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Abstract Currently, the study of the geometry of semi-
Euclidean spaces is an urgent task of geometry. In the singular
parts of pseudo-Euclidean spaces, a geometry associated with
a degenerate metric appears. A special case of this geometry is
the geometry of Galileo. The basic concepts of the geometry
of Galilean space are given in the monograph by A. Artykbaev.
Here the differential geometry ”in the small” is studied, the
first and second fundamental forms of surfaces and geometric
characteristics of surfaces are determined. The derivational
equations of surfaces, analogs of the Peterson-Codazzi and
Gauss formulas are calculated. This paper studies the develop-
ment and isometry of surfaces in Galilean space. Moreover,
the isometry of surfaces in Galilean space is divided into
three types: semi-isometry, isometry and completely isometry.
This separation is due to the degeneracy of the Galilean space
metric. The existence of a development of a surface projecting
uniquely onto a plane in general position is proved, as well as
the conditions for isometric and completely isometric surfaces
of Galilean space. We present the conditions associated with
the analog of the Christoffel symbol, providing isometries of
the surfaces of Galilean space. An example of isometric, but
not completely isometric surfaces in G3 is given. The concept
of surface development for Galilean space is generalized. A
development of the surface is obtained, which is uniquely
projected onto the plane of the general position. In addition,
the Gaussian curvature of the surface has been shown to be
completely defined by Christoffel symbols.

Keywords Defects in Curvature, Development of Sur-
face, Galilean Space, Isometry of Surfaces, Uniquely Projected

1 Introduction

The geometry of the Galilean space refers to the geome-
try of spaces with degenerate metrics. The general theory
of spaces with projective metrics with degenerate and non-
degenerate metrics is given in the classic monograph ”Non-
Euclidean Spaces” by B.A. Rozenfeld [1] and O. Roschel [2].
The monograph by A. Artykbaev, D.D. Sokolov is devoted to
the study of specific problems of geometry ”in the whole” of
the Galilean space [3].

After 2000, a broad study of the geometry of the Galilean
space began. In this regard, the work of the Professor of the
Firat University M.E. Aydin and his students [4, 5], the work
of Professor M. Dede from A.Kilis University (Turkey) and his
students [6, 7], as well as the work of Professor D.W Yoon
[8, 9] from Gyeongsang National University (South Korea).

The theory of the surface of Galilean space is devoted to the
works of P. Bansal [10], K. Ilim [11], A. Kazan [12], Z.M.
Sipus [13], A. Fatma [14], Z.K. Yuzbasi [15]. In these works,
the differential geometry of Galilean space is studied.

In the study of the geometry of non-Euclidean spaces, the
superimposed space method is sometimes used, that is, the co-
ordinate system of the non-Euclidean space is considered the
coordinate system of the Euclidean space. Suppose the coordi-
nate system of the Galilean space is considered to be the Eu-
clidean system [16]. In that case, some of our results on isome-
try are a generalization of the concept of “isometry of surfaces
along a section” studied in the works of A. Sharipov [17, 18].

The notion of isometry in the metric of Galilean space also
differs from this notion in Euclidean space. The main reason is
that the distance is defined differently.

In this article, we obtain a development of a surface that
uniquely projects onto a plane in general position, study iso-
metric and completely isometric surfaces, and prove conditions
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for isometric and completely isometric surfaces of the Galilean
space.

2 Preliminaries
Let a three-dimensional affine space A3 be given, Oxyz is a

system of affine coordinates with origin at the point O(0, 0, 0)

and {⃗i, j⃗, k⃗} are basis vectors in this space.
The scalar product of vectors X⃗{x1, y1, z1} and

Y⃗ {x2, y2, z2} is determined by the formula,

(X⃗Y⃗ ) =

{
x1x2, if x1x2 ̸= 0,
y1y2 + z1z2, if x1x2 = 0.

(1)

Definition 1.1 An affine space in which the scalar product
of vectors X⃗ , Y⃗ is defined by formula (1) is called a Galilean
space and is denoted by G3.

The scalar product (1) is called the degenerate scalar prod-
uct. The degenerate scalar product of vectors appears in
pseudo-Euclidean spaces [3] due to the isotropy of vectors.

Let points A(x1, y1, z1) and B(x2, y2, z2) be points of the
Galilean space G3, and x1 ̸= x2. Then the vector

−−→
AB

−−→
AB{x2 − x1, y2 − y1, z2 − z1}

and

AB =
∣∣∣−−→AB∣∣∣ = √

(
−−→
AB ·

−−→
AB) = |x2 − x1| .

