚]

 and 𝒌𝑖
[𝐸𝑥]

 are now the discrete equivalents of both the stiff as well as nonstiff operators, 

correspondingly in (1.2), Fs and Fns, 

𝒌𝑖
[𝐼𝑚]

 =  𝐹(𝑡𝑖 + 𝑐𝑖∆𝑡, 𝒖𝑖(𝑡)),    𝒌𝑖
[𝐸𝑥]

= 𝐺(𝑡𝑖 + 𝑐𝑖∆𝑡, 𝒖𝑖(𝑡)), 

and the stage values are defined as 

𝒖𝑖 = 𝒖𝑛 + ∆𝑡 ∑(𝑎𝑖𝑗𝒌𝑖
[𝐼𝑚]

+ �̂�𝑖𝑗𝒌𝑖
[𝐸𝑥]

)

𝑠

𝑗=1

.                                                                                                 (1.3) 

Applying DIRK schemes for the implicit part, the above expression, gives 

𝒖𝑖 = 𝒖𝑛 + ∆𝑡 ∑(𝑎𝑖𝑗𝒌𝑖
[𝐼𝑚]

+ �̂�𝑖𝑗𝒌𝑖
[𝐸𝑥]

)

𝑖−1

𝑗=1

+ ∆𝑡𝑎𝑖𝑖𝒌𝑖
[𝐼𝑚]

.                                                                         (1.4) 

To deal with linear implicit part, we use  

(𝑰 − ∆𝑡𝑎𝑖𝑖𝑲)𝒖𝑖 = 𝒖𝑛 + ∆𝑡 ∑(𝑎𝑖𝑗𝒌𝑖
[𝐼𝑚]

+ �̂�𝑖𝑗𝒌𝑖
[𝐸𝑥]

)

𝑖−1

𝑗=1

,                                                                        (1.5) 

where 𝒌𝑖
[𝐼𝑚]

=  𝐹(𝑡𝑖 + 𝑐𝑖∆𝑡, 𝒖𝑖(𝑡)),  𝒌𝑖
[𝐸𝑥]

= 𝐺(𝑡𝑖 + 𝑐𝑖∆𝑡, 𝒖𝑖(𝑡)).  

 

𝑐 𝐴  �̂� �̂� 

 
 

𝔟𝑇  

 

 

 

 

�̂�𝑇 
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This study focuses on two points; in the first one, we will use a good technique called lumping 

parameters for model reduction for the simple linear chemical reaction network and the complex cell 

signalling pathways ERK pathway. The model includes 11 variables and 11 parameters. The proposed 

technique has minimized the parameters from 11 to 8. Moreover, the second point is applying the robust 

and accurate numerical technique, the Runge-Kutta method, to simulate and compare the original and 

simplified ERK model. By computing, the numerical simulation results show that there is still a close 

agreement here between the numerical solutions of each variable in full and the reduced models. 

2 LUMPING OF PARAMETERS 

         In this study we use a power full approach for model reduction which is based on the lumping of 

species technique[16]. This is used to minimize the number of constants (parameters). In the equation 

(2.1), we assume that this interval includes all parameters. 

𝑘𝑗 ∈ [𝛽1, 𝛽𝑛] ∈ ℝ+, for   j=1,2, …, m.                                                                                           (2.1) 

We divide the current interval (2.1) in to the subintervals like follows to identify the most effective 

technique of parameter lumping: 

         [𝛽1, 𝛽𝑛] = ⋃ [𝛽𝑖, 𝛽𝑖+1].
𝑛−1
𝑖=1                                                                                                                 (2.2) 

Despite the fact that the suggested intervals might not be evenly spaced, they can be chosen under the 

condition that they are equally spaced. 

         |𝛽𝑖+1 − 𝛽𝑖| < 𝛼; 𝛼 ∈ ℝ+ ∪ {0}. 

Then a new parameter vector will be introduced such as follows. 

