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A B S T R A C T   

Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized 
by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of pre-
cision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the 
form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of 
different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators 
and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge 
cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many 
challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles 
of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer 
therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies 
based on circRNAs with long-term health effects.   

1. Introduction 

Cancer continues to be one of the most challenging problems in 
modern medicine due to its complex molecular pathways and the 
ongoing evolution of therapeutic resistance [1]. There have been 
considerable advancements in the treatment of different cancer types 
using conventional cancer therapies like chemotherapy and radiation 
[2]. However, these methods frequently have serious side effects and 
have restrictions on the molecular triggers of cancer growth that they 
can target [3]. In recent years, circRNAs have attracted much attention 
as a fresh and promising approach to cancer treatment. 

CircRNAs are novel-type non-coding RNA molecules that are cova-
lently closed, single-stranded RNA molecules without 5′–3′ end and poly 

(A) tails. They are more stable as they resist exonuclease-mediated 
destruction compared to linear transcripts [4]. Structurally, circRNAs 
consist of exons or introns, and circRNAs with exons are frequently 
found in the cytosol, while circRNAs with introns are primarily found in 
the nucleus [5]. Linking the 3′ downstream terminal with the 5′ up-
stream terminal through a back-splicing process creates its circular 
structure [6]. This circular structure of circRNA helps it to be protected 
from destruction by exonucleases and makes circRNAs more stable. 
Therefore, the use of circRNA in the field of disease therapy, especially 
cancer therapy, is progressing in the right direction [7]. 

Numerous circRNAs have been found due to the advancement of 
bioinformatics techniques and high-throughput RNA sequencing (RNA- 
seq). For instance, in human fibroblasts, Jeck et al. observed over 25,000 
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circRNAs that have not been broken down by exonucleases [8]. Simi-
larly, in samples of juvenile acute lymphoblastic leukemia, spliced gene 
transcripts make up a large percentage of the circRNA map, as Salzman 
and his colleagues explored [9]. 

Synthetic circRNAs are being investigated for application in disease 
therapy, and recently, there has been an increase in interest in devel-
oping technology for their synthesis [10]. Synthetic circRNAs have also 
been used as biosensors and therapies, such as the replacement of 
therapeutic proteins and peptides [11] and vaccinations [12]. 

Despite their unique properties as potential cancer treatments, such 
as their circular structure and stability, several obstacles still stand in the 
way of their extensive therapeutic applications. This review highlights 
the functions of circRNAs as an alternative for cancer therapy, identifies 
the most critical challenges plaguing circRNA-based cancer therapies, 
and addresses the essential techniques to overcome these challenges to 
enhance advanced innovative therapeutics based on circRNAs with 
long-term health impacts. 

2. CircRNA biogenesis and characterization 

CircRNAs are created through non-canonical splicing processes 
called back-splicing, which is classified as an alternative splicing pro-
cess. Cellular spliceosomal machinery is necessary to synthesize circR-
NAs in humans and animals [13]. A back-splicing process joins an 
upstream 3′ splice site with a downstream 5′ splice site to make a 
single-strand, covalently closed-loop structure [14]. This is how most 
circRNAs are made from pre-mRNAs. Different circRNAs can be made 
from identical sequences using alternate back-splicing [10]. 

Despite extensive study over many years, the specific mechanism 
underlying circRNA synthesis remains unknown. According to their 
cycling mechanisms and composition, circRNAs are typically catego-
rized into three kinds: exonic circRNAs (ecirRNAs) [15], intronic 
circRNAs (ciRNAs) [16], and exon-intron circRNAs (EIciRNAs) [17]. 
Exonic circRNAs are primarily found in the cytoplasm and have one or 
more exons, with two or three exons coming from alternative splicing 
[18]. There are many types of nuclear back-splicing and linear splicing 
processes that have been studied. Some of these are exon skipping, 

Fig. 1. Formation of circRNA and the three main hypotheses: an ecircRNA is produced when introns are removed through intron-pairing-driven circularization, also 
called direct back-splicing. In this process, the pre-flanking mRNA’s intronic complementary sequences create a lariat through direct base pairing. A process of 
circularization known as exon-skipping or lariat-driven produces pre-ecircRNA by removing transcript introns. RBP-mediated circularization regulates circRNA 
production by managing activators and inhibitors. RBP RNA binding proteins, URH49 uridine-ribohydrolase 49, tRNA transfer RNA, AGO Argonaute protein. 
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intron pairing, and RNA-binding proteins (RBPs) [19]. Recently, it has 
been discovered that a novel class of mitochondrial-encoded circRNAs 
(mecciRNAs) acts as molecular chaperones to assist the mitochondrial 
entrance of nuclear-encoded proteins [20]. 

Three possible mechanisms for circRNA formation have been pro-
posed: First, ecirRNAs are primarily formed through direct back- 
splicing, also known as intron-pairing-driven circularization, in which 
the pre-flanking mRNA’s intronic complementary sequences form a 
lariat by directly base-pairing, which results in an ecircRNA upon intron 
removal [17]. Secondly, RNAs fold close to exons and connect the 
downstream splicing donor to the upstream splicing acceptor through 3′, 
5′ phosphodiester bonds to create a lariat structure, secondary splicing, 
or intron splicing to make a loop, and then cut introns to make an 
exon-containing lariat. This is also known as exon-skipping. Further-
more, intron lariats with a branching point rich in cytosine and a 5′ 
splice site rich in 7-nucleotide guanine uracil can produce ciRNAs 
without being impacted by debranching enzymes [21]. Lastly, in 
RBP-mediated circularization, the production of circRNA is significantly 
regulated by RBPs that act as managing activators or inhibitors (Fig. 1). 
RNA editing enzyme ADR1 stops the output of circRNA by directly 
inverting ALU repeats. This is mediated by A-to-I editing of RNA pairing 
circularized exons [22,23]. This reduces the complementarity and sta-
bility of intron-base pairing interactions [18]. Currently, numerous 
studies have revealed the aberrant circRNA expression patterns and 
their regulatory roles in the development and spread of cancer [24,25]. 

3. Innovative advances and therapeutic potential of circRNA- 
based cancer therapy 

Single-stranded and covalently closed circRNA molecules were 
initially described in the genomes of virions by Sanger et al., in 1976 
[26]. Later, in 1979, Hsu et al. proved circRNAs without free terminals 
and the need for companion protein [27]. In 1991, Nigro et al. became 
the first to describe how non-canonical splicing led to the unexpected 
isolation of isoforms from the deleted colon cancer gene (“scrambled 
exons”) [28]. Further, Cocquerelle and his team presented consistent 
findings for the human EST-1 gene in 1992, and they established a link 
between the presence of many nearby introns and the synthesis of these 
transcripts [29]. They showed that the circularized RNAs remained 
stable in the cytoplasm over two days after actinomycin D treatment 
[30]. Later studies by Cape et al. found that the scrambled product of 
gene Sry RNA was circular; this circRNA is primarily intracellular, 

tissue-specific, and present in three different mouse strains [31]. When 
these hypothetical steps have been completed, nuclear extracts have 
been shown in several studies to be useful for the in vitro generation of 
circRNAs, the target molecules for this chemical [32,33]. 

From 1996 to the beginning of the 2000s, scientists discovered that 
other human genes could make circRNAs. For example, cytochrome 
P450 2C24 in rats [34], cytochrome P450 in humans, androgen-binding 
protein in the rat [35], dystrophin in humans [36], and 
cyclin-dependent kinase 4 (INK4/ARF)-associated ncRNA were used to 
make other types of circRNA [37]. Even though these early studies 
proved that RNA molecules can fold back on themselves, their signifi-
cance was not immediately recognized. Advances in RNA-seq technol-
ogies and specialized computational workflows prompted a new wave of 
circRNA research in 2010. Later, circRNAs were found to affect the ac-
tions of particular miRNAs and were subsequently used as a biomarker 
in diagnosing cancer such as lung cancer [38]. Recently, circRNAs were 
studied in clinical trials, such as circPUM1 targets in renal cell carci-
noma tissue to sponge miRNA [39] (Fig. 2). These circular RNA mole-
cules have proven to be capable of controlling gene expression, 
interacting with different cellular elements, and acting as valuable 
biomarkers. As this research field develops, circRNA-based therapeutics 
have the potential to offer cancer patients more effective and individ-
ualized therapy alternatives. 

4. CircRNAs’ potential roles in carcinogenesis 

CircRNAs, a family of long non-coding RNAs, are involved in several 
critical biological processes that promote or inhibit cancer [40–42]. 
More evidence suggests that circRNAs play a crucial role through 
different mechanisms in several malignancies, including esophagus 
cancer (EC) [43], lung cancer (LC) [44], gastric cancer (GC) [45], breast 
cancer (BC) [46], and colorectal cancer (CRC) [47,48]. 

