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A B S T R A C T   

The serine hydrolase family includes serine proteases. It is essential for hydrolyzing protein peptide bonds and 
breaking them. The urokinase-type plasminogen activator (uPA) selectively binds to the uPAR on numerous cell 
types, including cancer cells. Pericellular proteolysis of cell-bound proteins requires this interaction. High uPA 
and uPAR levels regularly worsen cancer prognoses. Thus, small chemical active-site inhibitors that block uPA 
may diminish cancer cell invasion and metastasis. In compliance with Organization for Economic Corporation 
and Development guidelines, this research performed a complete Quantitative structure activity relationship 
analysis of sulfonamide compounds as Urokinase-type Plasminogen Activator inhibitors. Py-Descriptors were 
used for this investigation. PyDescriptor uses PyMOL standards and idioms to calculate 11,145 simple molecular 
descriptors. This plugin calculates molecular descriptors irrespective of molecular representation properties like 
atom numbering or labelling, spatial reference frame, translational and rotational invariance, etc. The investi-
gation sought to find essential and hidden structural characteristics that regulate sulfonamide-type drugs’ 
Urokinase-type Plasminogen Activator Inhibitory action. Twenty-eight sulfonamide chemicals are used in the 
Quantitative structure activity relationship study to generate statistically robust and highly predictive univariate 
and multivariate models. All models were thoroughly evaluated and meet several statistical parameter thresholds 
(e.g., R2 =0.9259–0.9280, Q2

Loo= 0.8579–0.8558, Q2
LMO= 0.8013–0.7865). The analysis reveal that occurance of 

ring carbon atoms exactly at 3 A0 from carbon atom, number of negatively charged atoms from sulphur atoms 
within 5 bonds, presence of hydrogen atom exactly at 3 bonds from donar atoms, presence of carbon atom 
exactly at 4 A0 from donar atom, presence of acceptor atom exactly at 5 A0 from sulphur atom and sum of partial 
charges of lipo atoms within 6 bonds from sulphur atom are important pharmacophoric features for Urokinase- 
type Plasminogen Activator Inhibition binding affinity. Thus, the developed Quantitative structure activity 
relationship study has an equilibrium of quantitative and qualitative tactics. The results could be useful for future 
optimizations of sulfonamide analogues.   

1. Introduction 

There is a widespread consensus that the capacity of tumour cells to 
generate and recruit proteolytic enzymes is a critical factor in the pro-
gression of cancer cell attack and metastasis. There are many other 

proteolytic enzyme systems that are produced by human tumours; 
however, the plasminogen activator-plasmin system is particularly 
engaged in the process of cancer cell invasion and metastasis by cancer 
cells {[10] #628}. The plasminogen activators are a group of serine 
proteolytic enzymes that are mostly found in the form of tissue-type 
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plasminogen activator (tPA) and urokinase-type plasminogen activator 
(uPA) {[10] #629. One of the most important initiators of the extra-
cellular proteolytic cascade that is responsible for cellular invasiveness 
is uPA, which is a trypsin-like serine protease {[9] #630}. Proteolyti-
cally active uPA is a two-chain protein that is connected by a disulfide 
and is formed from proteolytically inactive pro-uPA by the hydrolysis of 
the Lys158-Ile159 peptide bond {[9] #631.The transformation of plas-
minogen into plasmin, which is responsible for the digestion of the 
components of the extracellular matrix and basement membranes, is an 
essential function of uPA. Plasmin may either directly digest these 
components or activate the proenzymes of matrix metalloproteinases 
{[9] #632}. 