          𝑘∗ = (𝑘1
∗, 𝑘2

∗, . . . , 𝑘𝑚1
∗),𝑚1 ≤ 𝑚 , 

While each component of 𝑘∗ is described as follows: 

𝑘∗ = ∑ 𝑘𝑗𝑗∈ℐ                                                                                                                                    (2.3) 

Where  ℐ={1,2, . . . ,m}, and 𝑖 = 1,2, . . . , 𝑚1 . This is referred to as a parameter lumping (constants).  A 

lumping matrix M is defined as follows: 

𝑀 =

𝑘∗
1

𝑘∗
2

⋮
𝑘∗

𝑚1

𝑘1        𝑘2 ⋯   𝑘𝑚

(

𝑎11 𝑎12 ⋯ 𝑎1𝑚

𝑎21 𝑎22 ⋯ 𝑎2𝑚

⋮
𝑎𝑚11

⋮
𝑎𝑚12

⋱
⋯

⋮
𝑎𝑚1𝑚

)
,                                                                                      (2.4) 

Where   𝑎𝑖ℐ ∈ {0,1}   for  𝑖 = 1,2, . . .  , 𝑚1 and ℐ = 1,2, . . . , 𝑚.  

This is an essential equation called parameter lumping transformation. 

 𝑘∗ = 𝑀k                                                                                                                                        (2.5) 

The initial parameter set k could be calculated using Eq. (2.1.5) as follows: 
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𝑘 = 𝑀+𝑘∗                                                                                                                                      (2.6) 

where 𝑀+ is called pseudo-inverse matrix of M that is 𝑀𝑀+ = 𝐼. Therefore, the Eq 

𝑑𝒸

𝑑𝑡
= ℋ(𝒸, 𝑘∗)                                                                                                                                (2.7) 

The simplified model of the system with fewer parameters is equation (2.7). This method is a significant 

step forward in dimensionless for complex biological process networks [17]. 

 

3 APPLICATIONS: 

             This study aims to reduce the number of components in biochemical systems and cell signaling 

pathways by applying a new model reduction method. We use this strategy to reduce the number of param-

eters in simple chemical reactions and complex non-linear biological reaction models. We used the method 

on a typical non-linear model of a network of chemical reactions. The first case is a simple example that is 

a model with chemical reactions. The system has been minimized from 5 to 3 parameters based on the 

suggested technique. A complicated cell signaling system is the second model used in this study. This 

pathway is the ERK cell signal pathway [6, 18]. 

3.1 A simple chemical reaction network 

In a simple chemical network model, the concept of lumping parameters can be easily implemented. 

Given a linear network containing 3 species with 6 parameters to further understand how this approach 

might be used [19]. 

 

  𝑥1        
𝑘1     
𝑘2

     2𝑥2 

  𝑥1 + 𝑥2     

𝑘3        
𝑘4

        𝑥3       

𝑘5          
𝑘6

        𝑥2 

The stoichiometric vectors can be calculated as follows 

  𝛾1 = (
1
0
0
) ,   𝛾2 = (

−1
0
0

) ,   𝛾3 = (
−1
−1
1

) ,   𝛾4 = (
1
1

−1
) ,   𝛾5 = (

0
1

−1
) ,   𝛾6 = (

0
−1 
1

) 

And the reaction rates are calculated 

    𝑣1 = 𝑘1𝑥1 ,    𝑣2 = 𝑘2𝑥1
2,   𝑣3 = 𝑘3𝑥1𝑥2 ,  𝑣4 = 𝑘4𝑥3 ,  𝑣5 = 𝑘5𝑥3 ,  𝑣6 = 𝑘6𝑥2  . 