The physiological functions of circRNAs are mediated by the miRNA 
sponge in cancers. For instance, circBCAR3, a molecular sponge for miR- 
27a-3p, increases tumorigenesis and metastasis in EC patients [43]. 
Likewise, hsa-circ-0013958 has been upregulated in plasma and tissues 
of LC patients, and sponging miR-134 leads to elevated levels of cyclin 
D1, a known carcinogenic protein. Further, the hsa-circ-0013958 
expression level was connected with lymphatic metastasis and TNM 
stage [49]. Moreover, overexpression of hsa_circRNA_102958 increases 
the proliferation of GC, although its expression level was associated with 
the TNM stage [50]. Similarly, hypoxia-inducible circWSB1 was 

Fig. 2. A timeline outlining the most significant findings made about circRNA-based cancer therapy.  
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significantly upregulated and interacts with USP10 to reduce the sta-
bility of p53 caused by USP1 and promote the progression of BC tissues 
[46]. Furthermore, circTDRD3 was upregulated under hypoxic condi-
tions and accelerates the progression and spread of CRC by affecting a 
positive feedback loop through the HIF1α/PTBP1/circTDRD3/ 
miR-1231/HIF1α pathway [47]. The molecular mechanisms that lead to 
tumors progressing to a malignant state may be better understood in 
light of these results. 

Consequently, the abundance of stable circRNAs constitutes a new 
class of RNA species that may distinguish between cancer cells and 
healthy cells, proving its significant potential as a circulating biomarker 
for diagnostic cancers. The exact role of circRNAs in carcinogenesis re-
mains unknown despite recent progress in this field. 

According to growing data, circRNAs may be employed as prospec-
tive genetic markers for diagnostic techniques, prognosis, early cancer 
recognition, and even therapy response monitoring. The following are 
the principal applications of circRNAs in cancer. 

4.1. CircRNAs as a biomarker in cancer diagnosis and therapy 

CircRNAs can serve as cancer biomarkers due to their dysregulation 
and association with cancer morphologies. CircRNAs have a high degree 
of tissue- and disease-specificity, making them a potential choice for 
cancer diagnostics [51] (Fig. 3). More evidence suggests that circRNAs 
are involved as a biomarker in diagnosing several cancers. For instance, 
cir-ITCH acts as a sponge for miR-7/17/214 in ESCC, which may in-
crease the level of ITCH circRNA. ITCH overexpression promotes the 
ubiquitination and degradation of phosphorylated Dvl2, which in turn 
limits the progression of ESCC by inhibiting the Wnt/β-catenin axis [52]. 
Likewise, hsa_circ_0013958 up-regulates oncogenic cyclin D1 through 
sponging of miR-134, which plays an essential role in the progression of 
NSCLC. According to these findings, hsa circ 0013958 might be 

employed as a non-invasive biomarker for early diagnosing and 
screening LAC [49]. Moreover, Li et al. revealed that the sensitivity and 
specificity of identifying hsa circ 0001649 between GC and normal 
samples are satisfactory. This means that it could be used as a biomarker 
for non-invasive screening of GC by making comparisons of the 
expression profiles in tissue and serum samples [53]. 

CircRNAs can act as a competitive endogenous RNA (ceRNA) to 
inhibit specific target genes in several types of cancer, which might be 
used as a diagnostic biomarker. For example, circGFRA1 acts as a ceRNA 
to control GFRA1 production by sponging miR-34a in TNBC and could 
be used as a diagnostic biomarker and a potential target for TNBC 
treatment [54]. Similarly, circ-PDE8A regulates MACC1 and promotes 
invasive development via the MACC/MET/ERK or AKT pathways in 
PDAC by acting as a ceRNA for miR-338. It is suggested that exosomal 
circ-PDE8A could be a valuable diagnostic for PDAC diagnosis or 
prognosis, and circ-PDE8A plays a crucial role in tumor invasion [55]. 
These data suggest that tumor cell-derived circRNAs are released into 
the tumor milieu surrounding the circulation, supporting the use of 
circRNAs as biomarkers for patients with malignant tumors [56]. 

According to recent studies, circRNAs can be utilized to predict the 
metastasis of cancer cells. For instance, in a study comparing the 
circRNA regulation profiles of six patients, Xu et al. showed that circRNA 
0001178 and circRNA 0000826 were considerably overexpressed in 
CRC metastatic tissue samples, allowing them to reliably identify be-
tween CRC and liver metastasis patients [57]. Moreover, circASAP1 was 
markedly upregulated in the HCC tissues of patients with lung metas-
tasis after surgery. Downward regulation of circASAP1 was associated 
with decreased overall survival and an increased recurrence rate and 
was positively correlated with CSF1, MAPK1, and CD68+

tumor-associated macrophage levels [58]. Thus, circASAP1 could have a 
potential role in the prognosis of HCC metastasis. 

Based on other studies, circRNAs are essential for predicting 

Fig. 3. Use of circular RNAs (circRNAs) as diagnostic and prognostic biomarkers and as possible therapeutic interventions for human diseases and disorders, 
including cancer, biological samples that contain circRNAs are tears, saliva, cerebrospinal fluid, bronchial lavage, breast milk, blood, amniotic fluid, urine, 
and semen. 
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therapeutic resistance in a specific type of cancer. For instance, cisplatin 
is one of the most effective chemotherapeutics for treating GC [59]. 
However, Huang et al. showed that circAKT3 upregulates PIK3R1, 
which promotes cisplatin resistance via sponging of miR-198, in 105 GC 
patients [60]. This clarified that circAKT3 is a highly reliable prognostic 
biomarker in GC patients, which makes them resistant to cisplatin. 
Similarly, circ_0076305 has been proven to increase ABCC1 expression 
by sponging miR-186-5p, driving resistance to cisplatin in NSCLC [61]. 
CircRNAs are more specifically described in Table 1 as prognostic and 
diagnostic biomarkers in several cancer types. 

Overall, developing novel, non-invasive, extremely precise, and ac-
curate biomarkers for early cancer screening, diagnosis, therapy, and 
prognosis monitoring is necessary. 

4.2. CircRNAs as inhibitors in cancer therapy 

Almost every human malignancy has circRNAs that are involved in 
its pathogenesis. In our previous discussion, we established that circR-
NAs compete with target genes for miRNA-binding sites, allowing them 
to regulate gene expression in a manner similar to that of miRNA 
sponges [158]. Current research has shed light on how circRNAs, which 
function as miRNA inhibitors, regulate the migration and prognosis of 
cancer cells. For instance, circ-ZKSCAN1 inhibits BC progression by 
miR-1178-3p sponging through the miR-1178-3p/p21 axis and serves as 
a predictive factor for recurrence [159]. Similarly, Zhang et al. 
demonstrated that circRNA-104075 can inhibit miRNA-104075 in HCC 
tissue and serve as a new diagnostic biomarker [138]. Therefore, tar-
geting circ 104075 might lead to novel HCC diagnosis and therapy 
approaches. 

4.3. CircRNAs as therapeutic targets in cancer therapy 

In the area of therapeutic targets, tumor-promoting, and tumor- 
suppressive circRNAs have the potential to be used as therapeutic tar-
gets in cancer. CircRNAs have a unique back-splicing junction sequence 
that allows them to be targeted selectively without modifying the parent 
mRNA. As a result, carcinogenic circRNAs can be a target for siRNAs and 
undergo Ago2-mediated destruction [160]. In contrast, 
tumor-suppressing circRNAs may be expressed ectopically utilizing 
expression vectors with lengthy reverse complementary sequences that 
allow the enhanced sequence to circulate [161]. A potential therapeutic 
approach could be to target circRNAs or associated pathways, as their 
dysregulation can lead to cancer. 

Several biomolecules, such as proteins, shRNA, and siRNA, inhibit or 
enhance circRNAs. For instance, Fang et al. demonstrate that circAGO2 
is enhanced with HuR protein and overexpressed in several malignant 
tissue samples. Stimulation of circAGO2 led to boosted growth, invasion, 
and metastasis in cell culture and animal models [162]. In contrast to 
stimulation, the inhibition of circAGO2 by shRNA spurred tumor growth 
in vivo since circAGO2 activity may be controlled by the inhibition of 
circAGO2 and HuR response; this can be accomplished with the assis-
tance of a HuR suppressor peptide delivery [163]. Moreover, Zhang 
et al. investigated that circCUX1 could significantly be overexpressed 
and enhanced tumor cell growth, invasion, and migration by inhibiting 
miR-16-5p in a neuroblastoma sample, while inhibited circCUX1 with 
shRNA lowered tumor proliferation in a mouse model [164]. 