The urokinase plasminogen activator (uPA) inhibitors are composed of 
tiny molecules that include amidino or guanidino groups, which are 
positively charged and mimic the amino acid arginine. These groups 
establish a salt bridge interaction with the carboxylate of Asp189 in the S1 
pocket of the urokinase active site, as well as in other serine proteases that 
resemble trypsin. The previously documented uPA inhibitors included 
arylamidines, guanidines with minor modifications, and amiloride. Some 
examples of novel selective uPA inhibitors are benzo(b)thiophene-2- 
carboxamidines, indole/benzoimidazole-5-carboxamidines, 2-pyridinyl-
guanidines, 4-aminoarylguanidines/benzamidines, thiophene-2-carboxa 
midines, 2-naphthamidines, 1-isoquinolinylguanidines, and 2-aminoben-
zimidazoles {[20] #636}{[30] #641}. Several of these inhibitors have 
binding affinities in the nanomolar range and are now being evaluated as 
potential medication candidates. There have been no significant ad-
vancements in meeting the necessary criteria for a therapeutic drug that 
may effectively treat cancer by inhibiting uPA. 

The conventional approach to developing new drugs and measuring 
the inhibitory effects of chemicals involves a trial-and-error method, 
which is both inefficient and expensive. As a result, significant efforts 
have been made to estimate activity levels by statistical modelling. 
Computational techniques are an essential element of the drug devel-
opment process. Several in silico technologies have been developed to 
streamline the process of drug development, successfully reducing both 
the cost and the chance of failure [15]. 

There is increasing interest in using computational approaches to 
predict the biological activities of compounds. This is because we cannot 
create new compounds with stronger inhibitory activities unless we 
have information about their biological characteristics. Regarding this 
matter, there exists a well recognised approach that may provide valu-
able evidence by analysing the biological activities and chemical 
structures of specifically made molecules. When built and verified 
correctly, Quantitative Structure-Activity Relationship (QSAR) models 
are very useful for screening and ranking compounds that lack experi-
mental data or have not yet been synthesised, as part of a safe chemical 
strategy approach {[15] #649}. 

The potential use of QSAR models for screening chemical databases 
or virtual libraries prior to their synthesis is equally appealing to 
chemical producers, pharmaceutical businesses, and government 
bodies, especially during periods of limited resources. The primary 
objective of this study is to develop a novel QSAR model using a genetic 
algorithm–multiple linear regression (GA–MLR) approach to predict the 
binding affinity of known sulfonamide derivatives as inhibitors of uro-
kinase plasminogen activator [1,23,27]. Furthermore, this text outlines 
many methods for validating QSAR models, such as leave-one-out 
(LOO), leave-many-out (LMO), cross-validation, external test set, and 
the Y-randomization test procedures. 

2. Experimental 

2.1. Dataset selection 

The current study used the Urokinase-type Plasminogen Activator 
inhibitory activity values of 28 sulfonamide compounds, which were 
previously published by Ewa Zeslawska and obtained from a binding 

database, for the purpose of conducting QSAR analysis [6]. The flow of 
work is depicted in Fig. 1. 

2.2. Modelling and molecular descriptors’ calculation 

The present study adheres to the OECD regulatory concept and fol-
lows a standardised process that is supported and used by several aca-
demics for efficient QSAR analysis. The structural sketching was 
performed using the ChemSketch 12 freeware, followed by energy 
reduction using the MMFF94 force field available in TINKER. The 
energy-optimized 3D structures were used to compute a substantial 
number of descriptors (>29,000) using PyDescriptor as a molecular 
descriptor calculator(Vijay H. [22]). The molecular descriptor pool 
consists of about 29,000 descriptors, ranging from one-dimensional to 
three-dimensional, including electro-topological, fingerprints, and other 
molecular descriptors. However, the estimated descriptors do not 
include relevant information. Therefore, objective feature selection 
(OFS) was performed using QSARINS-Chem 2.2.1 to remove a signifi-
cant number of redundant chemical descriptors. Before doing subjective 
feature selection (SFS) using QSARINS-Chem 2.2.1, descriptors that 
were constant, near constant (>98 %), and strongly correlated (|R| >90 
%) were excluded [13]. OFS significantly reduced the descriptor pool to 
just 640 and 185 molecular descriptors for QSAR models, respectively. 
These descriptors cover a broad range of structural and chemical char-
acteristics, including constitutional (0D), 1D, bi-dimensional (2D), and 
3D ([2,7–12]; Vijay H [19]; Vijay H [20]; Vijay H [21]; A. [29]). 