         
𝑑

𝑑𝑡
(

𝑥1

𝑥2

𝑥3

) = ∑𝑣𝑖𝛾𝑖

6

𝑖=1

 

Then the system of ordinary differential equation could be obtained: 



 

11-165 

         

𝑑𝑥1

𝑑𝑡
= 𝑘1𝑥1 − 𝑘2𝑥1

2 − 𝑘3𝑥1𝑥2 + 𝑘4𝑥3 ,                                             

𝑑𝑥2

𝑑𝑡
= −𝑘3𝑥1𝑥2  + 𝑘4𝑥3 + 𝑘5𝑥3 − 𝑘6𝑥2 ,                                          

𝑑𝑥3

𝑑𝑡
= 𝑘3𝑥1𝑥2 − 𝑘4𝑥3 − 𝑘5𝑥3 + 𝑘6𝑥2   .                                            

                                                           (3.1.1) 

Where 𝑘1 = 8.5  , 𝑘2 =  𝑘3 = 𝑘4 = 𝑘5 = 1 , 𝑘6 = 0.2 . 

Now by applying lumping technique as mentioned before, we make the following suppositions  

𝑘1
∗ = 𝑘1 = 8.5                           

𝑘2
∗ = 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 = 4 

𝑘3
∗ = 𝑘6 = 0.2                           

Then we define the lumping matrix as follows: 

𝑀 =

𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6

[
1  0    0
0  1    1
0  0    0

       
0  0    0
1  1    0
0  0    1

]

 
 𝑘1

∗

 𝑘2
∗

 𝑘3
∗

 

Then the pseudo inverse can be calculated as follows:  

𝑀𝑇 =

[
 
 
 
 
 
1 0 0
0 1 0
0
0
0
0

1
1
1
0

0
0
0
1]
 
 
 
 
 

 ,    𝑀 ∗ 𝑀𝑇 = [
1 0 0
0 4 0
0 0 1

] 

And since 𝐴−1 =
1

𝑑𝑒𝑡𝐴
(𝐴𝑑𝑗𝐴) 

(𝑀 ∗ 𝑀𝑇)−1 = [

0 0 0

0
1

4
0

0 0 1

] 

i.e 𝑀+ = 𝑀𝑇 ∗ (𝑀 ∗ 𝑀𝑇)−1 =

[
 
 
 
 
 
1 0 0
0 1 4⁄ 0

0
0
0
0

1 4⁄

1 4⁄

1 4⁄
0

0
0
0
1]
 
 
 
 
 

 

then  𝑘𝑜𝑙𝑑 = 𝑀𝑇 𝑘𝑛𝑒𝑤= 𝑀𝑇 

(

 
 
 

𝑘1

𝑘2

𝑘3

𝑘4

𝑘5

𝑘6)

 
 
 

=

(

 
 
 

1 0 0
0 1 4⁄ 0
0 1 4⁄ 0
0 1 4⁄ 0
0 1 4⁄ 0
0 0 1)

 
 
 

∗

(

 
 
 
 

𝑘1
∗

 
𝑘2

∗

 
𝑘3

∗

)
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(

 
 
 
 

𝑘1
 

𝑘2
 

𝑘3
𝑘4 
𝑘5 
𝑘6)

 
 
 
 

=

(

 
 
 
 

𝑘1
∗

1

4
𝑘2

∗

1

4
𝑘2

∗

1

4
𝑘2

∗

1

4
𝑘2

∗

𝑘3
∗ )

 
 
 
 

     

Then the reduced system can be obtained  

𝑑𝑥1

𝑑𝑡
= 𝑘1

∗𝑥1 −
1

4
𝑘2

∗(𝑥1
2 + 𝑥1𝑥2 − 𝑥3) , 

𝑑𝑥2

𝑑𝑡
= −

1

4
𝑘2

∗(𝑥1
 𝑥2 − 2𝑥3) − 𝑘3

∗𝑥2 ,                                                                                        (3.2.1) 

𝑑𝑥3

𝑑𝑡
=

1

4
𝑘2

∗(𝑥1
 𝑥2 − 2𝑥3) + 𝑘3

∗𝑥2 .          

The reduced system (3.1.2) contains only three parameters. 

