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Abstract

Changes in soil temperature (ST) play an important role in the main mechanisms within the

soil, including biological and chemical activities. For instance, they affect the microbial com-

munity composition, the speed at which soil organic matter breaks down and becomes min-

erals. Moreover, the growth and physiological activity of plants are directly influenced by the

ST. Additionally, ST indirectly affects plant growth by influencing the accessibility of nutri-

ents in the soil. Therefore, designing an efficient tool for ST estimating at different depths is

useful for soil studies by considering meteorological parameters as input parameters, maxi-

mal air temperature, minimal air temperature, maximal air relative humidity, minimal air rela-

tive humidity, precipitation, and wind speed. This investigation employed various statistical

metrics to evaluate the efficacy of the implemented models. These metrics encompassed

the correlation coefficient (r), root mean square error (RMSE), Nash-Sutcliffe (NS) effi-

ciency, and mean absolute error (MAE). Hence, this study presented several artificial intelli-

gence-based models, MLPANN, SVR, RFR, and GPR for building robust predictive tools for

daily scale ST estimation at 05, 10, 20, 30, 50, and 100cm soil depths. The suggested mod-

els are evaluated at two meteorological stations (i.e., Sulaimani and Dukan) located in Kurdi-

stan region, Iraq. Based on assessment of outcomes of this study, the suggested models

exhibited exceptional predictive capabilities and comparison of the results showed that

among the proposed frameworks, GPR yielded the best results for 05, 10, 20, and 100cm

soil depths, with RMSE values of 1.814˚C, 1.652˚C, 1.773˚C, and 2.891˚C, respectively.

Also, for 50cm soil depth, MLPANN performed the best with an RMSE of 2.289˚C at Sulai-

mani station using the RMSE during the validation phase. Furthermore, GPR produced the

most superior outcomes for 10cm, 30cm, and 50cm soil depths, with RMSE values of
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1.753˚C, 2.270˚C, and 2.631˚C, respectively. In addition, for 05cm soil depth, SVR achieved

the highest level of performance with an RMSE of 1.950˚C at Dukan station. The results

obtained in this research confirmed that the suggested models have the potential to be

effectively used as daily predictive tools at different stations and various depths.

1. Introduction

Soil temperature (ST) as a micro-meteorological parameter plays a crucial role in the agricul-

tural water management, forests and deserts, geo-environmental processes, climatological and

hydrological modeling, climate change, and solar energy studies [1–3]. Typically, ST can be

regarded as an important parameter in determining the effectiveness of agricultural activities

since it significantly influences processes such as root conditions, evapotranspiration, evapora-

tion, and microorganism activities [4–6]. ST parameter is closely related to the soil heat flux

within the energy equilibrium equation of the surface of the Earth [7,8]. Also, It plays a signifi-

cant role in governing numerous physical, chemical, and biological activities taking place

within the soil [9–11]. There are two different ways to estimate soil temperature, and they

involve either analyzing soil heat flow and energy balance [12] or using correlations with

related variables [13]. While the previously suggested methods may yield precise forecasts for a

thoroughly assessed location, its applicability across various terrains is challenging due to a

lack of adequate data to compute heat transfer equations or to find statistical relationship [14].

Nowadays, the monitoring and comprehension of soil conditions have experienced a note-

worthy enhancement through the utilization of modern techniques for measuring ST and

moisture in situ [15–17]. These measurements hold critical importance across several

domains, such as agriculture, water resource managment, environmental science, meteorology

and climatology, and geotechnical engineering [17].

In the realm of ST measurement, portable digital soil thermometers have emerged as versa-

tile tools that offer quick and precise readings at multiple depths [18]. These devices are fre-

quently utilized for prompt on-site assessments. Conversely, ST probes provide a continuous

monitoring capability and can be strategically positioned at specific depths for prolonged

durations [19,20]. This characteristic renders them highly advantageous for applications in

hydrology and agriculture. Furthermore, the integration of ST sensors into data logging sys-

tems facilitates the acquisition of continuous, real-time temperature data [19]. This integration

empowers researchers to effectively investigate and analyze fluctuations of temperature over

an extended period.

Various reliable methodologies exist for soil moisture measurement. For this purpose,

Time Domain Reflectometry (TDR) and Frequency Domain Reflectometry (FDR) instruments

utilize electromagnetic waves to ascertain soil moisture content [21–23]. TDR evaluates the

duration required for electromagnetic pulses to reflect back from the soil, while FDR employs

diverse frequencies [23]. Both techniques exhibit remarkable precision and find widespread

application in different fields of study [22,23]. Furthermore, capacitance sensors represent an

additional prominent option for continuous monitoring of soil moisture [24,25]. These sen-

sors rely on alterations in electrical capacitance induced by fluctuations in water content

within the soil [25].

Moreover, the utilization of soil moisture probes positioned at varying depths within the

soil enables the acquisition of uninterrupted data [26]. These probes play a pivotal role in com-

prehending the spatial distribution of moisture throughout the soil profile and are commonly
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employed in precision agriculture practices [27]. Additionally, the advent of remote sensing

techniques, including satellites and aerial frameworks equipped with specialized sensors, has

brought about a revolutionary transformation in measurement of values of soil moisture and

ST parameters [28,29].

In contrast, the basic emperical regression methodologies rely on a limited number of vari-

ables like air temperature and leaf area index. Moreover, there are different elements that can

limit the direct ST measurement. For example, the ST measured at a specific depth might not

accurately reflect the distribution of temperature in the soil, since temperatures can differ

greatly at different depths [30]. Furthermore, the placement of temperature sensors in the soil

can impact the precision of the recorded data. Also, The existence of plants or other barriers

may impede the positioning of sensors and result in distorted measurements [30]. Also, in

relation to in situ observations, there remains significant uncertainty attributable to instru-

ment inaccuracies and spatial variations. Additionally, the installation of a dense observation

network is both cost-prohibitive and impractical [30].

Numerous researchers have explored various analytical models to investigate ST dynamics.

For example, Droulia et al. (2009) [31] devised an analytical model that builds upon the exist-

ing general formula by substituting the steady state ST with readily obtainable daily average

temperatures. To investigate the potential for reducing data requirements, they implemented

various subsets of ST during the model development process. Upon comparing the model

results with observational data, it was found that the suggested model provides a reasonably

accurate approximation of the observed sequences of hourly ST. Zhang et al. (2021) [32] have

introduced a novel approach for accurately predicting ST and the freezing front position. The

model involves the development of a new mathematical structure derived from various model

tests conducted under varous circumstances: sudden seepage, constant seepage, and no seep-

age. Additionally, a method based on regression analysis is employed to provide the coeffi-

cients within the equation. To validate the propsed model, it was checked by a traditional

analytical method using data from both model tests and a real case study. The findings con-

firmed that the model exhibits superior stability and practicality when compared to traditional

methods, offering reliable estimations of actual ST.

While analytical methods have traditionally been employed for ST prediction, they possess

inherent limitations [33,34]. A major limitation is that these methods frequently rely on

assumptions concerning the composition of soil, thermal characteristics, and boundary condi-

tions that may not accurately reflect real-world scenarios [14]. In addition, analytical methods

often rest on simplified mathematical approaches that suppose uniformity in characteristics of

soil and neglect variables like moisture of soil, heterogeneity of soil, and the existence of vege-

tation [14]. Therefore, such simplifications can result in substantial inaccuracies when predict-

ing ST, especially in intricate soil ecosystems [33,34]. Finally, it is of utmost importance to

recognize these constraints while utilizing analytical paradigms and explore alternative tools

like artificial intelligence models. This can help in predicting soil temperatures that are more

precise and dependable.