2.2.1. Model development 
The primary objective of analysing QSAR models is to determine the 

structural characteristics that influence the activity profile of a series of 
related compounds, as well as to predict the activity of a compound 
before it is synthesised or screened for biological activity. In order to get 
comprehensive information regarding pharmacophoric characteristics, 
QSAR models were generated utilising both a divided and undivided 
dataset. Prior to selecting descriptors, the dataset was partitioned into 
training (80 %) and prediction (20 %) sets in an arbitrary manner. 
numerous instances of splitting were performed in order to generate 
numerous Quantitative Structure-Activity Relationship (QSAR) models 
[25] ([18]; Vijay H [21]). A compound may or may not be included in 
the training set comprising two distinct splits. The genetic algorithm 
(GA) module of QSARINS-Chem 2.2.1 was used to choose the optimal 
number and set of chemical descriptors. The exploration of chemical 
descriptors was limited to five descriptors using the default parameters 
in QSARINS-Chem 2.2.1 to avoid overfitting and facilitate the accep-
tance of the produced QSAR models. The fitness feature of Q2 loo was 
used to address the issue of raw Q2 ([2–5,9,14,17,26]; Alexander [30]). 
The chemical descriptor heuristic search was limited to two descriptors 
using the default parameters in QSARINS-Chem 2.2.1 in order to avoid 
the issues of over-fitting and complexity [2,8,28]. 

2.2.2. Model validation 
Model validation is an essential component of QSAR model devel-

opment. Validating a QSAR model ensures that the model has the ca-
pacity to accurately predict outcomes outside of the data it was trained 
on [13]. The statistical capabilities and strengths of the genetic algo-
rithm–multiple linear regression (GA–MLR) equations were assessed 
through various methods: (a) cross-validation (CV) using leave-one-out 
(LOO) and leave-many-out (LMO) procedures for internal validation; (b) 
evaluation using a prediction set; (c) data randomization, specifically 
Y-scrambling; and (d) verification of the fulfilment of certain criteria: 
r2tr ≥ 0.6, Q2 loo ≥ 0.5, Q2 LMO ≥ 0.6, r2 > Q2, r2 ex ≥ 0.6, RMSEtr <
RMSEcv, ΔK ≥0.05, CCC ≥ 0.80, Q2 – Fn ≥ 0.60, r2 m ≥ 0.6, (1–r2/ro 2) 
< 0.1, 0.9 ≤ k ≤ 1.1 or (1–r 2/r’o 2) < 0.1, 0.9 ≤ k’ ≤ 1.1,| ro2 − r’o 2| <
0.3 with RMSE and MAE close to zero (30,31–34]. A genetic 
algorithm-multiple linear regression (GA-MLR) model that meets the 
specified threshold values for these restrictions maintains both 
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statistical robustness and external predictive capability. Consequently, 
the models that fail to meet the criteria mentioned before were later 
eliminated [2,5,16,24]. 

3. Result and discussion 

3.1. QSAR models 

While we have compared the activities of the molecules in the 
dataset using a single characteristic, it is important to note that the 
combined or opposing influence of unknown factors or other chemical 
characteristics might significantly affect the activity pattern of the 
compounds. The QSAR model obtained meets the specified threshold 
values for a significant number of internal and external validation 
criteria. Furthermore, the validity of the AD model was verified by the 
use of the Williams plot, as seen in Fig. 2 and 3. Therefore, the model is 
statistically reliable and has strong prediction capacity when applied to 
external data. Furthermore, the achievement of recommended threshold 
values for several parameters, together with a low r2 value after Y- 

scrambling, indicates that the model is not a result of random chance. 
The forecasted pIC50 values obtained from the constructed QSAR 
models are shown in Figs. 2 and 3, and are also included in Tables 1 and 
2. The GA-MLR analysis produces statistically adequate QSAR models 1 
and 2, which meet recommended threshold values for various statistical 
limitations that are critical for assessing the accuracy of the models and 
their capacity to make predictions on external data. QSAR models may 
provide insights into the structural characteristics that determine the 
inhibitory action of UPa. 