 

3.2  Extracellular signal-regulated kinase signalling pathway 

ERKs are part of a wider family of mitogen-activated protein kinases that includes ERK5, c-JunNh2-

terminal kinases (JNKs), and p38 MAP kinases, among others [6]. The best-studied MAPK pathway, the 

ERK1/2 cascade, has been found to play key roles in proliferation, differentiation, cancer, and other 

physiological and pathological processes. It's critical to keep ERR signalling under control in order to keep 

cells functioning normally. The cell can regulate the ERK signalling pathway by a variety of mechanisms, 

including feedback loops, upstream and downstream scaffolds, phosphatase, and inhibitors of the ERK 

signalling pathway. This ERK pathway is involved in a variety of biological functions, including [20] : 

• Cell proliferation regulation, such as T cell activation  

• Synaptic plasticity in hippocampal neurons, such as long-term potentiation (LTP)  

• Endothelial cell proliferation during angiogenesis  

• Phosphorylation of the transcription factor p53 

• Activation of phospholipase A2 (PLA2) in mast cells may contribute to the development of poly-

cystic kidney disease by remodelling the ERK signalling pathway[21].  

ERK is a complex signalling pathway and includes 11 variables and parameters. Figure (1) only 

shows a piece of the ERK pathway. The chemical reaction network of the ERK signalling pathways is given, 

see Figure (1). There are also a set of data for state variables and parameters, see Tables (1) and (2). 
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Figure1: Graphical representation of the ERK signalling pathways[18]. 

 

Table 1: Stationary values of state variables for ERK signalling pathways[18]. 

No. State variable Symbols Stationary values 

1 𝑅𝐴𝐹 − 1∗ 𝐶1             0.01 

2 𝑅𝐾𝐼𝑃 𝐶2              0.1 

3 𝑅𝐴𝐹 − 1∗ 𝑅𝐾𝐼𝑃⁄  𝐶3              0.4 

4 𝑅𝐴𝐹 − 1∗ 𝑅𝐾𝐼𝑃⁄ 𝐸𝑅𝐾 − 𝑝𝑝⁄  𝐶4              0.4 

5 𝐸𝑅𝐾 − 𝑃 𝐶5              0.1 

6 𝑅𝐾𝐼𝑃 − 𝑃 𝐶6             0.05 

7 𝑀𝐸𝐾 − 𝑃𝑃 𝐶7             0.55 

8 𝑀𝐸𝐾 − 𝑝𝑝 𝐸𝑅𝐾⁄  𝐶8              0.5 

9 𝐸𝑅𝐾 − 𝑃𝑃 𝐶9              0.4 

10 𝑅𝑃 𝐶10             0.19 

11 𝑅𝐾𝐼𝑃 − 𝑃 𝑅𝑃⁄  𝐶11              0.1 
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                       Table 2: Summary of parameter values for ERK signalling pathways [18] 

Parameters  Estimated value 

𝑝1 0.191 

𝑝2 0.09 

𝑝3 0.443 

𝑝4 0.93 

𝑝5 5 

𝑝6 0.031 

𝑝7 0.95 

𝑝8 4 

𝑝9 0.9 

𝑝10 10 

𝑝11 7 

 

Then the model equations of the biochemical diagram (1) are given bellow [18]: 

dC1

dt
= −p1c1c2 + p2c3 + p5c4 ,             

 𝑑𝐶2

𝑑𝑡
= −p1c1c2 + p2c3 + 𝑝11𝑐11 ,            

𝑑𝐶3

𝑑𝑡
= 𝑝1𝑐1𝑐2 − 𝑝2𝑐3 − 𝑝3𝑐3𝑐9 + 𝑝4𝑐4 ,  

𝑑𝐶4

𝑑𝑡
= 𝑝3𝑐3𝑐9 − 𝑝4𝑐4 − 𝑝5𝑐4 ,                  

𝑑𝐶5

𝑑𝑡
= 𝑝5𝑐4 − 𝑝6𝑐5𝑐7 + 𝑝7𝑐8 ,                    

𝑑𝐶6

𝑑𝑡
= 𝑝5𝑐4 − 𝑝9𝑐6𝑐10 + 𝑝10𝑐11 ,                                                                                                      (3.2.1) 