ST is influenced by numerous elements. These elements affect the heat received at the sur-

face, including solar radiation, crop coverage, pressure of air, color of soil, characteristics of

soil heat, precipitation, organic content within the soil, and parameter of evaporation [35,36].

These various factors collectively play a role in determining the heat quantity that is provided

to the soil surface. Moreover, the diffusion of temperature within the profile of the soil is

affected by several factors, including soil moisture content and density [37].

For the past twenty years, artificial intelligence techniques have been utilized successfully in

various engineering applications, particularly for water resource problems and hydrological

studies and these methods have demonstrated remarkable efficacy and precision [38,39].
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Delbari et al. (2019) [40] examined the effectiveness of a model based on support vector regres-

sion (SVR) in approximating the daily soil temperature at various depths (10, 30, and 100cm)

under various weather patterns. In this study, different climatic parameters were applied as the

input variables. The researchers compared these results with those obtained using the tradi-

tional multiple linear regression (MLR) method and confirmed that SVR outperformed MLR

in accurately predicting ST at deeper layers. Feng et al. (2019) [19] utilized four distinct

machine learning tools to simulate ST at depths of 02, 05, 10, and 20cm. The findings indicated

that among the models tested, ELM demonstrated the highest level of performance across dif-

ferent time intervals for all depths. Additionally, they suggested that combining ELM with

other optimization algorithms could enhance the ST estimation at various depths.

A comparison was carried out by Alizamir et al. (2020) [41] using four different machine

learning methods for estimating monthly soil temperatures. These methods included extreme

learning machine (ELM), group method of data handling (GMDH), classification and regres-

sion trees (CART), and artificial neural networks (ANN). They utilized monthly climatic data

as inputs for their models. Overall, the findings revealed that ELM outperformed the other

techniques in accurately modeling monthly ST. Li et al. (2020) [42] introduced an innovative

approach to predict ST at various depths on an hourly basis. Their method involved utilizing a

deep bidirectional long short-term memory network (BiLSTM), which integrated multiple

meteorological factors as predictor parameters. To demonstrate the superiority of their

approach, they compared it against six benchmark algorithms: LSTM, BiLSTM, deep neural

network (DNN) from the deep learning (DL) approaches, as well as random forest (RF), linear

regression, and support vector regression (SVR), from conventional models.

Penghui et al. (2020) [43] introduced a novel approach called ANFIS-mSG, which combines

an ANFIS approach with optimization techniques using the mutation salp swarm algorithm

and grasshopper optimization algorithm. This model was utilized to predict daily ST based on

climatic data. The outcomes were compared to several models, including standalone ANFIS

and various hybridized types of ANFIS models.

Bayatvarkeshi et al. (2021) [44] conducted a research in Iran using data collected from 12

locations between 2000 and 2010. In the initial phase of the study, they examined the impact of

variation of climate on ST fluctuations at various depths (05, 10, 20, 30, 50, and 100cm). They

used temperature of air as the independent variable and ST as the dependent parameter. By

evaluation of the results of approaches for ST estimation, the findings suggested that the wave-

let transformation combined with CANFIS (WCANFIS) model demonstrated a high level of

predictive capability. Finally, the study indicates that the WCANFIS model has significant

potential for estimating ST, particularly in diverse climatic regions.

Alizamir et al. (2021) [45] evaluated the performance of a new Deep ESN model with three

classical approaches in predicting ST at depths of 10cm and 20cm. They created the Deep ESN

model by combining various important daily hydro-meteorological data in six various scenar-

ios from input parameters. To assess the accuracy of the ST models, they used three specific

measures. The evaluation results demonstrated that the Deep ESN model showed the best per-

formance compared to the classical methods, achieving a significant reduction of 30% to 60%

in the RMSE accuracy indicator compared to the traditional models at both studied locations.

Hao et al. (2021) [46] introduced a novel approach termed EEMD-CNN, which combines

ensemble empirical mode decomposition with a convolutional neural network. The objective

of this model was to estimate ST at depths ranging from 05cm to 30cm. In order to assess the

effectiveness of their suggested model, they compared it against three other models: persistence

forecast (PF), backpropagation neural network, and LSTM.

Malik et al. (2022) [47] investigated the prediction of daily ST at different depths. They

employed several hybrid strategies by combining SVM, MLP, and ANFIS by slime mould
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algorithm (SMA), particle swarm optimization (PSO), and spotted hyena optimizer (SHO). By

considering different input variables derived from daily meteorological parameters, five sce-

narios were created. The optimal scenario was determined through the gamma test (GT). The

performance of proposed integrative models was assessed through statistical indicators and

visual interpretation. The findings revealed that the SVM-SMA model exhibited superior esti-

mation precision in comparison with the other approaches for soil depths of 05cm, 15cm, and

30cm.

Imanian et al. (2022) [48] thoroughly evaluate the effectiveness of various AI methods in

predicting ST parameter. They considered different approaches, including both traditional

regression techniques and more advanced methods such as deep learning. Multiple variables

related to the land and atmosphere are used as inputs for the proposed paradigms. Through a

sensitivity analysis, the significance of each climate variable was determined, leading to a

reduction in the number of input variables from 8 to 7. The findings of this analysis demon-

strated that air temperature and solar radiation play a crucial role in ST estimation, while pre-

cipitation can be disregarded. Comparing the AI models confirmed that deep learning

achieves the highest performance, with an R-squared value of 0.980 and an NRMSE of 2.237%.

Following closely behind is the multi-layer perceptron model, which attains an R-squared

value of 0.980 and an NRMSE of 2.266%.

Farhangmehr et al. (2023) [49] devised a 1D convolutional neural network (CNN) model to

forecast hourly soil temperature at a depth of 0-7cm. The model was trained using eight hourly

climatic features spanning an entire year. Comparative analysis was conducted against a multi-

layer perceptron (MLP) model using diverse evaluation metrics. A sensitivity analysis revealed

that air temperature exerted the most significant influence on soil temperature prediction,

while surface thermal radiation had the least impact. The 1D convolutional model exhibited

superior performance to the MLP model, particularly under normal and hot weather condi-

tions. The study successfully showcased the capacity of this model to accurately forecast daily

maximum soil temperature.

Chawang et al. (2023) [50] conducted an evaluation of the Noah land surface model’s per-

formance in estimating soil moisture (SM) and soil temperature (ST) across India. The study

utilized 3-hourly data at resolutions of 5km and 10km. Various precipitation inputs, including

CHIRPS, GDAS, and IMERG, were considered, with CHIRPS yielding the best results at 5km

resolution, while IMERG performed optimally at 10km resolution. Notably, the inclusion of a

dynamic Greenness Vegetation Fraction in conjunction with IMERG enhanced the accuracy

of SM and ST by up to 25.21% and 8.36˚, respectively. The model exhibited improved perfor-

mance over clay, loam, and sandy clay loam soils, which encompass approximately 67% of

India’s land area. At 10km resolution, the model attained surface SM accuracy of 0.095 m3/m3

and ST accuracy of 4.22 K. Evaluation metrics demonstrated strong correlation, low root

mean square error, and minimal bias when compared to satellite SM data. These findings high-

light the potential of land surface models in estimating SM and ST across India.