The distance between points A and B is equal to the length
of the projection of the vector

−−→
AB onto the axis Ox (see Fig.

1).

Figure 1. Distance between points A and B.

If x1 = x2 = x0, then vector
−−→
AB is parallel to

plane Oyz, and the distance between points A(x0, y1, z1) and

B(x0, y2, z2) is determined by the formula

AB = |
−−→
AB| =

√
(y2 − y1)2 + (z2 − z1)2.

Obviously, points A and B lie on the plane x = x0, and
the distance will be the Euclidean distance between the corre-
sponding points. Therefore, the geometry on the plane x = x0

of the Galilean space will be Euclidean, such planes are called
special planes of the Galilean space [3]. We consider curves
that do not have more than one point with special planes, and
surfaces that do not have special tangent planes.

The motion of the Galilean plane is a linear transformation:{
x′ = x+ a
y′ = hx+ y + b

−∞ < h < +∞

consisting of a parallel transfer to a vector a⃗ = (a; b) and a

transformation matrix A =

(
1 0
h 1

)
, where DetA = 1

[19, 20]. Matrix A will be an element of the Heisenberg group
[21, 22]. When in linear transformation a = b = 0, then{

x′ = x
y′ = hx+ y.

If x = x0 is a straight line parallel to the axis Oy, then the
linear transformation will have the following form:{

x′ = x0

y′ = hx0 + y.

x′ = x0 means that the straight line does not change, and from
equality y′ = hx0 + y the straight-line slides at a distance hx0

along the straight line itself (see Fig. 2).

Figure 2. Linear Transformation.

Let F be a surface of space G3 without special tangent
planes. We introduce a special system of curvilinear coordi-
nates. To do this, consider all possible intersections F with
special planes x = const.

We choose as curvilinear coordinates u = u0, a family
of curves formed by intersections of the surface with special
planes, and as coordinate lines v = v0 we choose arbitrary
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lines that form a network on the surface F . With this choice
of curvilinear coordinates, the surface equations will have the
form [3],

→
r =

→
r (u, v) = u

−→
i + y(u, v)

−→
j + z(u, v)

−→
k . (2)

In this case, vectors r⃗u, r⃗v form a basis in the tangent plane
of the surface, which is Galilean. The direction of the vector
r⃗v corresponds to the selected direction of the Galilean plane.

The vector equation of a line in Galilean space will look like
as:

→
r =

→
r (s) = s

−→
i + y(s)

−→
j + z(s)

−→
k .

Let a curve with equation v = v(u) be given on the surface
F . Consider the length of the curve on the surface. Calculating
the arc length of a curve segment with ends at points A(u0)
and B(u1), where u1 ̸= u0, we obtain that the differential of
the arc length is ds = |→r udu +

→
r vdv|. Therefore, the square

of the differential of the curve arc on the surface is equal to the
square of the increment of the coordinate,

ds2 = du2.

The resulting form is called the first fundamental form of the
surface. When du = 0, we have u = const. In this case, the
curve lies on a special plane. The curve arc length differential
is calculated by the formula,

ds22 = (y2v + z2v)dv
2 = G(u, v)dv2

where ds22 is the first additional fundamental form of the sur-
face. Therefore, for the chosen curvilinear coordinate, the co-
efficients of the first fundamental form have the form E =
1 , G = y2v + z2v .

Let two generic curves emerge from the point M(u0, v0) to
the surface, i.e., curves do not have a tangent parallel to special
planes. The corresponding differentials of the radius vectors
will be denoted by d

→
r and δ

→
r . The angle θ between the curves

is defined as the angle between vectors d
→
r and δ

→
r therefore,

θ =
√
G(u, v)(

dv

du
− δv

δu
).

Similarly, to the Euclidean case, one can introduce the con-
cept of surface domain. Let F be a smooth surface and D be
a domain on it. The surface domain is determined by the for-
mula,

S =

∫∫
D

√
G(u, v)dudv.

Let F be a regular surface given by the vector function (2)
in the Galilean space G3.

The normal of the tangent plane is the vector of the special
plane orthogonal to the vector r⃗v . Then the unit normal vector
is determined by formula

→
n = ± zv

→
e2 − yv

→
e3√

yv2 + zv2
= ±zv

→
e2 − yv

→
e3√

G(u, v)
.