𝑑𝐶7

𝑑𝑡
= −𝑝6𝑐5𝑐7 + 𝑝7𝑐8 + 𝑝8𝑐8 ,               

𝑑𝐶8

𝑑𝑡
= 𝑝6𝑐5𝑐7 − 𝑝7𝑐8 − 𝑝8𝑐8 ,                  

𝑑𝐶9

𝑑𝑡
= −𝑝3𝑐3𝑐9 + 𝑝4𝑐4 + 𝑝8𝑐8  ,              

𝑑𝐶10

𝑑𝑡
= −𝑝9𝑐6𝑐10 + 𝑝10𝑐11 + 𝑝11𝑐11 ,      

𝑑𝐶11

𝑑𝑡
= 𝑝9𝑐6𝑐10 − 𝑝10𝑐11 − 𝑝11𝑐11 .         

In this chemical reaction pathways, we can apply the proposed technique of model reduction. This is done 

to reduce the number of parameters. So, we use the following lump 
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Figure 2: Lumping of parameters for ERK signaling. 

 

After applying the lumping method for the original system (3.2.1), therefore the simplified system could be 

defined as follows: 

dC1

dt
= −

1

2
𝑘1c1c2 +

1

2
𝑘1c3 + k4c4 ,             

 𝑑𝐶2

𝑑𝑡
=

1

2
k1c3 + 𝑘8c11 −

1

2
𝑘1𝑐1𝑐2 ,                   

𝑑𝐶3

𝑑𝑡
=

1

2
𝑘1𝑐1𝑐2 −

1

2
𝑘1𝑐3 − 𝑘2𝑐3𝑐9 +

1

3
𝑘3𝑐4 ,  

𝑑𝐶4

𝑑𝑡
= 𝑘2𝑐3𝑐9 − (𝑘4 +

1

3
𝑘3)𝑐4 ,                          

𝑑𝐶5

𝑑𝑡
= 𝑘4𝑐4 − 𝑘5𝑐5𝑐7 +

1

3
𝑘3𝑐8 ,                           

𝑑𝐶6

𝑑𝑡
= 𝑘4𝑐4 −

1

3
𝑘3𝑐6𝑐10 + 𝑘7𝑐11 ,                                                                                                         (3.2.2) 

𝑑𝐶7

𝑑𝑡
= −𝑘5𝑐5𝑐7 + (𝑘6 +

1

3
𝑘3)𝑐8 ,                     

𝑑𝐶8

𝑑𝑡
= 𝑘5𝑐5𝑐7 − (𝑘6 +

1

3
𝑘3)𝑐8 ,                         

𝑑𝐶9

𝑑𝑡
= −𝑘2𝑐3𝑐9 +

1

3
𝑘3𝑐4 + 𝑘6𝑐8  ,                   

𝑑𝐶10

𝑑𝑡
= −

1

3
𝑘3𝑐6𝑐10 + (𝑘8 + 𝑘7)𝑐11 ,                  

𝑑𝐶11

𝑑𝑡
=

1

3
𝑘3𝑐6𝑐10 − (𝑘8 + 𝑘7)𝑐11 .                       