In earlier surveys, a restricted number of climatic factors were typically utilized. However,

in the present study, a diverse array of weather parameters was applied. While numerous

investigations have implemented artificial intelligence algorithms, they mostly concentrated

on a limited set of weather variables, primarily air temperature. It is important to note that

there are numerous other weather data that influence ST at different depths.

The major objective of this study is to implement several efficient models for estimating soil

temperature in semi-arid continental climate. Therefore, this paper utilizes artificial intelli-

gence models on two distinct stations to assess their ability to adapt and perform well across

various levels of data complexity. The recommended methods are developed by considering

various relevant weather variables over a specific timeframe that aligns with the desired soil
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temperature time series at Sulaimani and Dukan stations, Kurdistan region, Iraq. Moreover, a

thorough analysis and evaluation of the modeling are conducted to ensure their effectiveness

and applicability using several metrics for performance evaluation. This study explores the

first time application of different artificial intelligence models including MLPNN, SVR, RFR,

and GPR methods to estimate ST using diverse climatic data at Dukan and Sulaimani stations

in Iraq. These innovative techniques demonstrate the ability to accurately estimate ST profiles

under different climatic conditions. By incorporating multiple climatic variables such as air

temperature, precipitation, humidity, and wind speed, these methodologies provide compre-

hensive insights into the dynamics of soil thermal behavior. The results enhance our under-

standing of the intricate relationships between climatic factors and ST, facilitating improved

precision in agricultural planning, environmental monitoring, and assessment of climate

change impacts.

The structure of this paper is as follows: Section 2 provides a detailed account of the data

utilized in the current study, along with an explanation of the mathematical basis for the

machine learning models employed. In Section 3, how models are evaluated is presented. Sec-

tion 4 of the study showcases the outcomes obtained from the proposed models, along with a

thorough evaluation of their effectiveness. Additionally, an in-depth analysis and discussion

regarding these findings is provided in section 5. In the end, Section 6 encompasses the pre-

sentation of conclusions of this study. To the best of the authors’ knowledge, this study is the

first to apply several artificial intelligence models in estimating soil temperature by considering

different climatic time series at Sulaimani and Dukan stations, Kurdistan region, Iraq.

2. Methodology and model development

In the present study, daily meteorological data were used to estimate soil temperature in two

different stations of Kurdistan region, Iraq. Four machine learning methods, MLPANN, SVR,

RFR, and GPR were used to estimate soil temperature time series. Moreover, in this study,

maximal air temperature, minimal air temperature, maximal air relative humidity, minimal air

relative humidity, precipitation, wind speed were applied as predictor parameters.

2.1 Study area and data used description

In this research, the effectiveness of proposed artificial intelligence models was evaluated at

Sulaimani and Duakan stations, Kurdistan region, Iraq (Fig 1). Tables 1 and 2 present the sta-

tistical features of the dataset utilized in this research, including mean (Xmean), maximum

(Xmax), minimum (Xmin), standard deviation (Sx), and coefficient of variation (Cv) of maximal

air temperature (Tmax), minimal air temperature (Tmin), maximal air relative humidity (Hmax),

minimal air relative humidity (Hmin), precipitation (P), wind speed (U2), and soil temperature

(ST) based on different soil depths (i.e., ST-05, ST-10, ST-20, ST-50, and ST-100) at Sulaimani

and Duakan stations. It can be judged from Table 1 that the standard deviation (Sx) for param-

eters of air relative humidity (Hmax and Hmin) presented higher values compared to other

meteorological parameters. Also, Tmax gave more extreme temperature than 46˚C at Sulaimani

station. It can be found from Table 2 that the Tmax supplied more severe temperature over

46˚C at Dukan station. In addition, the standard deviations of air relative humidity parameters

supported higher outputs compared to other meteorological parameters. For this research, the

data were split into 80% for training and 20% for testing to develop artificial intelligence

models.

As mentioned, In order to develop and evaluate artificial intelligence techniques for ST esti-

mation utilizing various climatic data, the Duakan and Sulaimani stations were selected as case

study sites due to their semi-arid continental climate. These stations offer distinct solar
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radiation, air temperature, humidity, wind speed, and rainfall patterns, providing diverse con-

ditions for the construction and assessment of ST estimation models. Furthermore, long-term

monitoring networks have provided high-quality ST measurements at different depths for

both stations. By constructing estimation models using data from these climatically contrast-

ing regions, the objective is to establish efficient models capable of precisely predicting ST

across a wide range of surface weather conditions. The evaluation of these models at the Dua-

kan and Sulaimani stations will not only appraise their achievement in various climate regimes

but also explore their potential widespread validity for global soil temperature estimation uti-

lizing readily available climatic data.

Due to climate of Iraq which is characterized by high temperatures, assessing the soil tem-

perature holds immense significance owing to its substantial influence on agricultural yield

and the development of plants. By keeping track of the ST, farmers and agricultural profession-

als are able to gather valuable information to guide them in making well-informed choices

regarding when to plant their crops, how to efficiently irrigate, and which types of crops are

best suited for their specific conditions at the Dukan and Sulaimani stations. In other words,

Fig 1. Map showing the location of Sulaimani and Dukan stations, Iraq (https://commons.wikimedia.org/wiki/File:Iraq_Base_Map.png).

https://doi.org/10.1371/journal.pone.0293751.g001
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having this knowledge enables farmers in Iraq to improve their agricultural methods, which in

turn can boost food production and security.

2.2 Gaussian Process Regression (GPR)

Gaussian Process Regression is a non-parametric and a non-linear regression modelling

method [51,52]. It produces a limited set of arbitrary variables. GPR applies non-parametric

Bayesian modelling, which contemplates the variance of the data set and the probability mar-

gin maximum in the training set, utilizing a scaled anisotropic Gaussian kernel function. GPR

is a kind of supervised learning method, and permits to identify the significant features of the

input variables [53]. Beside the assessing the relative contribution importance of applicable

bands or parameters in forecasting process. GPR is advantageous because of its uncomplicated

nature and precision [51]. Furthermore, GPR resists against the data overfitting [54]. Both the

mean [m(x)] and covariance/kernel [k (xi, xj)] functions, generally applied to describe the GPR

Table 1. Summary statistics of meteorological parameters and soil temperature at Sulaimani Station.

Parameters‘ Depth (cm) Unit Xmean Xmax Xmin Sx Cv

Tmax - ˚C 24.097 46.200 0.900 11.025 0.458

Tmin - ˚C 13.461 39.000 -5.900 9.083 0.675

Hmax - % 63.383 100.000 10.000 23.125 0.365

Hmin - % 35.931 97.000 6.000 21.548 0.598

U2 - m/s 1.292 30.000 0.000 1.466 1.134

P - mm 2.653 131.800 0.000 8.578 3.233

ST-05 05 ˚C 18.509 42.700 -8.000 10.661 0.576

ST-10 10 ˚C 18.384 39.700 1.600 10.098 0.549

ST-20 20 ˚C 18.134 37.800 1.900 9.671 0.533

ST-50 50 ˚C 18.868 34.800 1.500 8.464 0.449

ST-100 100 ˚C 19.299 31.300 7.700 6.900 0.358

[Abbreviations: Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation; Tmax: Maximal air temperature, Tmin: Minimal air

temperature, Hmax: Maximal air relative humidity, Hmin: Minimal air relative humidity, P: Precipitation, U2: Wind speed, ST: Soil temperatures at 05, 10, 20, 50 and 100

cm, respectively.

https://doi.org/10.1371/journal.pone.0293751.t001

Table 2. Summary statistics of meteorological parameters and soil temperature at Dukan station.