Model-1 (Full Dataset Model) 
pKi ¼ 10.116 (± 1.151) + − 0.462 (± 0.122) * minus_S_5B + − 0.182 

(± 0.042) * fCringC3A + − 0.108 (± 0.033) * fdonH3B + 0.053 (±
0.023) * fdonC4A + 0.341 (± 0.078) * fSacc5A + − 3.283 (± 0.569) * 
lipo_S_6Bc+0 (± 0) * 

(Fitting criteria) 
R2: 0.9246, R2adj: 0.9030, R2-R2adj: 0.0216, LOF: 0.0344, Kxx: 

0.3246, Delta K: 0.0592, RMSE tr: 0.1060, MAE tr: 0.0824, RSS tr: 
0.3146, CCC tr: 0.9608, s: 0.1224, F: 42.9003 

(Internal validation criteria) 

Fig. 1. Display of workflow in the current investigation.  

Fig. 2. (a) Graph for Experimental vs Predicted Ki (b) William plot for applicability domain of the developed Full Dataset QSAR model.  

R.D. Jawarkar et al.                                                                                                                                                                                                                            



Chemical Physics Impact 8 (2024) 100544

4

Q2loo: 0.8579, R2-Q2loo: 0.0667, RMSE cv: 0.1455, MAE cv: 0.1155, 
PRESS cv: 0.5927, CCC cv: 0.9265, Q2LMO: 0.8013, R2Yscr: 0.2219, 
Q2Yscr: − 0.6319, RMSE AV Yscr: 0.3396 

Predictions by LOO: 
Exp(x) vs. Pred(y): R2: 0.8606, R’2o: 0.8494, k’: 0.9978, Clos’: 

0.0130, r’2m: 0.7696, Pred(x) vs. Exp(y): R2: 0.8606, R2o: 0.8590, k: 
1.0018, Clos: 0.0018, r2m: 0.8263 

Model 2 (Divided dataset model) pKi= 10.395 (± 1.415) + − 0.5 
(± 0.167) * minus_S_5B + − 0.185 (± 0.049) * fCringC3A + − 0.106 (±
0.04) * fdonH3B + 0.052 (± 0.028) * fdonC4A + 0.374 (± 0.129) * 
fSacc5A + − 3.34 (± 0.649) * lipo_S_6Bc+0 (± 0) * 

R2: 0.9280, R2adj: 0.9010, R2-R2adj: 0.0270, LOF: 0.0501, Kxx: 

0.3917, Delta K: 0.0430, RMSE tr: 0.1071, MAE tr: 0.0802, RSS tr: 
0.2636, CCC tr: 0.9626, s: 0.1283, F: 34.3553, Q2loo: 0.8558, R2-Q2loo: 
0.0722, RMSE cv: 0.1515, MAE cv: 0.1160, PRESS cv: 0.5277, CCC cv: 
0.9253, Q2LMO: 0.7865, R2Yscr: 0.2724, Q2Yscr: − 1.1128, RMSE AV 
Yscr: 0.3387, R2Yrnd: 0.2757, Q2Yrnd: − 1.1086, RMSE ext: 0.1211, 
MAE ext: 0.0952, PRESS ext: 0.0733, R2ext: 0.9323, Q2-F1: 0.8571, Q2- 
F2: 0.8549, Q2-F3: 0.9078, CCC ext: 0.9380, r2m aver.: 0.8028, r2m 
delta: 0.0821 

3.2. Interpretation of descriptor 

The used descriptors in univariate and multivariate QSAR analysis 

Fig. 3. (a) Graph for Experimental vs Predicted Ki (b) William plot for applicability domain of the developed Multivariate QSAR model.  

Table 1 
Experimental and predicted pKi by Full Dataset Model along with the status of 
the molecule.  

sn Binding 
Database id 

Status Ki 
(nM) 

pKi Pred. 
pKi 

Pred.Mod. 
Eq.Res. 