We compare both full and simplified systems using IMEX Runge-Kutta and classic Runge-Kutta 

approaches. This is for state variables{𝑐𝑖, 𝑖 = 1,2,… ,11}, see Figure (3). 
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4 THE PROPOSED METHOD 

This section aims to use the high-order IMEX-RK scheme presented in Section 1 for solving the 

model equations presented in section 3. To do this, recalling (3.2.1) and (3.2.2), and for brevity, this can be 

written as  

𝑑𝑪

𝑑𝑡
= 𝐹𝐼𝑚(𝑡, 𝑪(𝑡)) + 𝐹𝐸𝑥(𝑡, 𝑪(𝑡)),                                                                                                      (4.1) 

Where 𝑪(𝑡) = [𝑐1(𝑡), … , 𝑐11(𝑡)]
𝑇 ,  and we can write 𝐹𝐼𝑚(𝑡, 𝑪(𝑡)) and 𝐹𝐸𝑥(𝑡, 𝑪(𝑡)) the equation (3.2.1) as 

follow: 

𝐹𝐼𝑚(𝑡, 𝑪(𝑡)) =

[
 
 
 
 
 
 
 
 
 
 

p2c3 + p5c4

p2c3 + 𝑝11𝑐11

−𝑝2𝑐2 + 𝑝4𝑐4

−𝑝4𝑐4 − 𝑝5𝑐4

𝑝5𝑐4 + 𝑝7𝑐8

𝑝5𝑐4 + 𝑝10𝑐11

𝑝7𝑐8 + 𝑝8𝑐8
−𝑝7𝑐8 − 𝑝8𝑐8

𝑝4𝑐4 + 𝑝8𝑐8

𝑝10𝑐11 + 𝑝11𝑐11
−𝑝10𝑐11 − 𝑝11𝑐11]

 
 
 
 
 
 
 
 
 
 

 ,     𝐹𝐸𝑥(𝑡, 𝑪(𝑡)) =

[
 
 
 
 
 
 
 
 
 

−p1c1c2
−p1c1c2

𝑝1𝑐1𝑐2 − 𝑝3𝑐3𝑐9

𝑝3𝑐3𝑐9
−𝑝6𝑐5𝑐7

−𝑝9𝑐6𝑐10

−𝑝6𝑐5𝑐7
𝑝6𝑐5𝑐7

−𝑝3𝑐3𝑐9
−𝑝9𝑐6𝑐10
𝑝9𝑐6𝑐10 ]

 
 
 
 
 
 
 
 
 

 

 

Similarly, we can write 𝐹𝐼𝑚(𝑡, 𝑪(𝑡)) and 𝐹𝐸𝑥(𝑡, 𝑪(𝑡)) the equation (3.2.2) as follow: 

 

𝐹𝐼𝑚(𝑡, 𝑪(𝑡)) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

2
𝑘1c3 + k4c4

1

2
k1c3 + 𝑘8c11

−
1

2
𝑘1𝑐3 +

1

3
𝑘3𝑐4 

−(𝑘4 +
1

3
𝑘3)𝑐4

𝑘4𝑐4 +
1

3
𝑘3𝑐8

𝑘4𝑐4 + 𝑘7𝑐11

(𝑘6 +
1

3
𝑘3)𝑐8

−(𝑘6 +
1

3
𝑘3)𝑐8

1

3
𝑘3𝑐4 + 𝑘6𝑐8

(𝑘8 + 𝑘7)𝑐11

−(𝑘8 + 𝑘7)𝑐11 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ,     𝐹𝐸𝑥(𝑡, 𝑪(𝑡)) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

2
𝑘1c1c2

−
1

2
𝑘1𝑐1𝑐2

1

2
𝑘1𝑐1𝑐2 − 𝑘2𝑐3𝑐9

𝑘2𝑐3𝑐9

−𝑘5𝑐5𝑐7

−
1

3
𝑘3𝑐6𝑐10

−𝑘5𝑐5𝑐7

𝑘5𝑐5𝑐7

−𝑘2𝑐3𝑐9

−
1

3
𝑘3𝑐6𝑐10

1

3
𝑘3𝑐6𝑐10 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

A main factor of the suggested technique is the separation of the right-hand side of (4.1) into stiff 