In addition, antisense oligonucleotides have also been applied to 
downregulate circular RNAs. For example, in colorectal cancer (CRC), 
the connection between circLONP2 and DDX1 led to the overexpression 
of cells that produce metastases, which facilitated invasion and propa-
gation. Conversely, the in vivo downregulation of circLONP2 by anti-
sense oligonucleotides prevented CRC metastases [165]. Furthermore, 
in patients with acute myeloid leukemia, the expression of circ_0004277 
was reduced after chemotherapy treatment but increased again when 
patients relapsed after full remission, demonstrating the relationship 
between upregulation and treatment success [166]. 

Moreover, according to the findings of the study conducted by Fang 
and his colleagues, it was proposed that the administration of FUS- 
medicated circ_0002099 might potentially enhance the EMT process in 
the progression of BLCA by means of the miR-217-5p/miR-103a-3p/ 
KRAS axis-WNT/β-catenin axis. Additionally, it has the potential to 
serve as a therapeutic target and a promising predictive biomarker for 
BLCA [167]. Similarly, CiRS-7 is a promising biomarker for predicting 
the prognosis of CRC patients, and it has the potential to be used as a 
therapeutic target for lowering the activity of EGFR-RAF1 in CRC pa-
tients [168]. Additionally, in a patient-derived CRC xenograft model, 
Yang and his team demonstrated that the injection of shRNA into the tail 
vein precisely targets circPTK2 and reduces the spread of tumor me-
tastases. Thus, they identified that circPTK2 is a promising biomarker 
for early diagnosis of CRC metastasis and provides a potential thera-
peutic target for CRC [169]. 

Recently, there are developing in clinical research that are focusing 
on various elements of circRNAs as therapeutic targets in cancer ther-
apy. These studies are focusing on circRNA expression patterns, func-
tional roles, and therapeutic interventions [170,171]. For example, in 
ovarian cancer, Zhu et al. demonstrated that circNUP50 was increased in 
DDP-resistant OC cells [172]. This would allow for the formation of 
platinum-resistant conditions in OC by promoting cell proliferation, 
changing the cell cycle, and reducing apoptosis. Thus, they proposed 
that circNUP50 is a new therapeutic target that modifies p53 ubiquiti-
nation to induce cisplatin resistance in OC. 

According to these results, the regulation of circular RNAs is not 
constant and varies with the severity of diseases, supporting the po-
tential therapeutic roles of circRNAs in cancer treatment. Table 2 ex-
plains the mechanism of action and research sources for the various 
cancer types where circRNAs can be used as therapeutic targets. 

4.4. CircRNAs as a vaccine for cancer therapy 

Recently, artificial circRNA has been created to discover how they 
might be used as a novel class of mRNA therapeutics and vaccines. Ac-
cording to several studies, since regular mRNAs were translated to 
function as antigens, circRNAs can be used to express proteins [12]. Due 
to this, circRNAs and mRNAs are suitable candidates to produce vac-
cines. For instance, novel clinical research has demonstrated that the 
translation of proteins could be achieved by introducing mRNAs into the 
dendritic cells to be used as antigen-producing molecules to create 
vaccines for cancer immunotherapy [208]. This makes it possible to 
translate circRNAs into proteins, which would then generate functional 
antigens and activate CD8+ T cells to develop vaccines from cancer stem 
cells. According to Sun et al., mature DCs with CD133+ hepatocellular 
carcinoma stem cell RNA can trigger vitro cytotoxic T lymphocyte re-
sponses against hepatocellular cancer stem cells [209]. Furthermore, 
when 9L glioma stem-like cell RNA was injected into dendritic cells, the 
tumor’s growth was dramatically inhibited, and the survival rate of rats 
with gliomas increased [210]. 

Likewise, circRNAs can act as tumor antigens or vaccine adjuvants 
that stimulate innate and adaptive immune responses. According to 
Chen et al., the intracellular sensor retinoic-acid-inducible gene-I regu-
lated the immune response to exogenous circRNAs, and transfecting 
HeLa cells in vitro to produce circRNA may trigger innate immunity 
gene expression [211]. Exogenous unmodified circRNA adjuvant might 
trigger antigen-specific T and B cell responses by interacting with and 
activating RIG-1 [212]. Li et al. showed that the RNA vaccine’s stability 
was effectively increased by circularizing linear RNA molecules to pro-
duce stable circRNA molecules with long-lasting protein expression ca-
pabilities. Thus, by covering the antigen-coding circRNA in LNP to 
facilitate in vivo synthesis, scientists created a novel circRNA vaccina-
tion platform. This approach demonstrated superior anti-tumor effec-
tiveness in many animal tumor models and was able to induce 
substantial innate and adaptive immune activation [12]. 

Despite the apparent benefits of circRNAs acting as novel vaccines, 

G.S. Hama Faraj et al.                                                                                                                                                                                                                         



Non-coding RNA Research 9 (2024) 811–830

816

Table 1 
CircRNAs as potential indicators for cancer diagnosis and prognosis.  

Type of cancer circRNA Source Biomarker Regulation miRNA sponge Mechanism Refs 

LC hsa-circ-0013958 Tissue, 
plasma, cell 
line 

Diagnostic in 
NSCLC 

↑ miR-134 hsa-circ-0013958↑- miR-134↓-cyclin- 
D1↑ 

[49] 

LC hsa_circ_0075930 Cell line, 
tissue 

Diagnostic in 
NSCLC 

↑ miR-149-5p – [62] 

LC ciRS-7 Tissue Prognostic 
biomarker in 
NSCLC 

↑ miR-7 – [63] 

LC circFARSA Tissue, 
plasma 

Diagnostic in 
NSCLC 

↑ miR-330-5p 
and miR-326  

[64] 

LC circPRMT5 Tissue, cell 
line 

Diagnostic in 
NSCLC 

↑ miR-377, miR- 
382, and miR- 
498 

– [65] 

LC circRNA100146 Tissue Diagnostic ↑ miR-361-3p 
and miR-615- 
5p 

circRNA100146↑- miR361-3p ↓/miR- 
615-5p↓- SF3B3↑ 

[66] 

LC circ_0005280 Tissue Diagnostic ↓ – Unknown [67] 
LC circRNA_102231 Tissue Diagnostic ↑ Unknown Unknown [68] 
LC circ-ITCH Tissue Diagnostic ↓ miR-7 and miR- 

214 
circ-ITCH↓- miR-7↑/miR214↑-Wnt/ 
β-catenin↑ 

[69] 

LC circPVT1 NSCLC 
tissue, cell 
line 

Diagnostic ↑ miR-125b circPVT1↑-miR-125b↓- E2F2 pathway↑ [70] 

LC circMET MSCLC 
tissue, cell 
line 

Diagnostic ↑ miR-145-5p circMET↑-miR-145-5p↓- CXCL3↑ [71] 

LC circGFRA1 MSCLC 
tissue, cell 
line 

Diagnostic ↑ miR-188-3p circGFRA1↑-miR-188-3p↓- PI3K/AKT↑ [72] 

LC hsa_circ_0001946 Tissue, cell 
line 

Diagnostic ↓ miR-135a-5p hsa_circ_0001946↓-NER signaling 
pathway↑ 

[73, 
74] 

LC hsa_circ_0030998 Tissue Diagnostic ↓ miR − 558 hsa_circ_0030998↓-miR − 558↑-MMP1/ 
MMP17↓ 

[75] 

LC circ-CCS Tissue Diagnostic ↑ miR-383 circ-CCS↑-miR-383↓- E2F7↑ [76] 
LC circ-IGF1R Tissue, cell 

line 
Diagnostic ↓ miR-1270 circ-IGF1R↓–miR-1270↑– VANGL2↓ [77] 

LC circRNA_102179 Tissue, cell 
line 

Diagnostic ↑ miR-330-5p circRNA_102179↑-miR -330-5p↓- 
HMGB3↑ 

[78] 

LC circ-ZKSCAN1 NSCLC 
sample, cell 
line 

Diagnostic ↑ miR-330-5p circ-ZKSCAN1↑-miR-330- 5p↓- 
FAM83A↑ 

[79] 

LC hsa_circ_0007059 Tissue Diagnostic ↓ miR − 378 hsa_circ_0007059↓-miR − 378↑-Wnt/ 
β-catenin↑/ERK1/2↑ 

[80] 

LC circ-PITX1 Tissue Diagnostic ↑ miR-1248 circ-PITX1↑-miR-1248↓- CCND2↑ [81] 
LC circ_0000429 NSCLC 

tissue, cell 
line 

Diagnostic ↑ miR-1197 circ_0000429↑-miR-1197↓- MADD↑ [82] 

LC circ_0001287 Tissue, cell 
line 

Diagnostic ↓ miR-21 circ_0001287↓-miR-21↑- PTEN↓ [83] 