1 214,731 Training 8.9 8.0506 7.9737 − 0.0769 
2 214,730 Training 24 7.6198 7.7569 0.1371 
3 214,717 Training 25 7.6021 7.5076 − 0.0945 
4 214,718 Training 28 7.5528 7.5585 0.0057 
5 214,714 Training 30 7.5229 7.5036 − 0.0193 
6 214,727 Training 31 7.5086 7.4248 − 0.0838 
7 214,725 Training 32 7.4949 7.4248 − 0.07 
8 214,719 Training 36 7.4437 7.5076 0.0639 
9 214,706 Training 36 7.4437 7.4549 0.0112 
10 214,713 Training 38 7.4202 7.3213 − 0.0989 
11 214,732 Training 42 7.3768 7.3103 − 0.0664 
12 214,726 Training 58 7.2366 7.2035 − 0.0331 
13 214,721 Training 61 7.2147 7.2732 0.0586 
14 214,722 Training 75 7.1249 7.0411 − 0.0838 
15 214,711 Training 83 7.0809 7.059 − 0.0219 
16 214,715 Training 89 7.0506 7.1535 0.1028 
17 214,729 Training 100 7 6.9024 − 0.0976 
18 214,734 Training 110 6.9586 6.9099 − 0.0487 
19 214,720 Training 110 6.9586 7.2349 0.2762 
20 214,728 Training 110 6.9586 6.9325 − 0.0261 
21 214,716 Training 120 6.9208 6.7578 − 0.163 
22 214,735 Training 130 6.8861 6.7343 − 0.1518 
23 214,710 Training 150 6.8239 6.8062 − 0.0177 
24 214,708 Training 160 6.7959 6.9885 0.1926 
25 214,733 Training 180 6.7447 6.7727 0.028 
26 214,723 Training 230 6.6383 6.8588 0.2205 
27 214,724 Training 230 6.6383 6.6483 0.01 
28 214,709 Training 620 6.2076 6.2546 0.047  

Table 2 
Experimental and predicted pKi by Divided dataset model along with the status 
of the molecule.  

Binding 
Database id 

sn Status Ki 
(nM) 

pKi Pred. 
pKi 

Pred.Mod. 
Eq.Res. 

214,731 1 Training 8.9 8.0506 7.9625 − 0.0881 
214,730 2 Training 24 7.6198 7.7514 0.1316 
214,717 3 Prediction 25 7.6021 7.4832 − 0.1189 
214,718 4 Training 28 7.5528 7.5602 0.0074 
214,714 5 Training 30 7.5229 7.5185 − 0.0044 
214,727 6 Training 31 7.5086 7.4304 − 0.0782 
214,725 7 Training 32 7.4949 7.4304 − 0.0644 
214,719 8 Prediction 36 7.4437 7.4832 0.0395 
214,706 9 Training 36 7.4437 7.4311 − 0.0126 
214,713 10 Training 38 7.4202 7.3336 − 0.0866 
214,732 11 Training 42 7.3768 7.3233 − 0.0535 
214,726 12 Training 58 7.2366 7.1769 − 0.0597 
214,721 13 Prediction 61 7.2147 7.2394 0.0247 
214,722 14 Training 75 7.1249 7.0338 − 0.0912 
214,711 15 Training 83 7.0809 7.0806 − 0.0003 
214,715 16 Training 89 7.0506 7.1687 0.1181 
214,729 17 Training 100 7 6.9288 − 0.0712 
214,734 18 Training 110 6.9586 6.886 − 0.0726 
214,720 19 Training 110 6.9586 7.2185 0.2599 
214,728 20 Training 110 6.9586 6.9295 − 0.0291 
214,716 21 Prediction 120 6.9208 6.6903 − 0.2305 
214,735 22 Training 130 6.8861 6.7031 − 0.1829 
214,710 23 Training 150 6.8239 6.7968 − 0.0272 
214,708 24 Training 160 6.7959 6.9817 0.1858 
214,733 25 Prediction 180 6.7447 6.6825 − 0.0623 
214,723 26 Training 230 6.6383 6.8488 0.2106 
214,724 27 Training 230 6.6383 6.6405 0.0023 
214,709 28 Training 620 6.2076 6.2141 0.0065  
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are briefly described below. 
fCringC3A 
The molecular descriptor fCringC3A indicates the frequency of ring 