Parameters Depth (cm) Unit Xmean Xmax Xmin Sx Cv

Tmax - ˚C 25.383 48.000 1.000 12.091 0.476

Tmin - ˚C 15.400 34.000 -4.000 9.254 0.601

Hmax - % 66.325 100.000 18.000 19.250 0.290

Hmin - % 32.118 95.000 0.000 19.614 0.611

U2 - m/s 2.164 11.550 0.000 1.344 0.621

P - mm 1.633 67.800 0.000 6.118 3.747

ST-05 05 ˚C 17.621 38.000 -2.000 10.437 0.592

ST-10 10 ˚C 18.801 37.000 -5.000 9.984 0.531

ST-30 30 ˚C 21.215 42.000 -4.000 9.508 0.448

ST-50 50 ˚C 22.102 37.000 6.000 8.603 0.389

[Abbreviations: Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation; Tmax: Maximal air temperature, Tmin: Minimal air

temperature, Hmax: Maximal air relative humidity, Hmin: Minimal air relative humidity, P: Precipitation, U2: Wind speed, ST: Soil temperature at 05, 10, 30 and 50 cm,

respectively.

https://doi.org/10.1371/journal.pone.0293751.t002
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[55] as can be seen below:

f ðxÞ � GP½mðxÞ:kðxi:xjÞ� ð1Þ

The x in Eq (1) denotes each input vector. m(x) and k (xi, xj) can be stated as below, respec-

tively.

mðxÞ ¼ E½f ðxÞ� ð2Þ

kðxi; xjÞ ¼ cov½f ðxiÞ; f ðxjÞ� ð3Þ

Fig 2 shows the schematic flowchart of GPR method.

2.3 Multi-layer perceptron artificial neural network (MLPANN)

MLPANN rephrase this: Multilayer perceptrons (MLPs) are a highly effective type of super-

vised learning artificial neural network. They utilize the backpropagation algorithm to adjust

weights and reduce error. It comprises of three diverse layers, called input, hidden, and output

layer [56,57]. In this method, each separate neuron must be linked to all following layer neu-

rons, while the neurons should be arranged in a one-directional procedure, ultimately [45,58].

Fig 2. Gaussian Process Regression (GRP) architecture.

https://doi.org/10.1371/journal.pone.0293751.g002
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Fig 3 represents the flowchart of MLPANN. Weights are being used in various layer connec-

tion to each other, range from -1 to 1. There are some nodes in MLPANN, which have two

characters, named summation and activation [59]. Eq 4 can be utilized to calculate the input

products, weights, and the model bias by employing a summation function:

Sj ¼
Xn

i¼1

oijIi þ bj ð4Þ

where Sj is the summation function, n represents the number of inputs, input variable i can be

shown by Ii, while βj and ωij are bias term and connection weight, correspondingly. The

Fig 3. Multilayer perceptron neural network (MLPNN) architecture.

https://doi.org/10.1371/journal.pone.0293751.g003
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activation function, subsequently, can be derived from the output of the summation equation.

MLPANN has numerous forms of activation functions, which the utmost useful one is S-

shaped curved sigmoid function [60], and can be clarified mathematically as below:

fjðxÞ ¼
1

1þ e� Sj
ð5Þ

The last output of neuron j, eventually, could be calculated by means of below equation:

yi ¼ fið
Xn

i¼1

oijIi þ bjÞ ð6Þ

In Fig 3 the different steps of MLPANN method can be seen via its flowchart.

2.4 Random Forest Regression (RFR)

Random Forest Regression is a method, merges the act of various Decision Tree (DT) algo-

rithms in classification or prediction [61,62]. When RF receives (x) input vector, it constructs

a number K regression trees and means the outcomes. The RF regression predictor can be

stated mathematically as below:

f̂ K
rf ðXÞ ¼

1

K

XK

k¼1

TðXÞ ð7Þ

Bagging is a routine technique of RF to reduce the correlation among the different decision

trees. Bagging is applied in training data making via accidental resampling of the original data-

set by replacement procedure. Henceforth, some data might be utilized more than once in

training phase, whereas others may never be used, and it could make better stability, which

upsurges prediction accuracy consequently [63]. Conversely, during the tree growing, It

makes use of the best characteristic/breaking point within a specific group of supporting traits.

As a result, this might diminish the individual tree’s strength while concurrently weakening

the interdependence among them, meanwhile, that diminishes the generalization error, subse-

quently [63]. Moreover, The specimens not selected for training the kth tree in the bagging pro-

cedure are included as a fraction of an additional subset, known as the out-of-bag (OOB)

samples. OOB fundamentals are applied by the kth tree to assess the operation of model [64].

RF, in such cases, is able to compute an impartial estimate of generalization error without rely-

ing on the utilization of an external text data subset [63]. Fig 4 shows the different steps of RFR

model via a schematic flowchart.

2.5 Support Vector Regression (SVR)

Support Vector Regression is a kind of prevalent machine learning method which has accurate

outputs and low computation cost [65]. SVR is appropriate in treatment with insufficient data-

set [66]. SVR can handle nonlinear relations perfectly, and shows its effectiveness in generali-

zation process [67].

Support Vector Regression employs the utilization of kernel functions to execute a non-lin-

ear transformation technique, effectively mapping the initial input space into a novel hyper-

space. In mathematical terms, the SVR can be represented as outlined below:

f ðxÞ ¼ o:φðxÞ þ b ð8Þ

where φ(x), ω and b represent non-linearly transformed training dataset, weight vectors that

correspond to them, and the bias term, respectively. The coefficients (ω and b) are assessed via
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normalized risk function minimization, which can be represented as below:

RðCÞ ¼
C
n

Xn

i¼1

Lεðyi; f ðxiÞÞ þ
1

2
kok

2

ð9Þ

where:

Lεðyi; f ðxiÞÞ ¼
jf ðxiÞ � yij � ε; forjf ðxiÞ � yij � ε

0; otherwise
ð10Þ

(

The following controlled equation can be express as below:

C
Xn

i¼1

ðzi; z
∗
i Þ þ

1

2
kok

2
ð11Þ

subject

yi � ðoφðxiÞ þ biÞ � εþ zi

ðoφðxiÞ þ biÞ � yi � εþ z∗i
zi; z

∗
i � 0; i ¼ 1; . . . ; n

ð12Þ

8
>><

>>:

Fig 4. Random Forest Regression (RFR) architecture.

https://doi.org/10.1371/journal.pone.0293751.g004
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where 1

2
kok

2
and C

n

Pn
i¼1

Lεðyi; f ðxiÞÞ are the regularization term and empirical error, respec-

tively. whereas zi and z
∗
i are slack variables, representing the positive and negative errors at the

ith point, correspondingly. C is the penalty factor, while ε is the loss function. The constrained

optimization problem then could be answered by the Lagrangian and Karush-Kuhn-Tucker

condition methods. Fig 5 shows the schematic flowchart of SVR model.