LC hsa_circ_0000064 Tissue, cell 
line 

Diagnostic ↓ – hsa_circ_0000064↑- caspase-3/9↑/ 
bax↑/p21↑/CDK6↑/cyclin D1↑/bcl-2↓/ 
MMP-2/9↑ 

[84] 

LC circFGFR3 NSCLC tissue Prognostic ↑ miR-22-3p circFGFR3↑- miR-22-3p↓-Gal-1↑/p- 
AKT↑/p-ERK1/2↑ 

[85] 

LC circ_0003645 NSCLC tissue Prognostic ↑ miR − 1179 circ_0003645↑-miR − 1179↓- 
TMEM14A↑ 

[86] 

LC CDR1as Tissue Prognostic ↑ miR-7 CDR1as↑-miR-7↓- EGFR↑/CCNE1↑/ 
PIK3CD↑ 

[87] 

LC circ_POLA2 Tissue Prognostic ↑ miR − 326 circ_POLA2↑-miR − 326↓-GNB1↑ [88] 
LC circ-FOXM1 Tissue Prognostic ↑ miR -1304-5p circ-FOXM1↑-miR -1304-5p↓-PPDPF↑/ 

MACC1↑ 
[89] 

LC circPIP5K1A Tissue, 
serum 

Prognostic ↑ miR-600 and 
miR-101 

circPIP5K1A↑- miR-600↓–HIF–1α↑ 
circPIP5K1A↑- miR-101↓-ABCC1↑ 

[90, 
91] 

LC circRNA_010763 Tissue Prognostic ↑ miR-715 circRNA_010763↑- miR-715↓-c-Myc↑ [92] 
LC circRNA_100876 Tissue Prognostic ↑ Unknown Unknown [93] 
LC circ-ANXA7 Tissue Prognostic ↑ miR-331 circ-ANXA7↑- miR-331↓-LAD1↑ [94] 
LC circ-PTEN Tissue, 

serum 
Prognostic ↓ miR − 155 and 

miR-330-3p 
circ-PTEN↓-miR − 155↑/miR-330-3p↑- 
PTEN↓ 

[95] 

LC hsa_circ_0008003 Tissue Prognostic ↑ miR-488 hsa_circ_0008003↑- miR-488↓- 
ZNF281↑ 

[96] 

LC circ-MTHFD2 Tissue Prognostic ↑ Unknown Unknown [97] 
GC hsa_circ_0000745 Plasma Diagnostic ↓ – – [98] 
GC hsa_circ_0000520 Tissue, 

plasma 
Diagnostic ↓ – – [99] 

(continued on next page) 
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Table 1 (continued ) 

Type of cancer circRNA Source Biomarker Regulation miRNA sponge Mechanism Refs 

GC hsa_circ_0014717 Tissue Diagnostic ↓ – – [100] 
GC hsa_circ_0000096 Tissue Diagnostic ↓ – – [101] 
GC hsa_circ_0066444 Tissue Diagnostic ↑ – – [102] 
GC hsa_circRNA_102958 Tissue Diagnostic ↑ – – [50] 
GC circLARP4 Tissue Prognostic ↓ miR-424-5p circ-RNA-LARP4↓-miR-424-5p↑- 

LATS1↓ 
[103] 

GC hsa_circ_0001368 Tissue Prognostic ↓ miR-6506-5p hsa-circ-0001368↓-miR-6506↑- 
FOXO3↓ 

[104] 

GC circPVT1 Tissue Prognostic ↑ – – [105] 
GC circNRIP1 Tissue Prognostic ↑ miR-149-5p circNRIP1↑- miR-149-5p↓-AKT1/ 

mTOR↑ 
[106] 

GC circ-KIAA1244 Plasma Prognosis ↓ – – [107] 
GC circAKT3 Tissue Prognostic ↑ miR-198 circAKT3↑- miR-198↓-PIK3R1↑ [60] 
GC hsa_circ_0010882 Tissue Prognostic ↑ – hsa_circ_0010882↑- p-PI3K, p-Akt, and 

p-mTOR↑ 
[108] 

GC circ-ATAD1 Tissue Prognostic ↑ miR-140-3p circ-ATAD1↑-miR-140-3p↓-YY1↑ [109] 
GC circ-HIPK3 Tissue Prognostic ↑ miR-124/29b – [110] 
GC circ-DCAF6 Tissue Prognostic ↑ miR-1231/ 

1256 
– [111] 

GC circPVT1 Tissue Prognostic ↑ miR-125 – [105] 
GC circ-OSBPL10 Tissue Prognostic ↑ miR-136-5p – [112] 
GC circ-NHSL1 Tissue Prognostic ↑ miR-1306-3p – [113] 
GC circ-NRIP1 Tissue Prognostic ↑ miR-149-5p circ-NRIP1↑-miR-149-5p↓- AKT1/ 

mTOR↑ 
[106] 

GC circ-LARP4 Tissue Prognostic ↓ miR-424-5p circ-LARP4 ↓-miR-424-5p↑-LATS1↓ [103] 
GC circ-LMTK2 Tissue Prognostic ↓ – – [114] 
GC circ-PVRL3 Tissue Prognostic ↓ – – [115] 
GC circ-CCDC9 Tissue Prognostic ↓ miR-6792-3p circ-CCDC9↓- miR-6792-3p↑-CAV1↓ [116] 
CRC Circ-VAPA Plasma Diagnostic ↑ miR-101 circVAPA↑- miR-101↑- [117] 
CRC circITGA7 Tissue Diagnostic ↓ miR-370-3p hsa_circ_0026782↓-miR-370-3p↑-NF1↓ [118] 
CRC circHIPK3 Tissue Prognostic ↑ miR-7 circHIPK3↑-miR-7↓-FAK, IGF1R, EGFR, 

YY1↑ 
[119] 

CRC ciRS-7 Tissue Prognostic ↑ miR-7 – [120] 
CRC circRNA_100290 Tissue, cell 

line 
Prognostic ↑ miR-5166 circRNA_100290↑-miR-5166↓-Wnt/ 

β-catenin↑ 
[121] 

CRC CircCCDC66 Tissue, cell 
line 

Diagnostic ↑ – – [122] 

CRC hsa-circ-0136666 Tissue, cell 
line 

Prognostic and 
prognostic 

↑ miR-136 – [123] 

CRC hsa-circ-0001649 Tissue, 
serum 

Diagnostic ↓ – – [124] 

CRC hsa-circ-0000711 Tissue, cell 
line 

Diagnostic and 
prognostic 

↓ – – [125] 

CRC hsa-circ-0014717 Tissue, cell 
line 

Prognostic ↓ – – [126] 

CRC hsa-circ-0000567 Tissue, cell 
line 

Diagnostic ↓ – – [127] 

CRC hsa-circ-001988 Tissue Diagnostic ↓ – – [128] 
CRC hsa-circ-26344 Tissue Prognostic ↓ miR-21, miR- 

31 
– [129] 

CRC hsa-circ-003906 Tissue, cell 
line 

Diagnostic ↓ – – [130] 

CRC hsa-circ-104700 Tissue Diagnostic ↓ – – [131] 
BC hsa_circRNA_002178 Tissue Prognostic ↑ miR-328-3p hsa_circRNA_002178↑- miR-328-3p↓- 

COL1A1↑ 
[132] 

BC circ_0005230 Tissue Prognostic ↑ miR-618 circ_0005230↑-miR-618↓-CBX8↑ [133] 
BC circKIF4A Tissue Prognostic ↑ miR-375 circKIF4A↑-miR-375↓- KIF4A↑ [134] 
BC circGFRA1 Tissue Prognostic ↑ miR-34a circGFRA1↑-miR-34a↓- GFRA1↑ [54] 
HCC Circ-CDYL Tissue Diagnostic ↑ – – [135] 
HCC circSMARCA5 Plasma Diagnostic ↓ – – [136] 
HCC hsa_circ_0000976, 

hsa_circ_0007750 and 
hsa_circ_0139897 

Plasma Diagnostic ↑ – – [137] 

HCC circ_104075 Tissue Diagnostic ↓ miR-582-3p circ_104075 ↑-miR-582-3p↓-YAP↑ [138] 
HCC circZKSCAN1 Tissue Diagnostic ↓ – – [139] 
HCC circ-10720 Tissue Prognostic ↑ – – [140] 
HCC circRNA 101368 Tissue Prognostic ↑ miR-200a circRNA 101368↑-miR-200a↓-HMGB1/ 

RAGE↓ 
[141] 

HCC circRNA-100338 Tissue Prognostic ↑ miR-141-3p circRNA-100338↑-miR-141-3p↓ 
MTSS1↑ 

[142] 

HCC SCD-circRNA 2 Tissue Prognostic ↑ – – [143] 
HCC circADAMTS13 Tissue Prognostic ↓ miR-484 – [144] 
PC circ-LDLRAD3 Plasma Diagnostic ↑ – – [145] 
PC circ-PDE8A Plasma Prognostic ↑ miR-338 circ-PDE8A↑- miR-338↓-MET↑ [55] 
PC circ-IARS Tissue Prognostic ↑ miR-122 circ-IARS↑- miR-122↓- RhoA and RhoA- 

GTP↑ 
[146] 

(continued on next page) 
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circRNA investigations are still in their early stages; hence, all relevant 
clinical trials have concentrated on mRNA vaccines. Additionally, re-
combinant enzymes are still used to create circRNAs in vitro, which is 
expensive if circRNAs are needed for vaccines [213]. Thus, research on 
this model is necessary to clarify circRNA’s application as a vaccine for 
cancer therapy. 