The choice of sign corresponds to fixing the internal or external
normal.

The second fundamental form of the surface is called,

II = (d2
→
r
→
n) = Ldu2 + 2Mdudv +Ndv2,

where
L = (

→
ruu

→
n) = yuuzv−zuuyv√

G(u,v)
,

M = (
→
ruv

→
n) = yuvzv−zuvyv√

G(u,v)
,

N = (
→
rvv

→
n) = yvvzv−zvvyv√

G(u,v)
.

Half the value of the second fundamental form of the surface
expresses the main part of the deviation of the surface point
from the tangent plane. The distance from a surface point to a
tangent plane is measured along a special plane.

In [3], derivational surface formulas are defined, which are
analogous to the Frenet formulas. At each point of the regular
surface given by formula (2), there are three linearly indepen-
dent vectors

→
r u,

→
r v,

→
n , moreover, vector

→
r u is spatial, and

→
r v

and
→
n are parallel to the special plane. Vectors

→
r uu,

→
r uv,

→
rvv ,

as well as
→
nu ,

→
nv can be expanded in terms of basis vectors

→
r u,

→
r v,

→
n .Considering the parallelism of these vectors of the

special plane, analogs of the derivational formulas are defined
by:

→
r uu = Γ2

11

→
r v + L

→
n,

→
r uv = Γ2

21

→
r v +M

→
n,

→
r vv = Γ2

22

→
r v +N

→
n,

→
nu = −M

G

→
r v,

→
nv = −N

G

→
r v.

Values Γ2
ij – analogues of the Christoffel coefficients – have

the form:

Γ2
11 =

Fu − 1
2Ev

G
, Γ2

12 =
Gu

2G
, Γ2

22 =
Gv

2G
, (3)

where
F = yuyv + zuzv , E = y2u + z2u.

The condition for the integrability of derivational formulas
are the analogs of the Peterson-Codazzi equations:{

Lv −Mu = Γ2
12M − Γ2

11N,
Nu −Mv = Γ2

12N − Γ2
22M,

and Gauss

K =
LN −M2

G
=

1√
G

(
Fu − 1

2Ev√
G

)
v

− 1√
G

∂2
√
G

du2
. (4)

The expression Fu− 1
2Ev√
G

is called defect curvature of the sur-
face,

D(u, v) = Fu − 1

2
Ev.

Then D(u, v) = r⃗uu ·r⃗v = |r⃗uu|·|r⃗v| cosφ, |r⃗v| =
√
G(u, v),

where φ is the angle between vectors r⃗uu and r⃗v on the special
plane [3, 23].
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3 Main Results

3.1 Development a surface onto a plane

By analogy with Euclidean space [3], we define the concept
of a surface development in the Galilean space. The proper-
ties of the Galilean space metric make it possible to develop
a surface onto a plane in a way that the distance between two
points on the surface and the corresponding points on the plane
would be of the same order and would be equal in magnitude.
In this case, the location of the surface relative to the special
plane plays an important role, because when the surface is de-
veloped by a section along the special plane, points on the spe-
cial straight plane correspond. For convenience, we take plane
Oxy in space G3 as the development plane.

Definition 3.1.1. If there is a unique mapping between the
points of the surface F ⊂ G3 and the points of the domain
G on the plane Oxy, the distances between the corresponding
points are of the same order and are equal, then the domain G
is called the development of the surface F on the plane Oxy.

In Euclidean space, only convex polyhedra, cylindrical sur-
faces, and cones have a development. The degeneracy of the
Galilean space metric makes it possible to develop surfaces of
a wider class.

Theorem 3.1.1. The surface F ∈ G3 of width [a, b] and
uniquely projected onto the plane Oxy has a development G
on the strip a ≤ x ≤ b of the plane Oxy.

Proof. First, consider the surface F ⊂ G3 with the bound-
ary L and a single-valued projection onto the domain D of the
plane Oxy, and the points of the boundary L are projected onto
the boundary ∂D. Let us assume that A and B are the points
of the surface F , in which the planes x = a and x = b are the
reference planes of the surface. Then, by points A and B, edge
L splits into two curves L1 and L2.

The projections of points A and B in the plane Oxy will be
denoted by A∗ and B∗. Then the boundary ∂D of the domain
D is divided into two parts by points A∗ and B∗.