3.Performance evaluation

In this study, four artificial intelligence models were applied for soil temperature at different

depths using several hydroclimatic data as input parameters. The outcomes of models were

compared using the following statistical indices including correlation coefficient (R), root

mean square error (RMSE), Nash-Sutcliffe (NS) efficiency, and mean absolute error (MAE):

R ¼
Pn

i¼1
ððSTÞio � ðSTÞioÞððSTÞip � ðSTÞipÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ððSTÞio � ðSTÞioÞ

2Pn
i¼1
ððSTÞip � ðSTÞipÞ

2
q ð13Þ

Fig 5. Support Vector Regression (SVR) architecture.

https://doi.org/10.1371/journal.pone.0293751.g005
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ððSTÞio � ðSTÞipÞ

2

n

s

ð14Þ

NS ¼ 1 �

Pn
i¼1
ððSTÞio � ðSTÞipÞ

2

Pn
i¼1
ððSTÞio � ðSTÞioÞ

2
ð15Þ

MAE ¼
1

N

XN

i¼1
jðSTÞio � ðSTÞipj ð16Þ

where n denotes the quantity of datasets. Also, (ST)io and (ST)ip indicate observed and esti-

mated values for soil temperature parameter at different depths.

4. Results

This article utilized the diverse meteorological parameters for predicting soil temperature (ST)

at Sulaimani and Dukan stations, Kurdistan region, Iraq. As described before, the assessment

of employed ML models (MLPNN, SVR, RFR, and GPR) for predicting ST based on the differ-

ent soil depths is the fundamental element of present research scheme. The predicting problem

is focused on 05, 10, 20, 50, and 100cm at Sulaimani station, while it is concentrated on 05, 10,

20, and 50cm at Dukan station, respectively

4.1 Prediction of soil temperature based on different soil depths at

Sulaimani station

4.1.1 Application of MLPNN, SVR, RFR, and GRP models. The predictive issues of dif-

ferent MLPNN models utilized in this article based on four evaluation indices (MAE, RMSE,

NSE, and R) are arranged in Table 3. The predictive assessments of MLPNN_10

(MAE = 1.371˚C, RMSE = 1.768˚C, NSE = 0.969, and R = 0.984) were more outstanding than

those of MLPNN_05, MLPNN_20, MLPNN_50, and MLPNN_100 from the training dataset.

Also, MLPNN_10 (MAE = 1.311˚C, RMSE = 1.695˚C, NSE = 0.972, and R = 0.986) performed

more excellent prediction than MLPNN_05, MLPNN_20, MLPNN_50, and MLPNN_100

clearly from the validation dataset.

Conditional on the diverse SVR models, SVR_10 (MAE = 1.596˚C, RMSE = 2.021˚C,

NSE = 0.959, and R = 0.980) supplied the best outputs compared to other SVR models from

the training dataset. In addition, SVR_10 (MAE = 1.506˚C, RMSE = 1.892˚C, NSE = 0.965,

and R = 0.983) gave the best outputs compared to other SVR models from the validation

dataset.

Dependent on the various RFR models, RFR_10 (MAE = 0.973˚C, RMSE = 1.269˚C,

NSE = 0.984, and R = 0.992) provided the topmost values compared to RFR_05, RFR_20,

RFR_50, and RFR_100 from the training dataset. As well, RFR_10 (MAE = 1.335˚C,

RMSE = 1.731˚C, NSE = 0.971, and R = 0.986) showed the topmost values compared to

RFR_05, RFR_20, RFR_50, and RFR_100 from the validation dataset.

Relying on the numerous GPR models, GPR_10 (MAE = 1.392˚C, RMSE = 1.787˚C,

NSE = 0.968, and R = 0.984) produced the highest values compared to GPR_05, GPR_20,

GPR_50, and GPR_100 from the training dataset. Furthermore, GPR_10 (MAE = 1.284˚C,

RMSE = 1.652˚C, NSE = 0.974, and R = 0.987) yielded the highest values compared to

GPR_05, GPR_20, GPR_50, and GPR_100 from the validation dataset.
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Comparing the models performance utilizing training and validation dataset based on

RMSE values (˚C) for MLPNN models, only MLPNN_10 utilizing validation dataset could

overcome the model performance of training dataset. In case of SVR and GPR models, the pre-

dicted outputs performed by SVR and GPR models at 05, 10, and 20cm soil depths employing

validation dataset could overwhelm the model performance of training dataset. Finally, no

RFR models using validation dataset could win model performance of training dataset. There-

fore, it can be judged that the model performance of training dataset was superior to that of

validation dataset at Sulaimani station clearly.

Fig 6(A)–6(E) illustrate the scatterplot of measured versus predicted soil temperature based

on the different soil depths from the validation dataset at Sulaimani station. Each scatterplot

consists of fitted line (solid), equal line (dotted), optimized regression equation, and determi-

nation coefficient, respectively. Relying on the values of determination coefficient, GPR_10

(R2 = 0.9737) furnished the maximum value compared to varied GPR models such as GPR_05,

GPR_20, GPR_50, and GPR_100 from the validation dataset. Also, MLPNN_10 (R2 = 0.9723)

recorded the best output compared to various MLPNN models including MLPNN_05,

MLPNN_20, MLPNN_50, and MLPNN_100 from the validation dataset. In addition, RFR_10

(R2 = 0.9716) supplied the topmost output compared to diverse RFR models such as RFR_05,

RFR_20, RFR_50, and RFR_100 from the validation dataset. As well, SVR_10 (R2 = 0.9655)

provided the highest value compared to different SVR models including SVR_05, SVR_20,

SVR_50, and SVR_100 from the validation dataset.

Based on the diverse models with 05cm soil depth, GPR_05 (R2 = 0.9714) showed the best

output compared to different models including MLPNN_05, RFR_05, and SVR_05 from the

validation dataset. In case of 10cm soil depth, GPR_10 (R2 = 0.9737) presented the highest

value compared to various models including MLPNN_10, RFR_10 and SVR_10 from the

Table 3. Performances of different ML models for soil temperature modelling: Sulaimani station.