5. Challenges of the use of circular RNA as a cancer therapy and 
strategies to overcome 

Although the previous description shows that circRNA is an effective 
technique, its discovery and implementation in human tumors make it a 
targeting method with various limits and concerns that make its use in 
clinical trials challenging. Low circRNA copy number, delivery method, 
controlling circRNA expression in vivo, and off-targeting are the sig-
nificant concerns with circRNAs that have been identified (Fig. 4). 

5.1. Low copy number of circRNA 

One of the most crucial metrics to shed light on the efficacy of 
circRNAs in cancer treatment is the quantity of circular RNA. If circRNAs 
are to be utilized as successful treatment strategies, it is crucial to 
identify their precise functional mechanism; however, this may be more 
challenging due to the low copy number of circRNA. For example, if a 
circRNA is numerous and contains a large number of miRNA binding 
sites, it may be able to function as an effective miRNA sponge [214]. 
However, if a circRNA has a low copy number, its sponging efficacy 
would be limited even if it has many miRNA binding sites. Similarly, a 
circRNA with a high abundance but few miRNA binding sites would 
have low sponging efficiency and is improbable to serve as a miRNA 
sponge [7]. Therefore, the copy quantity of circRNAs must be ascer-
tained to conclude that they can act via protein binding or other pro-
cesses such as miRNA sponging. The initial stage of circRNA-based 
therapeutic approaches should be considered the inadequate quantity of 
circRNA. 

5.1.1. Strategy to overcome the low copy number of circRNA 
CircRNA levels can be altered in particular tissues, organs, and ani-

mal systems [215]. An appropriate cancer therapy requires upregulating 
a specific gene expression through miRNA sponging, which depends on 
circRNA and miRNA interaction. For this reason, the circRNA to miRNA 
ratio should be relatively high as it can enhance the sponging of miRNA 
[7]. If this ratio is high, it shows the efficacy of circRNA as a molecule 
that can address gene dysregulation in cancer disease. However, a low 
ratio makes clinical applications less efficient or inefficient [7]. 

Genetic manipulation in cancer therapy has been significantly 
enhanced with the development of genome editing tools such as ZFN, 
TALEN, and CRISPR-Cas programs. As illustrated, CRISPR-Cas9 has 
made several genetic applications possible, like promoter editing for 
generating quantitative trait variation and its widespread use in 
knocking out protein-coding genes [216] (Fig. 5). 

5.2. Delivery challenges of circRNA in cancer therapy 

Delivery of therapeutic agents is a fundamental and essential step in 
cancer therapy, and any limitation in this system leads to a decrease in 
the efficiency of the cancer therapy strategy. In cancer therapy, the 
delivery of therapeutic molecules is challenging because of the increase 
in immunological activation, bio-incompatibility, and ineffectiveness 
[217,218]. Several practical and trustworthy techniques can address 
this limitation, such as lipid nanoparticle or exosome-based delivery. 

5.2.1. Strategies to overcome challenges of circRNA delivery in cancer 
therapy 

Many approaches and strategies have been proposed, but unfortu-
nately, the growing new side effects limit their delivery efficiency in the 
treatment of cancer. Here, we demonstrate two feasible techniques that 
enable therapeutic approaches to work efficiently. 

5.2.2. Lipid nanoparticle-based delivery of circRNA 
Nanoparticles can carry drugs and deliver them to therapeutic tar-

gets [219], and their potential uses in therapeutic medications, molec-
ular delivery imaging, and drug combinations that combine diagnostic 

Table 1 (continued ) 

Type of cancer circRNA Source Biomarker Regulation miRNA sponge Mechanism Refs 

PCa CircTENM3 Tissue Diagnostic ↓ miR-558 CircTENM3↑- miR-558↓- RUNX3↑ [147] 
PCa circFGFR1int2 Cell line/ 

Tissue 
Diagnostic ↑ miR-4687-5p circFGFR1int2↑- miR-4687-5p↓-P65/ 

FUS↑ 
[148] 

PCa circROBO1 Cell line/ 
Tissue 

Diagnostic ↑ miR-556-5p circROBO1↑- miR-556-5p ↓- PGK1↑  

PCa circ_0086722 Cell line/ 
Tissue 

Prognostic ↑ miR-339-5p circ_0086722↑-miR-339-5p↓-STAT5A↑ [149] 

PCa circDDIT4 Tissues and 
serum 
samples 

Diagnostic ↑ ELAVL1/HuR circDDIT4↑-ELAVL1/HuR↓ -ANO7↓ [150] 

PCa 
OC circWHSC1 Tissue Prognostic ↑ miR-145 and 

miR-1182 
circWHSC1↑- miR-145 and miR-1182↓- 
MUC1 and hTERT↑ 

[151] 

OC circPLEKHM3 Tissue Prognostic ↓ miR-9 circPLEKHM3↓-miR-9↓ AKT1↓ [152] 
BCa cTFRC Tissue Prognostic ↑ miR-107 cTFRC↑- miR-107↓- TFRC↑ [153] 
BCa circMTO1 Tissue Prognostic ↑ miR-221 – [154] 
Osteosarcoma circPVT1 Serum Diagnostic ↑ – – [155] 
Glioma circ_0034642 Tissue Prognostic ↑ miR-1205 circ_0034642↑-miR-1205↓-BATF3↑ [156] 
Nasopharyngeal 

carcinoma 
CDR1as Biopsy Prognostic ↑ miR-7-5p CDR1as↑-MiR-7-5P↓-E2F3↑ [157] 

RCC renal cell carcinoma, LC lung cancer, GC gastric cancer, CRC colorectal cancer, BC breast cancer, HCC hepatocellular carcinoma, PC pancreatic cancer, OC ovarian 
cancer, NSCLC non-small cell lung cancer, BCa bladder cancer, SF3B3 splicing factor 3b subunit 3, PI3K phosphoinositide 3-kinase, NER nucleotide excision repair, 
MMP1 matrix metalloproteinase 1, MMP17 matrix metalloproteinase 17, HMGB3 high-mobility group box 3, FAM83A family with sequence similarity 83 member A, 
ERK1 extracellular signal-regulated kinase 1, PTEN phosphatase and tensin homolog, Bcl-2 B-cell lymphoma 2 protein, TMEM14A transmembrane protein 14A, GNB1 
guanine nucleotide-binding protein subunit beta-1, EGFR epidermal growth factor receptor, PIK3CD phosphatidylinositol 3-kinase catalytic subunit delta, PPDPF 
protein phosphatase 1D magnesium-dependent delta isozyme, MACC1 metastasis-associated in colon cancer 1, ABCC1 ATP-binding cassette subfamily C member 1, 
LAD1 ladinin 1, ZNF281 zinc finger protein 281, LATS1 large tumor suppressor kinase 1, FOXO3 forkhead box O3, CBX8 chromebox protein homolog 8, YAP yes- 
associated protein, HMGB1 high-mobility group box 1, RAGE receptor for advanced glycation end products, MTSS1 metastasis suppressor 1, TFRC transferrin re-
ceptor, BATF3 basic leucine zipper ATF-like transcription factor 3. 
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and therapeutic properties are actively being investigated. To target 
specific cells with either endogenous or foreign ligands, lipid nano-
particles (LNPs) are the most advanced nanoparticle carriers of small 
interfering RNA (siRNA), messenger RNA (mRNA), and circular RNA 
(circRNA) [220]. LNPs are nanoparticles that can deliver medications to 
disease areas for enhanced therapy efficacy [221]. In response to either 
internal or external signals, they can encapsulate circRNA and transport 

it to a targeted cell population; however, upon uptake, their membranes 
can become unstable, enabling circRNA to escape into the cytosol and 
reach their targets [220]. Li et al. demonstrated their successful and 
efficient use of lipid nanoparticles to encapsulate and deliver circRNA 
into the aggressive tumor in mice in a trial [12]. Several potential ap-
plications for these nanoparticles are currently under study, including 
delivering diagnostic and therapeutic compounds [222]. Based on the 

Table 2 
CircRNAs as therapeutic targets in cancer.  