FIm(t, 𝐂(t)) and nonstiff (FEx(t, 𝐂(t))). Note that an explicit Runge-Kutta (ERK) method is used to solve 
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the no stiff part (FEx) and a diagonally implicit Runge-Kutta (DIRK) method is employed to solve the stiff 

part (FIm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑐1                  1/4                                   0                                    0                                       0                  

0 

𝑐2 0.34114705729739                       1/4                                   0                                       0                  

0 

𝑐3 0.80458720789763        −0.07095262154540                    1/4                                      

0                  0 

𝑐4 −0.52932607329103      1.15137638494253        −0.80248263237803                     

1/4                 0 

𝑐5 0.11933093090075          0.55125531344927      −0.1216872844994         

0.20110104014943     1/4 

 0.11933093090075          0.55125531344927      −0.1216872844994         

0.20110104014943     1/4 

�̂�1                 0                                      0                                     0                                      0                   

0 

�̂�2 0.39098372452428                       0                                      0                                      0                   

0 

�̂�3 1.09436646160460       0.33181504274704                      0                                        0                    

0 

�̂�4 0.14631668003312       0.69488738277516      0.46893381306619                        

0                    0 

�̂�5 −1.33389883143642     2.90509214801204      −1.06511748457024         

0.27210900509137     0 

 0.11933093090075          0.55125531344927      −0.1216872844994         

0.20110104014943     1/4 
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Algorithm 1 IMEX-RK(4, 5, 5) 

1: Input 𝒖0,no of stages, no of iterations, Time 

2: Put h =  Time/no of iterations 

3: The matrices A[E], A[I], b[E] and b[I] can be obtained in the Butcher Table. 

4: for n =  0 ∶ (no of iterations) − 1 do 

5: accum1  ⟵ 𝐮n 

6: for 𝑖 =  0 ∶  (no of stages) − 1 do 

7: accum2  ⟵ 𝒖𝑛 + ℎ ∙ (Aij
[I]

∙ 𝐅𝐈𝐦(: , 𝐮n)). 

8: for 𝑗 =  0 ∶  (𝑖 − 1) do 

9: accum2 ⟵ accum2+ℎ ∙ (Aij
[Im]

∙ 𝐤𝐣
[𝐈𝐦]

 +  Aij
[Ex]

∙ 𝐤𝐣
[Ex]

 ). 

10: end do 

11: 𝐤𝐢
[Im]

⟵ 𝐅𝐈𝐦(: , 𝐚𝐜𝐜𝐮𝐦𝟐). 

12: 𝐤𝐢
[Ex]

⟵ 𝐅𝐄𝐱(: , 𝐚𝐜𝐜𝐮𝐦𝟐). 

13: accum1⟵ accum1+h ∙ (bi
[Im]

∙ 𝐤𝐢
[𝐈𝐦]

 + bi
[Ex]

∙ 𝐤𝐢
[Ex]

 ). 

14: end do 

15: 𝒖𝑛+1 ⟵ accum1. 

16: end do 

 

5 NUMERICAL EXPERIMENTS 

This section's purpose is to show the feasibility of the method by using an implementation based on 

Matlab programming. IMEX - RK (4, 5, 5) is used for solving (4.1) and the reduced model by using 

IMEX – RK as we did in the equation (4.1), where the number of 4 is the order of the scheme, 5 is the 

number of stages implicit and explicit schemes.  
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Figure 3: Numerical solutions{ci, i = 1,2,… ,11. }  by using Implicit-Explicit (IMEX) Runge Kutta 

for original model (3.2.1) and reduced model (3.2.2).   
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Table 3: Comparing the numerical results by using IMEX-RK (4,5,5) between the original model (3.2.1) and 

reduced model (3.2.2) for c1, c2 and c3. 

 

 

Table 4: Comparing the numerical results by using IMEX-RK (4,5,5) between the original model (3.2.1) and 

reduced model (3.2.2) for c4, c5 and c6. 