Training Validation

Models R NSE RMSE

(˚C)

MAE

(˚C)

R NSE RMSE

(˚C)

MAE

(˚C)

MLPNN_05 0.984 0.968 1.897 1.453 0.984 0.969 1.901 1.472

MLPNN_10 0.984 0.969 1.768 1.371 0.986 0.972 1.695 1.311

MLPNN_20 0.983 0.966 1.771 1.374 0.982 0.964 1.837 1.393

MLPNN_50 0.965 0.931 2.197 1.686 0.964 0.929 2.289 1.766

MLPNN_100 0.913 0.834 2.718 2.156 0.907 0.822 3.069 2.455

SVR_05 0.979 0.958 2.165 1.681 0.983 0.965 1.993 1.563

SVR_10 0.980 0.959 2.021 1.596 0.983 0.965 1.892 1.506

SVR_20 0.977 0.955 2.044 1.616 0.978 0.957 2.026 1.575

SVR_50 0.957 0.915 2.439 1.910 0.955 0.913 2.542 1.996

SVR_100 0.894 0.799 2.993 2.403 0.905 0.818 3.097 2.488

RFR_05 0.992 0.983 1.382 1.043 0.985 0.969 1.881 1.460

RFR_10 0.992 0.984 1.269 0.973 0.986 0.971 1.731 1.335

RFR_20 0.991 0.982 1.279 0.976 0.982 0.964 1.858 1.400

RFR_50 0.982 0.965 1.571 1.183 0.961 0.923 2.382 1.841

RFR_100 0.958 0.917 1.929 1.509 0.913 0.833 2.972 2.372

GPR_05 0.983 0.966 1.955 1.506 0.986 0.971 1.814 1.402

GPR_10 0.984 0.968 1.787 1.392 0.987 0.974 1.652 1.284

GPR_20 0.982 0.965 1.798 1.402 0.983 0.967 1.773 1.327

GPR_50 0.964 0.930 2.215 1.706 0.964 0.929 2.296 1.759

GPR_100 0.912 0.832 2.736 2.173 0.918 0.842 2.891 2.316

https://doi.org/10.1371/journal.pone.0293751.t003

PLOS ONE Soil temperature estimation using artificial intelligent tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0293751 December 27, 2023 15 / 29

https://doi.org/10.1371/journal.pone.0293751.t003
https://doi.org/10.1371/journal.pone.0293751


validation dataset. From the Fig 6(C), GPR_20 (R2 = 0.9669) provided the topmost output

compared to particular models such as MLPNN_20, RFR_20, and SVR_20 from the validation

dataset. Considering 50cm soil depth, however, MLPNN_50 (R2 = 0.9294) furnished the maxi-

mum value compared to varied models such as GPR_50, RFR_50, and SVR_50 from the vali-

dation dataset. Recognizing 100cm soil depth, GPR_100 (R2 = 0.8422) yielded the top value

Fig 6. Scatterplot of measured versus predicted soil temperature of validation dataset for Sulaimani station and different soil depths: (a)

05cm, (b) 10cm, (c) 20cm, (d) 50cm, and (e) 100cm.

https://doi.org/10.1371/journal.pone.0293751.g006

PLOS ONE Soil temperature estimation using artificial intelligent tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0293751 December 27, 2023 16 / 29

https://doi.org/10.1371/journal.pone.0293751.g006
https://doi.org/10.1371/journal.pone.0293751


compared to divergent models such as MLPNN_100, RFR_100, and SVR_100 from the valida-

tion dataset.

4.1.2 Visual services for performances of machine learning models. To validate the pre-

dictive efficiency employing the different visual services, boxplot [68], violin plot [69], and spi-

der plot [70] were utilized to highlight the accomplishment of employed models. Boxplot can

be defined as a methodology for illustrating the skewness, spread, and locality of predicted val-

ues utilizing their quartiles [68,71]. Fig 7(A)–7(E) present the boxplots for employed models

with different soil depths from the validation dataset at Sulaimani station. It can be judged

from Fig 7(A) that GPR_05 slightly resembled the parameters of boxplot shape (such as lowest

value, first quartile, median, third quartile, and highest value) and the length (between top and

bottom points) of measured boxplot compared to MLPNN_05, SVR_05, and RFR_05 from the

validation dataset. Also, GPR_10 marginally featured the characteristics (i.e., parameters and

length) of measured boxplot compared to other ML models with the same soil depth (10cm)

from the validation dataset. As well, GPR_20 followed the components of measured boxplot

compared to corresponding ML models with identical soil depth (20cm) from the validation

dataset. In case of MLPNN_50 and GPR_50, the mentioned ML models matched the essences

of measured boxplot compared to SVR_50 and RFR_50 to some extent. Finally, on a small

scale, GPR_100 duplicated the various styles of measured boxplot compared to other ML mod-

els with equal soil depth from the validation dataset.

The violin plot, which underlines the probability spreading of measured and predicted soil

temperature with different soil depths, can be arranged as box diagram based on the control of

kernel density plot [69]. It can be assessed from Fig 8(A) that GPR_05 stressed the box frame

and mentioned values such as mean, median, maximum, and minimum of measured violin

Fig 7. Boxplots of measured and predicted soil temperature of validation dataset for Sulaimani station and different soil depths: (a) 05cm,

(b) 10cm, (c) 20cm, (d) 50cm, and (e)100cm.

https://doi.org/10.1371/journal.pone.0293751.g007
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plot compared to remaining ML models with same soil depth. Also, considering Fig 8(B),

GPR_10 emphasized the form and statistics of measured violin plot compared to MLPNN_10,

SVR_10, and RFR_10. In case of 20cm and 50cm soil depths from Fig 8(C) and 8(D), MLPNN

and GPR models followed the shape and diverse values of measured violin plot compared to

SVR and RFR models. In addition, Fig 8(E) explained that no models could coincide the frame

and standards of measured violin plot.

A spider plot can be described as a two-dimensional diagram for plotting the values of

diverse parameters [70]. In this research, four evaluation indices (i.e., R, NSE, RMSE, and

MAE) were allocated on 0, 90, 180, and 270 degrees based on polar coordinate system. It can

be evaluated from Fig 9(A)–9(E) that GPR models with diverse soil depths (05, 10, 20, 50, and

100cm) demonstrated the best values compared to other ML models with different soil depths.

Also, MLPNN_50 supplied the best output based on the applied ML models with 50cm soil

depth.

4.2 Prediction of soil temperature based on different soil depths at Dukan

station

4.2.1 Application of MLPNN, SVR, RFR, and GRP models. The predictive topics of

divergent MLPNN models adopted in this research based on four evaluation indices (i.e.,

MAE, RMSE, NSE, and R) are organized in Table 4. The predictive values of MLPNN_10

(MAE = 1.110˚C, RMSE = 1.481˚C, NSE = 0.978, and R = 0.989) were more excellent than

Fig 8. Violin plot of measured and predicted soil temperature of validation dataset for Sulaimani station and different soil depths: (a) 05cm,

(b) 10cm, (c) 20cm, (d) 50cm, and (e)100cm.

https://doi.org/10.1371/journal.pone.0293751.g008
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Fig 9. The spider plots showing the models performances of validation dataset for Sulaimani station and different soil depths: (a) 05cm,

(b) 10cm, (c) 20cm, (d) 50cm, and (e) 100cm.

https://doi.org/10.1371/journal.pone.0293751.g009

Table 4. Performances of different ML models for soil temperature modelling: Dukan station.