Type of 
cancer 

circRNAs Source Regulation miRNA sponge Mechanism Ref. 

LC circUBAP2 Clinical sample, cell line ↑ miR-3182 circUBAP2↑-miR 
− 3182↓- KLF4↑ 

[173] 

LC circRNA_102231 Tissue ↑ – Unknown [68] 
LC hsa_circ_100395 Tissue ↓ miR-1228 hsa_circ_100395↓-miR 

− 1228↑- TCF21↓ 
[174] 

LC circFADS2 Tissue, cell line ↑ miR-498 circFADS2↑-miR-498↓- HMGA2↑ [175] 
LC circRNA-FOXO3 NSCLC specimen ↓ miR − 155 circRNA-FOXO3↓-miR − 155↑-FOXO3↓ [176] 
LC circCDYL NSCLC tissue, plasma, cell 

line 
↑ miR-185- 5p circCDYL↓-miR-185- 5p↑/TNRC6A↓-ERK1/2↑ [177] 

LC circSEC31A – ↑ miR − 376a circSEC31A↑-miR − 376a↓-SEC31A↑ [178] 
LC hsa_circ_0020123 Tissue ↑ miR-144 hsa_circ_0020123↑- miR-144↓-ZEB1↑/EZH2↑ [179] 
LC circ_0003998 – ↑ miR136-5p circ_0003998↑- miR136-5p↓-CORO1C [180] 
LC circCCDC66 NSCLC cell line, human 

bronchial epithelial cell 
line 

↑ miR − 33a-5p circCCDC66↑-miR − 33a-5p↓-KPNA4↑ [181] 

LC hsa_circ_0002874 Cell line ↑ miR-1273f hsa_circ_0002874↑- miR-1273f↓-MDM2/P53↑ [182] 
LC hsa_circ_11780 NSCLC tissue, cell line ↓ miR-544a hsa_circ_11780↓-miR 

− 544a↑-FBXW7↓ 
[183] 

LC hsa_circ_0038646 Cells, tissue ↑ miR-331-3p hsa_circ_0038646↑-miR-331-3p↓-GRIK3↑ [184] 
LC hsa_circ_0010235 NSCLC tissue, cell line ↑ miR-433-3p hsa_circ_0010235↑-miR-433-3p↓-TIPRL↑ [185] 
LC hsa_circ_0001073 Lung cancer cells ↓ miR-626 hsa_circ_0001073↓-miR-626↑-LIFR↓ [186] 
LC circRNA_103993 NSCLC cells, human 

bronchial epithelial cell 
line 

↑ miR-1271 circRNA_103993↑-miR 
− 1271↓- ERG↑ 

[187] 

LC circP4HB NSCLC tissue, cell line ↑ miR-133a circP4HB↑-miR-133a5p↓- vimentin↑ [188] 
LC circARHGAP10 NSCLC tissue, cell line ↑ miR-150-5p circARHGAP10↑-miR 

− 150-5p↓-GLUT1↑ 
[189] 

LC circVANGL1 NSCLC tissue, cell line ↑ miR-195 circVANGL1↑-miR 
− 195↓-Bcl-2↑ 

[190] 

BC CircDENND4C Tissue, cell line ↑ miR-200b, 
miR-200c 

Functions in low-oxygen environments as a miR-200b and miR-200c 
sponge. 

[191, 
192] 

BC CircFBXW7 Cell line ↓ miR-197-3p Sponging miR-197-3p upregulates FBWX7 expression. [193] 
BC CircTADA2A Tissue, cell line ↓ miR-203a-3p Activates miR-203a-3p, which in turn increases cytokine signaling 

regulator SOCS3 expression. 
[194] 

BC CircWWC3 Tissue ↓ miR-26b-3p, 
miR-660-3p 

Increases expression of EGFR, GRB2, PAK4, MAPK1, and AKT1 while 
acting as a sponge for miR-26b-3p and miR-660-3p (Ras signaling 
pathway) 

[195] 

BC CircRNF20 Tissue, cell line ↑ miR-487a Suppresses miR-487a, which targets HIF1α′s 3 UTR. [196] 
BC Circ-CDYL Tissue ↑ miR-1275 targets ULK1 and ATG7 mRNAs linked to autophagy and 

autophagosomes, acting as a miR-1275 mimic. 
[197] 

CRC circACAP2 Tissue, cell line ↑ miR-21-5p T lymphoma invasion and metastasis protein 1 expression was 
suppressed by circACAP2 silencing, which increased the expression of 
miR-21-5p. 

[198] 

CRC hsa_circ_0020397 CRC cells ↑ miR-138 The expression of the miR-138 targets TERT and PD-L1 showed that 
has circ 0020397 did reduce miR-138 activity. 

[199] 

PCa circABCC4 PCa cells and tissue ↑ IGF2BP2 circABCC4↑ -IGF2BP2↑-CCAR1↑ [200] 
PCa circRBM33 PCa cells and tissue ↑ ARSI circRBM33↑- ARSI↓-PDHA1↑ [201] 
CRC hsa_circ_0055625 Tissue ↑ miR-106b-5p circ_0055625↑-miR-106b-5p (miR-106b) ↓-ITGB8↑ [202] 
CRC hsa_circ_0000523 Tissue, cell line ↓ miR-31 hsa-circ-0000523↓- miR-31↑-Wnt/β-catenin signaling pathway↑ [203] 
CRC has_circ_103809 Tissue, cell line ↓ miR-532-3P hsa_circRNA_103809↓-miR-532–3p↑-FOXO4 axis↑ [204] 
RCC circPUM1 Tissue ↑ miR-340-5p circPUM1↑-miR-340-5p↓-FABP7↑ [39] 
RCC circ_0005875 Tissue ↑ miR-502-5p circ-0005875↑-miR-502-5p↓-ETS1↑ [205] 
RCC hsa_circ_0054537 Tissue ↑ miR-130a-3p hsa_circ_0054537↑- miR-130a-3p↓-cMet↑ [206] 
RCC circPTCH1 Tissue, cell line ↑ miR-485-5p circPTCH1↑- miR-485-5p↓MMP14 and EMT↑ [207] 

LC lung cancer, BC breast cancer, CRC colorectal cancer, RCC renal cell carcinoma, NSCLS non-small cell lung cancer, KLF4 kruppel-like factor 4, TCF21 transcription 
factor 21, HMGA2 high mobility group at-hook 2, FOXO3 forkhead box o-3, TNRC6A trinucleotide repeat containing adaptor 6A, ERK1 extracellular signal regulated 
kinase 1, SEC31A secretory pathway component 31A, ZEB1 zinc finger E-Box binding homeobox 1, EZH2 enhancer of zeste homolog 2, KPNA4 karyopherin alpha 4, 
MDM2 mouse double minute 2, P53 protein 53, FBXW7 F-box/WD repeat containing protein 7, GRIK3 glutamate receptor ionotropic kainite 3, LIFR leukemia 
inhibitory factor receptor, GLUT1 glucose transporter 1, Bcl-2 B-cell lymphoma 2, SOCS3 suppressor cytokine signaling 3, EGFR epidermal growth factor receptor, 
GRB2 growth factor receptor bound protein 2, PAK4 p21-activated kinase 4, MAPK1 mitogen-activated protein kinase 1, AKT1 protein kinase B, HIF1 α hypoxia 
inducible factor, ULK1 unc-51 like autophagy activating kinase 1, ATG7 autophagy-related 7, TERT telomerase reverse transcription, PD-L1 programmed cell death 
ligand 1, ITGB8 integrin subunit beta 8, FOXO4 forkhead box 4, FABP7 fatty acid binding protein 7, ETS1 E26 transformation-spesific-1, MMP14 matrix metal-
lopeptidase 14, EMT epithelial mesenchymal transition. 
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results of these studies, lipid nanoparticles show significant promise as a 
delivery mechanism for circRNA-targeting therapeutics (Fig. 6a). 

5.2.3. Gold nanoparticles (AuNPs) delivery 
The use of nanoparticles as a delivery mechanism has significantly 

boosted the viability of circRNA-based therapeutics in vivo. Several 
studies have shown that gold nanoparticles (AuNPs) are a reliable de-
livery strategy in animals due to their great stability, purity, and easily 
adaptable surface [223]. For instance, in order to target the binding sites 
on circDnmt1 for Auf1 and p53 proteins, Du et al. administered AuNPs 
coupled with siRNA as a breast cancer therapeutic approach [224]. In 
addition, tumor growth was suppressed, and mouse survivability was 
prolonged by AuNP delivery of AONs inhibiting binding sites on 
circCcnb1 for Ccnb1 and Cdk1 [225]. According to this research, 
circRNA-targeting medicines may find a useful delivery method in 
nanoparticle form. 