carbon atoms occurring precisely at a distance of 3 A0 from a carbon 
atom. The Urokinase plasminogen activator binding affinity shows a 
strong and positive connection with a coefficient of determination (R2) 
of 0.924. The coefficient of this descriptor is positive, and hence, it 
should be maximised. In order to accomplish this goal, it is necessary to 
increase the number of carbon atoms around the aromatic ring by a 
distance of 3◦A. This is connected to the presence of steric hindrance in 
the vicinity of the aromatic rings. 

The compound 214,731 (pKi-8.05) has a methyl carbon atom located 
next to the sulphone moiety. The aromatic C1 carbon is positioned at a 
topological distance of 3A0 from this methyl carbon. Hence, we may 
conclude that the presence of the C1 carbon close to the sulphone is 
advantageous for the binding affinity of molecule 214,731. Further-
more, there is an additional benzyl ring connected to the amide linkage 
via a carbon atom, positioned at a topological distance of 3 A0. This 
indicates that the presence of an aromatic benzyl ring at a topological 
distance of 3 A0 is advantageous for the binding affinity of molecule 
214,731 (as seen in Fig. 4). 

Both the phenyl and benzyl rings are connected to the molecule’s 
structure by a Sp3 hybridised carbon atom. It is important to note that 
the presence of this Sp3 hybridised carbon atom, which is located at a 
topological distance of 3A0, is crucial for the molecule’s binding affinity. 

minus_S_5B 
The descriptor "minus_S_5B" indicates the count of negatively 

charged atoms that are connected to sulphur atoms within a distance of 
5 bonds. The presence of a positive coefficient in this chemical 
descriptor indicates that raising its value will result in an increase in the 
Ki value for the compounds employed in this study. The presence of a 
negatively charged group may strengthen the electrostatic contact with 
the receptor, hence increasing the binding affinity to the receptor. 

In compound 214,730 (with a pKi value of − 7.61), there is an NH 
group adjacent to a sulphur atom, separated by only one bond. There is 
also an OH group located four bonds away from the sulphur atom, a CO 
group located five bonds away, and an NH group in an amide linkage 
located four bonds away from the sulphur atom (as depicted in Fig. 2). In 
compound 214,733 (pKi-6.74 nM), the hydroxy group is missing a 
negatively charged oxygen atom. The amide group has a negatively 
charged oxygen atom, which is located six bonds away in terms of to-
pology. The sulfonamide group has a negatively charged NH atom, 
which is located one bond away in terms of topology. The NH2 sub-
stituent at the C2 carbon atom is located four bonds away in terms of 
topology. The research reveals that the lack of an OH substituent and the 
presence of an amide oxygen at a topological distance of six bonds may 
decrease the activity of compound 214,133 (as seen in Fig. 5). 