Let ∂D1 be a part of the edge of the domain D, the points
of which are the projection of the curve L1, that is, the points
of the edge L1 of the surface F are uniquely projected onto the
points ∂D1.

Let us consider the rays on the plane Oxy, whose origins are
the points ∂D1 and directed towards the domain D. On these
rays we set aside segments with a length equal to the length of
the section of the surface F with a special plane corresponding
to the direction of the ray. Then on the strip a ≤ x ≤ b a
certain domain G is formed with a width [a, b] and for each
plane x = x0 with a length equal to the length of the section of
the surface F by this special plane.

In contrast to Euclidean space, any surface that uniquely
projects onto a generic plane can be developed. This unfolding
is isometric to the surface in the sense of Galilean space.

Let D be a domain on the plane in general position Oxy,
whereD = {(x, y) ∈ G2 : a ≤ x ≤ b;φ1(x) ≤ y ≤ φ2(x)},
where φ1(x), φ2(x) are continuous functions in [a, b].

Let us consider a surface F : z = f(x, y) (x, y) ∈ D with
a boundary projected uniquely onto the boundary of domain
D.

Theorem 3.1.2. The surface F : z = f(x, y) is development
onto the domain G = {(x, y) ∈ G2 : a ≤ x ≤ b; 0 ≤ y ≤∫ φ2

φ1

√
1 + f2

y (x, y)dy} on the plane Oxy.
Proof. Obviously, the width of the surface F is equal to the

width of the domain D, that is, a ≤ x ≤ b is the width of F .
In isometry, surfaces with equal widths are considered.

When x = x0 ∈ [a, b], the section of the surface F by the
special plane x = x0 is some curve l(x0) on this special plane.
The length of this curve is calculated by formula,

φ(x0) =

∫ φ2(x0)

φ1(x0)

√
1 + f2

y (x0, y)dy.

Considering as curve l(x0) a segment with origin at point
(x0, 0) and length equal to φ(x0), where x0 is a point from
[a, b], we obtain an isometric domain G on plane Oxy, for
which the following holds true condition:

G = {(x, y) ∈ R1
2 : a ≤ x ≤ b;

0 ≤ y ≤
∫ φ2(x0)

φ1(x0)

√
1 + f2

y (x0, y)dy}.

The theorem has been proven.
Let us give an example of a development of the surface of

the Galilean space that satisfies the condition of the theorem.
Example 3.1.1. Let D : x2 + y2 = 1 and function z =√
1− x2 − y2. Then domain G is a semi-ellipse on the plane

Oxy given by equation y = π
√
1− x2(seeF ig.3).

Indeed, the width of the domain −1 ≤ x ≤ 1.
We calculate the integral

φ(x) =

∫ √
1−x2

−
√
1−x2

√
1 +

y2

1− x2 − y2
dx = π

√
1− x2.

Consequently, the surface z =
√
1− x2 − y2 is isometric

on the flat domain bounded by the abscissa axis to the semi-
ellipse given by equation y = π

√
1− x2 .

It is known [24] that a sphere in Euclidean space is inflexible.

3.2 Isometry of surfaces in G3

Let F be a bounded surface of the Galilean space. From
the general boundedness of the surface follows the bounded-
ness along the axis Ox. Therefore, the special planes given by
equation x = xi intersecting the surface F are also limited,
that is, there are numbers a and b such that a ≤ xi ≤ b. More-
over, the plane x = a limits the surface F on the left along the
axis Ox, and the plane x = b - on the right. Numbers a and b
can be unlimited.

Definition 3.2.1. The interval [a, b] is called the width of the
surface F in the Galilean space.

Definition 3.2.2. Semi-isometric surfaces are surfaces that
have equal widths.

There is a reasonably broad class of semi-isometric surfaces.
In addition, a one-to-one correspondence can always be estab-
lished between semi-isometric surfaces such that the distances
between the corresponding special planes intersecting the sur-
face F will be equal.
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Figure 3. Development of Surface.

Definition 3.2.3. Semi-isometric surfaces are called isomet-
ric if, in the corresponding sections of special planes, the map-
pings are isometric.

When the surfaces are semi-isometric, that is, equal to their
widths, then in equation (2) the parameters can be chosen to be
the same for both surfaces. The isometry of the section means
that, under u = u0, equality,∫ v

v0

√
G1(u0, v)dv =

∫ v

v0

√
G2(u0, v)dv.

is satisfied. It follows from this equality that G1(u0, v) =
G2(u0, v), that is, the coefficients of the first fundamental
forms of the surfaces are equal.