Moreover, circRNA expression plasmids have also been delivered in 
vivo via nanoparticles. Lu et al. found that the distribution of circEHMT1 
plasmids via nanoparticles prevented the spread of breast cancer to the 
lungs in mice [226]. Similarly, the delivery of circFoxo3 plasmids with 
AuNP led to an increase in the rate of apoptosis in tumor cells and a 
reduction in the development of tumors [227]. 

Even though AuNPs effectively deliver circRNA targets in animal 
models, their safety in clinical settings remains largely unknown. Pre-
vious research has shown that AuNPs’ hazardous effects are dependent 
on their size, with smaller AuNPs having more harmful effects [228]. As 
a result, AuNPs’ characteristics can be adjusted to satisfy safety stan-
dards, offering circRNA-targeted medication delivery systems a bright 
future. 

5.2.4. Exosome-based delivery of circRNA 
Exosomes, also known as extracellular vesicles (EcVs), can be found 

in nearly every cell, tissue, and bodily fluid. In disease pathobiology, 
they aid in intercellular signaling and keep tissues in a state of homeo-
stasis [229,230]. Exosomal cargo contains 9769 proteins, 2838 micro-
RNAs, 3408 messenger RNAs, and 1116 lipids, according to research 
[231]. 

Exosomes hold great promise as a therapeutic tool for various ill-
nesses, including cancer, because they can effectively move tiny chem-
icals between cells [232]. Exosomes can be utilized to deliver treatments 
to cancer cells because of their unique characteristics, including their 
nano-size, double lipid membrane, capacity to serve as numerous car-
riers, good histocompatibility, high bioavailability, minimal cytotox-
icity, and immunogenicity [233]. They can deliver a wide range of 
molecules, such as small interfering circRNAs (circRNAs) [4], micro-
RNAs (miRNAs) [234], proteins [235], lipids [236], and DNA fragments 
[237] in their native state. Numerous studies have discussed the po-
tential use of circRNAs as novel therapeutic targets and biomarkers in 
treating various illnesses, including cancer. Exo-circRNAs are circRNAs 
found in exosomes that can be found to support conventional diagnostic 
techniques and used to suppress the spread of malignancy [238]. 

Exosomal circRNA is taken by surrounding or distant cells and alters 
numerous physiological and pathological states, potentially boosting 
cell communications and spreading cancer. For the first time, in 2015, Li 
et al. discovered that exosomes are a rich source of circRNAs, and they 
were shown to be abundant in exosomes compared to parental cells, 
according to genome-wide RNA-seq investigations [239]. CircRNA 
sorting to exosomes can be controlled by adjusting parental cell levels of 
associated miRNA. This, in turn, can influence the biological activity of 
target cells, which are more stable and tolerant to their environment 

Fig. 4. The primary obstacles to employing circRNAs as therapeutic biomolecules and the methods to overcome them so that they can be utilized in cancer treatment 
as a potential replacement for traditional therapeutic biomolecules, which are currently less effective against most types of cancer. 
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[240] (Fig. 6b). 
This confirmed delivery ability of exosomes as carriers for circRNAs 

for cell-to-cell communication makes the exosomes more reliable and 
feasible carriers for circRNA delivery in cancer therapy-based circRNA 
strategy. 

5.3. Regulating circRNA expression in vivo 

To apply the effective therapeutic role of circRNAs in cancer, there 
should be approaches to regulate circRNA expression in vivo. Here, it 
can be concluded that new effective strategies can overcome the limi-
tations of regulating circRNA expression in vivo. 

5.3.1. Strategies to overcome regulating circRNA expression in vivo 
Innovative genetic approaches for the sustained synthesis of pro-

spective circRNAs hold great promise for controlling circRNA expression 
in vivo. For instance, transposons were employed to deliver a circRNA 
production cassette to the liver of mice by hydrodynamic tail vein in-
jections (Fig. 7a). Mecozzi et al. inserted an expression cassette encoding 
the circRNA into the mouse genome using the recombination-mediated 
cassette exchange technique. Consequently, every mouse genome pro-
duces ectopic circRNA [241]. Further, to specifically promote circRNA 
expression in melanoma cells, researchers created a circRNA-expressing 
animal model of the disease using the same strategy [241]. These new 
methods and tools for functional analysis will alleviate some of the re-
strictions currently associated with circRNA expression systems. 

Furthermore, circRNAs can be synthesized to increase their expres-
sion and functionality. The capacity of circRNA to act as a miRNA 
sponge is affected not only by the number of copies but also by the 
number of miRNA binding sites. To effectively sponge miRNAs, a syn-
thetic circRNA with a high density of miRNA binding sites can be 
designed [242–244]. Therapeutic interventions may be possible through 

this regulatory mechanism, which also has significance for gene 
expression (Fig. 7b). 

Another new technology, clustered regularly interspaced short 
palindromic repeats (CRISPR), has entered the list of optimizers for 
circRNA regulation in vivo. Gao et al. used RNA-targeting type VI 
CRISPR effector RfxCas13 to suppress circRNA expression at the RNA 
level [245]. Similarly, Zhang et al. improved the strategy for creating 
CRISPR/Cas13 gRNAs with the ideal specificity and efficiency for 
reducing circRNA expression [246]. Additionally, Wang et al. explored 
essential circRNAs using optimized Cas13d technology and reported 
that knocking down of circRHOT1 leads to inhibition of HCC cell pro-
liferation by depleting complementary sequences (CSs) [247] (Fig. 8). 

Based on the aforementioned successful studies that control circRNA 
expression in vivo, this novel approach could propel circRNA-based 
cancer treatments forward and make them more viable. This will pave 
the way for other applications and the start of clinical trials. 

5.4. Off-target effects in non-cancerous cells and tissues 

While significant progress has been made in circRNA regulation in 
vivo, much more needs to be done before these technologies may be 
applied in clinical settings [248,249]. One obstacle is that a single 
circRNA molecule can function in a variety of tissues and diseases, for 
example, abnormal brain development [250], Parkinson’s disease 
[251], myocardial infarction [252], diabetes [253], and femoral head 
necrosis [254], all have links with CDR1as. Similarly, circFoxo3 is 
implicated in the regulation of aging in the heart [255], as well as 
chemical resistance in prostate cancer [256]. Thus, using circRNA 
expression as a target for cancer therapy may have unexpected, adverse 
effects on other tissues or organs. To be a viable therapeutic option, 
circRNA-based therapies also need to increase therapeutic specificity 
and reduce off-target effects on other tissues or organs. 

Fig. 5. shows the two strategies for increasing the copy number of circRNAs when used to treat cancer cells. The strategies are (A) replacing a weak promoter with a 
strong promoter by applying gene editing tools such as CRISPR/Cas technology to induce circRNA expression and (B) generating engineered circRNA regulators by 
using a gene encoding a member of the PUF family to induce circRNAs. 
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5.4.1. Strategies to overcome the circRNAs off-targeting effects 
The base of the incorrect targeting in circRNA-based cancer therapy 

lacks a specific motif to facilitate the interaction in the exact site for a 
circRNA target. HEK293A cells were transfected with circular siRNAs 
targeting GFP or luciferase reporter genes with a circular sense and 
linear antisense strand. This allowed the siRNAs with the circular 
structural motif to effectively block the effects of sense strand RNA- 
induced off-target gene expression [257]. This discovery was made in 
response to the need to address the issue of circRNA off-targeting. 

Circular siRNAs significantly reduced the off-target effect brought on 
by the sense strand of siRNA, as demonstrated by using RenillaXas, a 
rebuilt Renilla luciferase reporter gene. This new approach is signifi-
cantly functional in reducing off-targeting in circRNA-based cancer 
therapy [257]. Moreover, off-target effects can be reduced to a minimum 

through careful design of circRNA sequences. In order to improve the 
specificity of circRNAs and decrease the amount of non-specific binding 
to undesired targets, it is possible to optimize their length, secondary 
structure, and sequence composition [258]. Although, the stability and 
specificity of circRNAs can be improved through the introduction of 
chemical modifications, such as 2′-O-methyl or locked nucleic acid 
modifications. These alterations have the potential to either increase the 
affinity of circRNA for binding to target molecules or decrease the af-
finity for binding to non-specific targets [259,260]. Further, through the 
incorporation of cell-specific promoters into circRNA expression con-
structs, it is possible to restrict circRNA production to particular cell 
types, hence decreasing the impact of off-target expression in cells that 
are not the target. The utilization of this technique guarantees that 
circRNAs are preferentially expressed in the cell populations that are 

Fig. 6. Highlights the two practical approaches to address the limitations of the delivery method in delivering circRNAs for cancer treatment. (A) Lipid nanoparticles 
(LNPs) and (B) exosomes, both of which are carriers for circRNAs. 
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wanted, hence boosting therapeutic efficacy while simultaneously 
limiting off-target consequences [261]. Likewise, off-target effects can 
be reduced by selecting vector systems that are suitable for the delivery 
of circRNA. It is possible to increase circRNA localization and prevent 
unwanted interactions with off-target molecules by selecting vectors 
that have a high transfection efficiency and specificity for the target cell 
[262,263]. 