fdonh3b 
The "fdonh3b descriptor" refers to the frequency at which a hydrogen 

atom occurs precisely three bonds away from donor atoms. The coeffi-
cient of this descriptor is positive, hence it is desirable to maximize its 
value. The compound 214,717 (with a pKi value of 7.60) has a sulfon-
amide group (NH group), an OH group attached to the C3 carbon atom, 
an amide group NH group near the phenyl methyl carbon, and NH and 
NH2 groups attached to the C4 carbon of the phenyl ring. Additionally, 
the molecule has a donor group in the form of a (S) 3-OH group attached 
to the C3 carbon atom, as seen in Fig. 4. In 214,717, there are approx-
imately six donor groups. The hydrogen atom (C1 carbon) of the phenyl 
ring carbon atom is separated by three bonds from the NH donor group 
of sulfonamides. For the ®OH at the C3 carbon, the hydrogen atom of 
the NH group in the sulfonamide is separated by three bonds. In the 
amide linkage, there are two hydrogen atoms located exactly three 
bonds away. One hydrogen atom is in the OH group, while the other is in 
the subsequent NH group near the right phenyl methyl moiety. The NH 
and NH2 groups act as donors at the C4 carbon of the phenyl ring. The 
hydrogen atoms at the C3 and C5 positions of the phenyl methyl ring are 
located at a topological distance of three bonds. The current research 
demonstrates that the existence of hydrogen at a topological distance of 
three bonds plays a vital role in the binding affinity of Urokinase in-
hibitors. Furthermore The presence of a donor is crucial in the electro-
static interaction with a receptor. In compound 214,710 (pKi-6.82 nm), 
all the donor properties are present except for the absence of the (R) OH 
group at the C1 carbon atom. This absence may be the main cause for the 
difference in activity between compounds 214,717 (pKi-7.60 nM) and 
214,710 (pKi-6.82 nm). The current study concludes that the presence of 
a greater number of donors with hydrogen atoms positioned at a topo-
logical distance of three bonds is crucial for the binding affinity of 
Urokinase (as seen in Fig. 6). 

The molecule’s binding affinity may be increased if there are suc-
cessively more hydrogen atoms present at a topological distance of three 
bonds from the donor. Hydrogen atoms are essential to the structural 
makeup of molecules because an increase or reduction in the amount of 
hydrogen atoms close to a certain characteristic might affect the bio-
logical activity profile of the molecule. 

fdonC4A 
This description shows how often the carbon atom occurs precisely at 

4 A0 from the donor atom. The QSAR model’s positive coefficient for 
fsp3Osp3C3B suggests that raising this descriptor’s value might improve 
the target enzyme’s affinity. This finding is supported by a straightfor-
ward assessment of 214,730(pKi-7.62 nM) with 214,723(pKi-6.63Nm). 
About 18 carbon atoms, three of which are sp2 hybridised and the 
other fifteen of which are sp3 hybridised, are positioned precisely at 4A0 
from donor atoms in compound 214,730. Additionally, compound 
214,730 has one oxygen atom and six donar nitrogen atoms. Of the 

Fig. 4. Pictorial demonstration of minus_S_5B compound 214,731(pKi-8.05 nm).  
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nitrogen-containing donars, three belong to the amide component; one 
nitrogen is Sp3 hybridised, another is Sp2 hybridised, and the last ni-
trogen is Sp3 hybridised, which is a planer kind of nitrogen. 

There are about 22 carbon atoms in compound 214,723 that are 
precisely 4A0 away from the donar atom. In compound 214,723, every 
carbon atom in the structure is precisely 4A0 away from the donor atom. 
Compound 214,723 consists of five donar features, three of which 
belong to the amide group. Of these, one nitrogen has undergone planar 
Sp2 hybridization, while the other nitrogen has undergone Sp3 hy-
bridization.as seen in Fig. 7). 

According to the current study, the presence of a carbon atom pre-
cisely at this distance is advantageous for the molecule’s binding 

affinity. Therefore, if a molecule has more than 18 carbon atoms, its 
activity profile may be reduced. The difference between compound 
214,730′s (pKi-7.62 nM) and compound 214,723′s (pKi-6.63Nm) activ-
ity is supported by this investigation. Additionally, the presence of more 
donars is advantageous for activity; in compound 214,730, nitrogen that 
is Sp3 hybridised, one nitrogen that is Sp2 hybridised, and one nitrogen 
that is Sp3 hybridised planer play critical roles in molecule binding af-
finity, thereby enhancing drug receptor interaction. 

fSacc5A 
The frequency of acceptor atoms occurring precisely at 5 A◦ from 

sulphur atoms is described by fSacc5A. Because this descriptor has a 
positive coefficient, it positively affects the molecule’s biological 

Fig. 5. Pictorial demonstration of minus_S_5B compound 214,733(pKi-6.74) and 214,730(pKi-6.74Nm) only.  