Training Validation

Models R NSE RMSE

(˚C)

MAE

(˚C)

R NSE RMSE

(˚C)

MAE

(˚C)

MLPNN_05 0.983 0.966 1.911 1.428 0.976 0.951 2.254 1.678

MLPNN_10 0.989 0.978 1.481 1.110 0.982 0.964 1.829 1.310

MLPNN_30 0.978 0.956 2.019 1.471 0.964 0.927 2.435 1.995

MLPNN_50 0.965 0.932 2.264 1.692 0.937 0.877 2.925 2.325

SVR_05 0.978 0.957 2.146 1.613 0.982 0.964 1.950 1.498

SVR_10 0.986 0.973 1.648 1.222 0.983 0.966 1.766 1.221

SVR_30 0.970 0.940 2.351 1.764 0.967 0.934 2.314 1.874

SVR_50 0.948 0.899 2.750 2.172 0.945 0.892 2.736 2.192

RFR_05 0.989 0.978 1.547 1.135 0.974 0.936 2.587 1.954

RFR_10 0.993 0.985 1.214 0.882 0.976 0.942 2.316 1.708

RFR_30 0.986 0.971 1.635 1.156 0.959 0.906 2.758 2.244

RFR_50 0.977 0.954 1.864 1.387 0.939 0.872 2.983 2.469

GPR_05 0.980 0.960 2.057 1.531 0.980 0.961 2.029 1.531

GPR_10 0.988 0.977 1.532 1.141 0.983 0.967 1.753 1.230

GPR_30 0.975 0.951 2.120 1.553 0.968 0.937 2.270 1.851

GPR_50 0.958 0.918 2.473 1.895 0.949 0.900 2.631 2.120

https://doi.org/10.1371/journal.pone.0293751.t004
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those of MLPNN_05, MLPNN_30, and MLPNN_50 from the training dataset. Furthermore,

MLPNN_10 (MAE = 1.310˚C, RMSE = 1.829˚C, NSE = 0.964, and R = 0.982) accomplished

more magnificent prediction than MLPNN_05, MLPNN_30, and MLPNN_50 obviously from

the validation dataset.

Among the diverse SVR models, SVR_10 (MAE = 1.222˚C, RMSE = 1.648˚C, NSE = 0.973,

and R = 0.986) provided the first-rate outcomes compared with other ML models from the

training dataset. As well, SVR_10 (MAE = 1.221˚C, RMSE = 1.766˚C, NSE = 0.966, and

R = 0.983) produced the outstanding values compared with other ML models from the valida-

tion dataset.

Contemplating the particular RFR models, RFR_10 (MAE = 0.882˚C, RMSE = 1.214˚C,

NSE = 0.985, and R = 0.993) yielded the outstanding values compared with RFR_05, RFR_30,

and RFR_50 from the training dataset. In addition, RFR_10 (MAE = 1.708˚C, RMSE = 2.316˚C,

NSE = 0.942, and R = 0.976) illustrated the top values compared with RFR_05, RFR_30, and

RFR_50 from the validation dataset.

Granting the diverse GPR models, GPR_10 (MAE = 1.141˚C, RMSE = 1.532˚C,

NSE = 0.977, and R = 0.988) furnished the maximal values compared with GPR_05, GPR_30,

and GPR_50 from the training dataset. Besides, GPR_10 (MAE = 1.230˚C, RMSE = 1.753˚C,

NSE = 0.967, and R = 0.983) presented the maximum values compared with GPR_05,

GPR_30, and GPR_50 from the validation dataset.

Relating the models performance employing training and validation dataset based on

RMSE values (˚C), SVR_05, SVR_30, and SVR_50 employing validation dataset could outper-

form the model performance of training dataset. In case of GPR models, the predicted outputs

performed by GPR_05 employing validation dataset could surpass the model performance of

training dataset. Finally, no MLPNN and RFR models employing validation dataset could

exceed model performance of training dataset. Therefore, it can be considered that the model

performance of training dataset was better than that of validation dataset at Dukan station.

Fig 10(A)–10(D) emphasize the scatterplot of measured versus predicted soil temperature

employing the particular soil depths from the validation dataset at Dukan station. Individual

scatterplot includes solid line (fitted), dotted line (equal), optimized regression equation, and

determination coefficient, respectively.

Dependent on the values of determination coefficient, GPR_10 (R2 = 0.9670) provided the

maximal output compared with diverse GPR models including GPR_05, GPR_30, and

GPR_50 from the validation dataset. As well, MLPNN_10 (R2 = 0.9644) represented the lead-

ing output compared with divergent MLPNN models such as MLPNN_05, MLPNN_30, and

MLPNN_50 from the validation dataset. Besides, RFR_10 (R2 = 0.9519) supported the highest

output compared with different RFR models including RFR_05, RFR_30, and RFR_50 from

the validation dataset. Furthermore, SVR_10 (R2 = 0.9663) supplied the topmost value com-

pared with various SVR models such as SVR_05, SVR_30, and SVR_50 from the validation

dataset.

Recognizing on the diverse models with 05cm soil depth, SVR_05 (R2 = 0.9637) yielded the

best output compared with particular models such as GPR_05, MLPNN_05, and RFR_05 from

the validation dataset. Considering 10cm soil depth, GPR_10 (R2 = 0.9670) supplied the high-

est value compared with different models such as MLPNN_10, RFR_10, and SVR_10 from the

validation dataset. Fig 10(C) explained that GPR_30 (R2 = 0.9378) furnished the topmost out-

put compared with diverse models including MLPNN_30, RFR_30, and SVR_30 from the vali-

dation dataset. Based on 50cm soil depth, GPR_50 (R2 = 0.9009) gave the top value compared

with diverse models including MLPNN_50, RFR_50, and SVR_50 from the validation dataset

at Dukan station.

PLOS ONE Soil temperature estimation using artificial intelligent tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0293751 December 27, 2023 20 / 29

https://doi.org/10.1371/journal.pone.0293751


4.2.2 Graphical assistances for performances of machine learning models. Fig 11(A)–

11(D) illustrate the boxplots for employed models with diverse soil depths from the validation

dataset at Dukan station. It can be assessed from Fig 11(A) that SVR_05 and GPR_05 slightly

featured the variables of boxplot shape and the length of measured boxplot compared with

MLPNN_05 and RFR_05 from the validation dataset. Besides, GPR_10 slightly followed the

characteristics of measured boxplot compared with other ML models (MLPNN_10, SVR_10, and

RFR_10) with the same soil depth (10cm) from the validation dataset. Also, GPR_30 matched the

components of measured boxplot compared with corresponding ML models (MLPNN_30,

SVR_30, and RFR_30) with identical soil depth (30cm) from the validation dataset. In case of

GPR_50, the addressed ML models coincided the essences of measured boxplot compared with

MLPNN_50, SVR_50, and RFR_50 slightly. Considering violin plots (Fig 12(A)–12(D)), it can be

evaluated that no models followed the box frame and diverse values including mean, median,

maximum, and minimum of measured violin plots based on all soil depths (05, 10, 30, and

50cm). Regarding the spider plot, it can be resolved from Fig 13(A)–13(D) that GPR models with

Fig 10. Scatterplot of measured versus predicted soil temperature of validation dataset for Dukan station and different soil depths: (a)

05cm, (b) 10cm, (c) 30cm, and (d) 50 cm.

https://doi.org/10.1371/journal.pone.0293751.g010
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specific soil depths (10, 30, and 50cm) provided the highest values compared with other ML mod-

els with 10, 30, and 50cm soil depths. In case of 05cm soil depth, however, SVR_05 furnished the

best output compared with the MLPNN_05, RFR_05, and GPR_05 from the validation dataset at

Dukan station.

5. Discussion

The present research carried out the predictive ability of soil temperature with the diverse soil

depths by employing different ML models at Sulaimani and Dukan stations, Iraq. Based on the

values of four statistical indices, the applied ML models with 10cm soil depth provided the best

output compared with the corresponding ML models with different soil depths at Sulaimani

(05, 20, 50, and 100cm) and Dukan (05, 30, and 50cm) stations.