On the other hand, the CRISPR/Cas system is another developing and 
powerful strategy can be used to reduce off-target effects. For instance, 
using a machine learning methodology, Cheng et al. discovered that 
DeepCas13 effectively differentiates efficient sgRNAs from inefficient 
ones, and Cas13d′s effect is linked to the guide’s on-target cleavage ef-
fect in hepatocellular carcinoma [264]. Moreover, the CRISPR-dCas9 
and CRISPR-Cas9 systems can also be used to demonstrate the func-
tion of this circular gRNA in vitro. Researchers have proposed a novel 
design for gRNA that might promote rapid circular gRNA assembly in-
side cells. The twister ribozymes are positioned on either side of the 
gRNA of interest in this circular pattern. It demonstrated a striking 
decrease in the off-target rate, together with decreased efficiency [265]. 
Furthermore, comparative investigations indicated that 

RfxCas13-mediated circRNA knockdown exhibited significantly lower 
off-target effects on cognate mRNAs than shRNA/siRNA-mediated 
knockdown in mouse embryos [266]. Thus, the off-targeting effects of 
circRNAs during their usage in cancer therapy could be avoided or 
limited if the strategies listed above are used. 

5.5. CircRNA-lncRNA sponge ceRNA interaction 

Cancer study is greatly impacted by the complex mechanisms un-
derlying the interactions between different ncRNAs, including lncRNAs 
and circRNAs. LncRNAs and circRNAs can interact and sponge miRNAs, 
which affects regular physiological functions and controls mRNA 
expression and, in turn, cell physiological state [267]. However, the 
significant implications for cancer may result from complex interactions 
between circRNAs and lncRNAs and brings therapeutic limitation. For 
instance, one of the primary mechanisms involves sponge regulation, 
where lncRNAs act as sponges for circRNAs or vice versa. These in-
teractions can regulate gene expression precisely, which plays a role in 
the initiation and spread of cancer cells by sequestering miRNAs or other 
RNA-binding proteins [268]. 

Fig. 7. Regulation of circRNA expression in vivo using new genetic methods for long-term production of potential circRNAs. Transposons are employed to deliver a 
circRNA production cassette to the livers of mice by hydrodynamic tail vein injections. At the same time, the recombination-mediated cassette exchange method is 
used to introduce an expression cassette for the circRNA into the mouse genome. 
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5.5.1. Strategies to overcome CircRNA-lncRNA interaction 
The interplay between circRNAs and lncRNAs presents several 

challenges in the context of cancer therapy strategies. Creating synthetic 
RNA molecules that mimic the miRNA binding sites on the circRNAs or 
lncRNAs that mediate their interaction is one alternative [268]. These 
synthetic molecules may competitively bind to lncRNAs, preventing 
their interaction with the circRNA and disrupting the ceRNA regulatory 
network. Additionally, CRISPR/Cas-based genome editing technologies 
offer precision in targeting and disrupting the ceRNA interaction at the 
genetic level [269]. CRISPR/Cas systems can minimize the ceRNA effect 
by altering circRNA-lncRNA binding sequences, breaking the ceRNA 
connection. Further, accurate analysis and prediction of these in-
teractions depend on sophisticated computer algorithms and bioinfor-
matics tools. It is essential to achieve both specificity and selectivity 
when addressing circRNA-lncRNA sponge interactions to prevent any 
interference with regular cellular processes. Enhancing specificity can 
be accomplished by techniques such creating tiny molecules or altered 
oligonucleotides that bind to target ceRNAs only while sparing 
non-targeted RNAs [270]. 

6. Conclusion and future perspectives 

CircRNAs are new RNAs recently found in numerous species by high- 
throughput sequencing. CircRNAs play critical roles in cancer therapy 
and have been identified as possible attractive non-coding molecules. 
Their structural stability and resistance to RNase enzymes make them 

promising diagnostics and therapeutic options. 
CircRNAs are abundant in tumors; they bind to proteins, control 

transcription, and translation, and act as sponges for miRNAs. Therefore, 
cirRNAs have applications in prognosis, drug-delivery design for target 
therapy, therapeutic response, and early diagnosis. Their remarkable 
properties and powerful functions have attracted the attention of re-
searchers and clinicians in their study and potential therapeutic 
applications. 

Despite advanced studies, several open concerns remain about the 
clinical use of circRNAs in cancer therapy. This study highlights various 
novel developments and therapeutic possibilities of circRNA-based 
cancer therapy. These include the utilization of circRNAs as a diag-
nostic and prognostic biomarker in cancer patients, the use of adjuvant- 
based vaccines with sponge oncogenic miRNAs, and the potential use of 
carcinogenic circRNAs as a therapeutic target for siRNAs. Further, it 
explores the main challenges of using circular RNA as a cancer therapy, 
like low copy numbers of circRNAs, delivery challenges, regulation 
expression, and off-targeting effects. We also highlighted the primary 
strategies to overcome these limitations. 

Future studies should further investigate the efficacy and safety of 
using circRNA-based therapies. Critically, in vivo research is necessary 
to determine whether CRISPR/Cas technology is viable for efficient and 
specifically knocking down circRNAs. We assume that future discussions 
will revolve around methods to overcome the primary obstacles to using 
circRNAs in place of conventional cancer treatments and that additional 
research will be necessary to confirm the therapeutic efficacy of these 

Fig. 8. Illustrates the expression of circular RNAs in an animal mouse model. (A) Overexpression of circRNA in mouse model hepatocellular carcinoma without 
CRISPR/Cas13. (B) Through the depletion of complementary sequences, the CRISPR/Cas13d technique-induced knockdown of oncogenic circRHOT1 in a mouse 
model inhibits the growth of HCC cells. 

G.S. Hama Faraj et al.                                                                                                                                                                                                                         



Non-coding RNA Research 9 (2024) 811–830

825

molecules. 

Ethics approval and consent to participant 

Not applicable. 

Consent of publication 

Not applicable. 

Availability of data and materials 

Not applicable. 

CRediT authorship contribution statement 

Goran Sedeeq Hama Faraj: Methodology, Investigation. Bashdar 
Mahmud Hussen: Methodology, Investigation. Snur Rasool Abdullah: 
Methodology, Investigation. Mohammed Fatih Rasul: Resources, 
Investigation. Yasaman Hajiesmaeili: Methodology, Investigation. 
Aria Baniahmad: Methodology, Investigation. Mohammad Taheri: 
Writing – original draft, Supervision, Investigation. 

Declaration of competing interest 

The authors declare they have no conflict of interest. 

Acknowledgement 

Not applicable. 

Funding 

Not applicable. 

Abbreviations 

ATG7 Autophagy-related 7 
BC Breast cancer 
CRC Colorectal cancer 
EGFR Epidermal growth factor receptor 
EMT Epithelial-mesenchymal transition 
ERK1 Extracellular signal-regulated kinase 1 
EZH2 Enhancer of Zeste homolog 2 
FABP7 Fatty acid binding protein 7 
FOXO3 Forkhead box o-3 
FOXO4 Forkhead box 4 
GLUT1 Glucose transporter 1 
GRB2 Growth factor receptor bound protein 2 
GRIK3 Glutamate receptor ionotropic kainite 3 
HMGA2 High mobility group at-hook 2 
ITGB8 Integrin subunit beta 8 
KLF4 Kruppel-like factor 4 
KPNA4 Karyopherin alpha 4 
LC Lung cancer 
LIFR Leukemia inhibitory factor receptor 
MAPK1 Mitogen-activated protein kinase 1 
MDM2 Mouse double minute 2 
MMP14 Matrix metallopeptidase 14 
NSCLS Non-small cell lung cancer 
P53 Protein 53 
PD-L1 Programmed cell death ligand 1 
RCC Renal cell carcinoma 
SEC31A Secretory pathway component 31A 
SOCS3 Suppressor cytokine signaling 3 
TCF21 Transcription factor 21 

TERT Telomerase reverse transcription 
TNRC6A Trinucleotide repeat containing adaptor 6A 
ZEB1 Zinc finger E-Box binding homeobox 1 
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