Fig. 6. Pictorial representation of Fdonh3b compound 214,717 (pKi-7.60 nM) and 214,710(pKi-6.82 nm) only.  
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activity profile. Both sulphone acceptor oxygen atoms are precisely 
positioned at position 5 A◦ from the sulphur atom in compound 214,718 
(pKi-7.55Nm). Similarly, the carbonyl and hydroxy acceptor groups are 
also precisely located at 5 A0 from the sulphur atom. Compound 
214,718 (pKi-7.55 Nm) exhibits Sp2 hybridization of carbonyl oxygen 
and sulphone atoms, and Sp3 hybridization of hydroxy oxygen. 
Furthermore, both Sp2 hybridised sulphone oxygen atoms are identified 
as acceptor atoms in compound 214,733 (pKi-6.74Nm), where they are 
present precisely at 5A0 from the sulphur atom. In contrast, carbonyl 
acceptor oxygen and hydroxy acceptor atoms are absent (According to 
Fig. 8). 

This finding is corroborated by the variation in affinity between 
214,718 (pKi = 7.55 nM) and 214,733 (pKi = 6.74 nM). Thus, it can be 
inferred that the presence of four or more acceptors, which are required 
to be precisely at a distance of five A0, is beneficial for raising the 
molecule’s binding affinity against the receptor site. Furthermore, a 
molecule’s biological activity profile may be enhanced by the addition 
of two or more acceptor groups. 

lipo_S_6Bc 
Another molecular descriptor with a positive coefficient is lip-

o_S_6Bc, which represents the total sum of partial charges of lipophilic 
atoms located within a distance of 6 chemical bonds from sulphur (S) 
atoms. The presence of a positive coefficient indicates that an increase in 
the amount of lipophilic carbon atoms at a six-bond distance from the 
sulphur atom might result in a higher Ki value. The Fig. 9 displays the 
partial charge of the lipophilic carbon atom located six bonds away from 
the sulphur atom. 

Fig. 5 displays the partial charge of the lipophilic carbon atom 
located six bonds away from the sulphur atom. In compound 214,714, 
the presence of an aromatic ring with a methyl chain on the left side of 
the sulphur atom, a carbon chain ending with a hydroxy group, and one 
methyl substituent precisely positioned between two amide linkages 
represents lipophilic atoms located within six bonds from the sulphur 
atom (as depicted in Fig. 10). These lipophilic atoms contribute to the 
molecule’s lipophilic character and can strongly engage in hydrophobic 
interactions with a receptor, thereby increasing the molecule’s binding 
affinity. 

The lack of a methyl substituent between two amide linkages in 
compound 214,710 suggests that the difference in activity between 
compound 214,714 (pKi-7.532 M) and compound 214,710 (pKi-6.82 
nm) may be attributed to the missing methyl group. Moreover, the 
molecule’s binding affinity may be enhanced by introducing a methyl 
substituent in the amide bond. The present investigation has provided 
valuable insights into the specific factors that contribute to the variance 
in the binding affinity of sulfonamides to the Urokinase plasminogen 
activator. This was achieved by examining several chemical descriptors 
inside the QSAR model. 

4. Conclusion 

Using the Genetic algorithm and multiple linear regressions, the 
QSAR analysis of a number of compounds that were shown to be UPa 
inhibitors was carried out in this study. Using the algorithm genetic 
technique, the descriptors that were deemed to be the most relevant 

Fig. 7. Pictorial representation of fdonC4A compound 214,730 (pKi-7.62 nM) and 214,723(pKi-6.63 nm) only.  
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were chosen. The correctness and robustness of the constructed model 
are shown by the validation procedures that were carried out, which 
include Y-randomization and cross-validation. For the purpose of this 
investigation, the QSAR models that were constructed have the potential 
to be useful for predicting the activity of novel compounds as UPa in-
hibitors, and they can also give a better understanding for the creation of 
potent UPa inhibitors. 
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