It is worth to judge that GPR models with all soil depths furnished better efficiency for pre-

dicting soil temperature compared to other ML models (MLPNN, RFR, and SVR) with all soil

depths except for MLPNN_50 from the validation dataset at Sulaimani station. Furthermore,

NSE values covered from 0.842 to 0.974 for GPR models with all soil depths, while the corre-

sponding ranges were demonstrated as 0.822–0.972 (MLPNN), 0.818–0.965 (SVR), and 0.833–

0.971 (RFR) from the validation dataset at Sulaimani station.

Also, GPR models with 10, 30, and 50cm soil depths provided better accuracy for predicting

soil temperature compared with other ML models based on 10, 30, and 50cm. SVR_05, how-

ever, yielded the topmost accuracy for predicting soil temperature compared with

MLPNN_05, RFR_05, and GPR_05 from the validation dataset at Dukan station. As well, the

Fig 11. Boxplots of measured and predicted soil temperature of validation dataset for Dukan station and different soil depths: (a) 05cm, (b)

10cm, (c) 30cm, and d) 50cm.

https://doi.org/10.1371/journal.pone.0293751.g011
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field of NSE values was covered from 0.900 to 0.967 for GPR models with all soil depths,

whereas the matching fields were provided as 0.877–0.964 (MLPNN), 0.892–0.966 (SVR), and

0.872–0.942 (RFR) from the validation dataset at Dukan station.

Granting the best model based on individual NSE values, GPR_10, which provided the best

accuracy, enhanced the predictive efficiency of soil temperature by 0.21% (MLPNN_10),

0.93% (SVR_10), and 0.31% (RFR_10), respectively. Relying on the different soil depths,

GPR_10 also boosted the predictive precision of soil temperature by 0.31% (GPR_05), 0.72%

(GPR_20), 4.84% (GPR_50), and 15.68% (GPR_100) from the validation dataset at Sulaimani

station.

Regarding the topmost model dependent on the specific NSE values, GPR_10 increased the

predictive ability of soil temperature by 0.31% (MLPNN_10), 0.10% (SVR_10), and 2.65%

(RFR_10), respectively. Dependent on the various soil depths, GPR_10 enhanced the predic-

tive effectiveness of soil temperature by 0.62% (GPR_05), 3.20% (GPR_30), and 7.44%

(GPR_50) from the validation dataset at Dukan station.

The comparison of models performance utilizing training and validation dataset demon-

strated that the model performance of training dataset was more excellent than that of valida-

tion dataset at Sulaimani and Dukan stations clearly. To overcome this phenomenon based on

ML models, therefore, the previous researches investigated that model performance utilizing

validation dataset which embedded the good quality (e.g., maximum and minimum time

series) and abundant quantity (e.g., lots of data available) can provide the outstanding accuracy

for prediction issue [72–74].

Contemplating the prior reports and articles for predicting soil temperature utilizing the

various soil depths, ML, and DL models, similar investigations have been accomplished.

Fig 12. Violin of measured and predicted soil temperature of validation dataset for Dukan station and different soil depths: (a) 05cm, (b)

10cm, (c) 30cm, and (d) 50cm.

https://doi.org/10.1371/journal.pone.0293751.g012
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Alizamir et al. (2020) [41] employed the various ML models (ANN, ELM, CART, and GMDH)

for predicting monthly soil temperature based on the diverse soil depths, Türkiye. They found

that soil temperature with 05, 10, and 15cm soil depths could be predicted utilizing air temper-

ature. In case of soil temperature with 100cm soil depth, additional parameters such as wind

speed and solar radiation were required to enhance the prediction of ST. Alizamir et al. (2021)

[45] applied a DL (Deep ESN) and three ML (MLPNN, M5Prime, and RF) models for predict-

ing daily ST with the various soil depths, USA. Results explained that a DL model in this study

was superior to ML models for predicting daily soil temperature. Bayatvarkeshi et al. (2021)

[44] implemented the single (ANN and CANFIS) and hybrid ML models (WANN and

WCANFIS) to predict soil temperature, Iran. They indicated that one of hybrid models,

WCANFIS, provided the best accuracy for predicting soil temperature. Malik et al. (2022) [47]

Fig 13. The spider plots showing the models performances of the validation dataset for Dukan station and different soil depths: (a)

05cm, (b) 10cm, (c) 30cm, and (d) 50cm.

https://doi.org/10.1371/journal.pone.0293751.g013
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developed the ML models (SVM, MLP, and ANFIS) combined with the evolutionary algo-

rithms (SMA, PSO, and SHO) for predicting soil temperature in a semi-arid, India. They sug-

gested that SVM-SMA predicted soil temperature better than other models at different soil

depths (05, 15, and 30cm).

In this research, since the soil temperature prediction has spotlighted on the few artificial

intelligence approaches and soil depths, the current research for predicting soil temperature

may be acted as trivial. Thus, the continuous researches by employing different soil depths,

ML, and DL models are required to reinforce the predictive accuracy of soil temperature rely-

ing on the diverse meteorological parameters. As well, the hybrid approaches for combining

the evolutionary algorithm and data preprocess with artificial neural networks are recom-

mended to demonstrate the potential prediction of soil temperature.

6. Conclusion

Using an effective modeling tool can serve as a valuable resource for gaining insights into the

diurnal and annual fluctuations in ST at various depths. Therefore, this paper proposes several

models based on machine learning algorithms to estimate daily ST at two stations in Kurdistan

region, Iraq. The models allow analysing accurate soil temperature values as an important fac-

tor for calculating the majority of processes occurring within underground ecosystems such as

the processes of root development and respiration, control for the conversion and absorption

of nutrients by the roots of crops, breakdown of organic matter, and conversion of nitrogen

into mineral form in order to assist experts in making informed choices regarding soil health

and productivity. Therfore, in developing countries where acquiring data is difficult, applica-

tion of efficient models that require fewer resources are extremely important. In this study

results of medels compared using four evaluation metrics, including correlation coefficient (r),

root mean square error (RMSE), Nash-Sutcliffe (NS) efficiency, and mean absolute error

(MAE). In terms of RMSE, in Sulaimani station, GPR model produced the most accurate out-

comes compared to other approaches at depths of 5 cm (RMSE = 1.814˚C), 10 cm

(RMSE = 1.652˚C), 20 cm (RMSE = 1.773˚C), and 100cm (RMSE = 2.891˚C). Moreover, The

MLPANN exhibited the most superior performance at depth of 50 cm (RMSE = 2.289˚C) dur-

ing the testing phase. Similarly, In Dukan station, GPR model achieved the best results at

dephs of 10 cm (RMSE = 1.753˚C), 30 cm (RMSE = 2.270˚C), and 50 cm (RMSE = 2.631˚C).

Also, the SVR achieved the best performance at at depth of 5 cm (RMSE = 1.950˚C) during the

testing phase. Results of this research shows that the suggested method has the potential to esti-

mate daily soil temperature. Accurate predictions of soil temperature can assist in anticipating

and comprehending how ecosystems will react to climate change for development a reliable

adaptation and mitigation strategies. Additional investigation will place emphasis on employ-

ing ensemble-based models, hybrid methodologies, and deep learning algorithms in order to

make estimations of daily ST.
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