Therefore, we can conclude that it is possible to choose the
coordinate lines of isometric surfaces so that they have the
same first fundamental forms.

Let us give an example of isometric surfaces. Consider the
surfaces given by equations,

F1 : z =
1

2
(x2 + y2);F2 : z =

1

2
(2x+ y2).

Let’s calculate the coefficients of the first fundamental
forms, as well as the curvature defect of surfaces F1 and F2.
The coefficients of the first fundamental forms of surfaces
G1(x, y) = G2(x, y) = 1+y2 are equal. The curvature defects
of surfaces D1(x, y) = x and D2(x, y) = 0 are not equal.
Therefore, there are surfaces with various curvature defects.

For a geometric representation, consider an example of
semi-isometric but not isometric surfaces in Galilean space.

Figure 4. Surfaces.

Consider two cylindrical surfaces z = x2 and z = y2 de-
fined in domain D{−1 ≤ x ≤ 1, −1 ≤ y ≤ 1}.

If we consider these surfaces as surfaces of Euclidean space,
then it is easy to see that they are equal. Transformation x′ =
y, y′ = x can transform the first surface into the second one.
Obviously, this equality implies that they are isometric.

In Galilean space, these surfaces are semi-isometric, but not
isometric. Of course, these surfaces are not equal.

We will show the proof of these arguments in the figures (see
Fig. 4 and 5).

First, consider the vector equations of these surfaces and
their graph: Surfaces are given by equations,

−→r1(u, v) = u⃗i+ vj⃗ + u2k⃗ ; −→r2(u, v) = u⃗i+ vj⃗ + v2k⃗ .

Their domain of definition is the domain D{−1 ≤ u ≤
1, −1 ≤ v ≤ 1}.

Consider the bending of these surfaces onto the plane, that is,
a unique mapping of the surface onto the plane that preserves
the distance between the corresponding points and the order.

The first surface −→r1(u, v) is mapped onto the D, domain
which is the domain of the surface function. The second sur-
face −→r2(u, v) is mapped onto the domain D∗{−1 ≤ u ≤
1, −l ≤ v ≤ l}. Here l =

∫ 1

−1

√
1 + 4v2dv is the length

of the parabola.
A feature of the isometry of the surface of the Galilean space

can be seen in the mapping of triangles OAB, OCD onto the
corresponding surfaces. In Galilean space, triangles OAB and
OA∗B∗, as well as OCD and OC∗D∗ are equal to each other.

For comparison, recall that in Euclidean space a metric with
positive Gaussian curvature uniquely defines a convex surface.
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Figure 5. Development of Surface.

Therefore, the isometry of surfaces in the Galilean space is not
sufficient for solving problems about the unique definiteness
of a surface. In this connection, we introduce the notion of
complete isometry.
Definition 3.2.4. Isometric surfaces are called completely iso-
metric if their curvature defects are equal at the corresponding
points.

Let us be given the Christoffel symbols Γ2
11, Γ2

12, Γ2
22 of

the surface of the Galilean space.
Lemma 3.2.1. If differentiable functions X(u, v), H(u, v) are
given, which are the Christoffel coefficients of the surface F
in G3, then the coefficient of the first fundamental form of the
surface F can be found.
Proof. Let Γ2

12 = X(u, v) and Γ2
22 = H(u, v) be given differ-

entiable functions that are, respectively, the Christoffel coeffi-
cients of some surface F from G3. Then by the formula of the
Christoffel coefficients{

Gu(u,v)
2G(u,v) = X(u, v),
Gv(u,v)
2G(u,v) = H(u, v).

It is easy to check that,

∂X(u, v)

∂v
=

∂H(u, v)

∂u
=

GuvG−GuGv

2G2
.

It follows that the differential equation

X(u, v)du+H(u, v)dv = 0,

is a differential equation in total differentials. Solving this
equation by the known method [25], we obtain function
G(u, v) – the coefficient of the first fundamental form of the
surface F in G3.
Theorem 3.2.1. Surfaces with equal coefficients Γ2

12, Γ2
22 are

isometric.
The proof of the theorem follows from Lemma 3.2.1. When

Γ2
12, Γ2

22 is given, coefficient G(u, v) is uniquely determined.
When the coefficients of the first fundamental form G(u, v) are
equal for two surfaces, these surfaces are isometric.