 

 

 

Table 5: Comparing the numerical results by using IMEX-RK (4,5,5) between the original model (3.2.1) and 

reduced model (3.2.2) for c7, c8 and c9. 

 Original Model Reduced Model 

Tim

e 
𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟏 𝒄𝟐 𝒄𝟑 

0 0.01000 0.10000 0.40000 0.01000 0.10000 0.40000 

4 0.62048 0.33801 0.18079 0.65497 0.39400 0.14762 

8 0.64164 0.41579 0.16151 0.67985 0.49349 0.12447 

12 0.62781 0.44880 0.17540 0.66994 0.53885 0.13427 

16 0.61305 0.46534 0.19018 0.65967 0.56248 0.14442 

20 0.60063 0.47498 0.20272 0.65172 0.57595 0.15237 

 Original Model Reduced Model 

Time 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟒 𝒄𝟓 𝒄𝟔 

0 0.4000000 0.10000 0.05000 0.4000000 0.10000 0.05000 

4 0.0087251 0.74231 0.51477 0.0074064 0.72161 0.49337 

8 0.0068453 0.80851 0.45896 0.0056756 0.76573 0.41986 

12 0.0067958 0.85692 0.41280 0.0057948 0.79750 0.36542 

16 0.0067659 0.90036 0.38196 0.0059045 0.82886 0.33203 

20 0.0066537 0.93808 0.36022 0.0059059 0.85806 0.31094 

 Original Model Reduced Model 

Time 𝒄𝟕 𝒄𝟖 𝒄𝟗 𝒄𝟕 𝒄𝟖 𝒄𝟗 

0 0.5500 0.5000000 0.40000 0.5500 0.5000000 0.40000 

4 1.0452 0.0048404 0.64413 1.0453 0.0047353 0.66625 
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Table 6: Comparing the numerical results by using IMEX-RK (4,5,5) between the original model 

(3.2.1) and reduced model (3.2.2) for c10 and c11. 

 

 

 

 

 

 

 

 

 

 

6 CONCLUSION 

The lumping of parameters is an effective tool for model reduction, especially for complex cell 

signaling pathways. We have applied the suggested technique to some chemical reaction mechanisms. 

Firstly, the suggested approach has been applied to simple chemical chains. Their parameters are 

minimized from 6 to 3, and the deviation value is only. Furthermore, we have also applied the 

proposed method to the ERK signaling pathways, which include 11 variables and 11 parameters. This 

model's reduction process is illustrated in Figure (2). This model has reduced from 11 to 8 parameters, 

and the deviation value is only 1.76%. Finally, we used the implicit-explicit Runge Kutta to find the 

approximate numerical solutions for ERK signalling pathways problems. Figure (3) contains stiff and 

no stiff terms. The stiff part is treated by an implicit scheme, while an explicit scheme treats the 

second part. The main important point in our preferred method is to reduce the number of iterations 

and, as a result, cause a decrease in the scheme's computational time; for more detail about numerical 

8 1.0447 0.0052895 0.57936 1.0450 0.0050401 0.62355 

12 1.0444 0.0056077 0.53068 1.0448 0.005249 0.59145 

16 1.0441 0.0058928 0.48698 1.0445 0.0054551 0.55978 

20 1.0439 0.0061408 0.44912 1.0444 0.0056476 0.53039 

 Original Model Reduced Model 

Time 𝒄𝟏𝟎 𝒄𝟏𝟏 𝒄𝟏𝟎 𝒄𝟏𝟏 

0 0.19000 0.1000000 0.19000 0.1000000 

4 0.28230 0.0077018 0.28239 0.0076083 

8 0.28311 0.0068909 0.28350 0.0065033 

12 0.28379 0.0062101 0.28433 0.0056730 

16 0.28425 0.0057534 0.28484 0.0051611 

20 0.28457 0.0054310 0.28516 0.0048371 
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methods, see [22-28]. It can be seen that the approximate solutions of the whole and minimized 

models are incredibly close. 
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