Theorem 3.2.2. Surfaces with equal coefficients
Γ2
11, Γ2

12, Γ2
22 are completely isometric.

Proof. When the coefficients Γ2
12, Γ2

22 are equal, the coef-
ficient of the first fundamental form G(u, v) can be deter-
mined. Using the coefficient Γ2

11, one can determine D(u, v)
- the surface curvature defect. Under given initial conditions,
these coefficients are uniquely determined. This means that the
Christoffel symbols are equal, that is, for their equality it is suf-
ficient that the coefficients of the first fundamental forms and
surface defects are equal. As a definition, surfaces are com-
pletely isometric.
Lemma 3.2.2. The Gaussian curvature of the surface of
a Galilean space is completely determined by one of the
Christoffel symbols Γ2

12:

K = −
(
Γ2
12

)2 − (
Γ2
12

)
u
, if D(u, v) = 0. (5)

Proof. From the following equality Γ2
12 = Gu

2G we get the
derivative according to u:

(
Γ2
12

)
u
=

(
Gu

2G

)
u

=
GuuG−G2

u

2G2
=

= −G2
u − 2GuuG

4G2
− G2

u

4G2
= −K −

(
Γ2
12

)2
if we find the Gaussian curvature K from the last equation, we
get the equation (5):

K = −
(
Γ2
12

)2 − (
Γ2
12

)
u
.

If D(u, v) = 0 is the case, it is reminiscent of the metric
in the semi-geodesic coordinate system on the surface in the
Euclidean space.
Lemma 3.2.3. The Gaussian curvature of the surface of the
Galilean space, if D(u, v) ̸= 0, then is completely determined
by the Christoffel symbols:

K =
(
Γ2
11

)
v
+ Γ2

22Γ
2
11 −

(
Γ2
12

)
u
−

(
Γ2
12

)2
. (6)

Proof. Let us be given Christoffel symbols (3) with equality.
Let’s write the Gaussian curvature from this equation (4) as
follows:

K = 1√
G

(
D(u,v)√

G

)
v
− 1√

G
∂2

√
G

du2 = 2Dv(u,v)G−GvD(u,v)
2G2 −

G2
u−2GuuG

4G2 = Dv(u,v)
G − Gv

2G · D(u,v)
G − G2

u−2GuuG
4G2 that is

K =
Dv(u, v)

G
− Gv

2G
· D(u, v)

G
−

(
Γ2
12

)2 − (
Γ2
12

)
u

(7)

Here φ = D(u, v) = Fu − 1
2Ev is the defect curvature.

From the following equality Γ2
11 = D(u,v)

G we get the
derivative according to v:(

Γ2
11

)
v
=

(
D(u,v)

G

)
v
= Dv(u,v)G−GvD(u,v)

G2 = Dv(u,v)
G −

−Gv

G · D(u,v)
G = Dv(u,v)

G − Gv

2G · D(u,v)
G − Gv

2G · D(u,v)
G .

Let’s write the last equation as,

Dv(u, v)

G
− Gv

2G
· D(u, v)

G
=

(
Γ2
11

)
v
+

Gv

2G
· D(u, v)

G
=
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=
(
Γ2
11

)
v
+ Γ2

22Γ
2
11.

Then if we use (7), we get (6),

K =
(
Γ2
11

)
v
+ Γ2

22Γ
2
11 −

(
Γ2
12

)
u
−
(
Γ2
12

)2
.

So, if Christoffel symbols are given in Galilean space, the
Gaussian curvature of the surface can be found.

4 Conclusions
The article is theoretical in nature. The results and methods

presented in the article can be used in the preparation of spe-
cial courses on differential geometry and topology, and are also
used in scientific research of staff and students.

This article is devoted to the development and isometry of
surfaces in Galilean space G3. The main results are as follows:

*The concepts of semi-isometry, isometry, and complete
isometry in Galilean space are introduced.

*The concept of surface unfolding is generalized for
Galilean space.

*Isometric and completely isometric surfaces are studied.
*Conditions for the isometricity of surfaces in the Galilean

space are determined.
*A development of the surface is obtained, which is uniquely

projected onto a plane in a general position.
*The conditions for isometricity and complete isometricity

of surfaces of the Galilean space are proved.
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