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Abstract:  

The introduction of the Galilean plane within the affine plane parallels the 

familiar concepts of the Euclidean plane, extending the realm of geometric 

exploration. The fundamental concepts of lines, triangles, squares, and circles 

are important in both planes, allowing for a smooth transition between these 

mathematical environments. The noteworthy aspect is the discovery that cycles 

in the Galilean plane have properties similar to circles in the Euclidean plane. 

This paper contributes to the mathematical literature by carefully deriving and 

establishing features of cycles in the Galilean plane, exhibiting their startling 

resemblance to Euclidean circles. The use of the inscribed angle as an alternative 

definition of the circle is particularly insightful, providing a faster and more 

intuitive explanation of some findings than the usual definition. Such 

comparative assessments not only broaden our understanding of various 

geometries but also give us chances to streamline the learning process. The paper 

argues for the inclusion of Galilean geometry in the high school curriculum by 

highlighting these parallels. It implies that exposing students to various 

geometrical systems not only broadens their mathematical perspectives but also 

fosters a larger and more inclusive vision of the subject, potentially inspiring 

increased interest and acknowledgment of Galilean geometry among students. 
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1. Introduction 

Researchers have looked into and discussed the subject of teaching and learning geometry to high 

school students on various platforms. Despite having many applications within and outside 

mathematics, geometry has limitations in teaching and learning at different educational levels. I'd like 

to dwell on the Galilean plane to make an exciting difference. 

The fundamental feature of Galilean geometry is its relative simplicity, which allows students to study 

it in depth without wasting much time or intellectual energy. To put it another way, the simplicity of 

Galilean geometry facilitates its overall growth, and significant development of a new geometric 

system is required before it can be effectively compared to Euclidean geometry. Furthermore, a 

comprehensive outcome will likely give the learner psychological security and a consistent research 

structure. Another distinguishing feature of Galilean geometry is that it demonstrates the beneficial 

geometric idea of duality. For these reasons, I believe that a mathematics program for teachers' colleges 

should include a comparative study of three simple geometries, namely Euclidean geometry, the 

geometry associated with the Galilean principle of relativity, and the geometry associated with 

Einstein's principle of relativity, as well as an introduction to the specific theory of relativity [1]. 
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Finally, the term "Galilean geometry" is historically inaccurate: Galileo, whose works date from the 

early 17th century, was unaware of this geometry, whose discovery was inevitably preceded by one of 

the 19th century's most significant intellectual successes, the creation of the idea that numerous 

acceptable geometric systems exist. A more precise designation would be "the geometry associated 

with the Galilean principle of relativity." Because this name is too long to be used repeatedly, we 

regretfully chose to use the term "Galilean geometry." This moniker is partly justified by Galileo's 

outstanding clarity and completeness in formulating his theory of relativity, which leads straight to the 

non-Euclidean geometry discussed in this article [2],[3]. 

The Galilean [1], [4] plane is conceivable in the affine plane, and the distance between two points was 

defined as the projection of the points on the x-axis. If the projection of the abscissas is equal to zero, 

the length is equivalent to the projection of the point on the y-axis. For this, lines parallel to the y-axis 

are drawn, called special lines in the Galilean plane.  

As it is known, the geometric location of the points equidistant from the given point in the Euclidean 

plane is called the circle. If we look at the geometric location of the points providing this description 

in the Galilean plane, it will be seen that these are two lines parallel to the y-axis. So, the circle consists 

of two special straight lines in the Galilean plane.  

We can also define the circle in the Euclidean plane as the geometric location of the points seen by the 

line segment’s exact perimeter. If we look at the geometric location of the points in the Galilean plane 

that satisfy this definition, it will be seen as a parabola whose y-symmetry axis is a special line.  

Now let's try to remember these two features in the Euclidean plane that we have read and learned and 

have been doing lots of exercises on. As you know, a tangent is a line in the plane of a circle that 

intersects the circle at exactly one point. Tangent lines to circles from the subject of several theorems 

play an essential role in many geometrical constructions and proofs. Since the tangent line to a circle 

at any point, A is perpendicular to the radius to that point, theorems involving tangent lines often 

involve radial lines and orthogonal circles. 

2. Methodology  

In this section, the basic information will be given about the tangent and secant lines to circles 

described by Euclidean geometry. 

Theorem 2.1 Two congruent right triangles are formed by two tangent segments drawn from the same 

point outside the circle and have the same length [5].  

 

 

 

   

 

 

𝐵 

𝐶 

𝐴   𝑂  

Figure 1: Tangent Segments 



Eurasian J. Sci. Eng., 9(3) (2023), 99-107                                                                                                                       101 
  

 

This aim is to prove that 𝐴𝐶 = 𝐴𝐵  in ∆𝑂𝐶𝐴  and ∆𝑂𝐵𝐴. This can be shown briefly and practically 

as follows: 

Step 1. 𝑂𝐶 = 𝑂𝐵 (radii) 

Step 2. ∠𝑂𝐶𝐴 =  ∠𝑂𝐵𝐴 = 900 (𝑂𝐶 ⊥ AC, 𝑂𝐵 ⊥ AB  

Step 3. 𝑂𝐴 is common to both triangles. 

∆𝑂𝐶𝐴 ≡ ∆𝑂𝐵𝐴   (Right angle, Hypotenuse, Side) 

∴ 𝐴𝐶 = 𝐴𝐵  

 

As you know again, a line that intersects a circle at exactly one point is called a tangent, and the point 

where the intersection occurs is called the point of tangency. The tangent is always perpendicular to 

the radius drawn to the point of tangency. 

Theorem 2.2 Suppose the tangent and secant segments are drawn to a circle from an exterior point. In 

that case, the square of the measure of the tangent segment is equal to the product of the measures of 

the secant segment and its external secant segment [6].   

 

 

 

 

 

 

 

Given that 𝐴𝐵 is a tangent, and 𝐴𝐶𝐷 is a secant segment.  

This aim is to prove that 𝐴𝐵2 = 𝐴𝐶. 𝐴𝐷, and this can be shown briefly and practically as follows: 

Step 1. Draw 𝐵𝐷̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  in ∆𝐴𝐶𝐵  and ∆𝐴𝐷𝐵  

Step 2. ∠𝐴𝐵𝐶 =  ∠𝐴𝐷𝐵  (Alternate segment angle) 

Step 3. ∠𝐵𝐴𝐶 =  ∠𝐵𝐴𝐷  (Common angles) 

Step 4. ∴ ∆𝐴𝐶𝐵~∆𝐴𝐷𝐵   (A-A similarity) 

 

𝐴𝐵

𝐴𝐷
=

𝐴𝐶

𝐴𝐵
⇒ 𝐴𝐵2 = 𝐴𝐶. 𝐴𝐷 

Hence, it is proven. 

We can remember that the proofs of the features we tried to explain briefly above and that we did 

many exercises on them in our geometry lessons were also shown to us easily and understandably by 

our teachers. 

We can examine the states of these properties, which we learned in the Euclidean plane, in the Galilean 

plane as follows. Before that, I would like to share more information about the concept of distance in 

the Galilean plane. After this preliminary, we can dwell on the distance concept in the Galilean plane 

and continue with the following definitions. 

𝐵 

𝐶 

𝐴 

𝐷 

Figure 2: Tangent and Secant segments  



Eurasian J. Sci. Eng., 9(3) (2023), 99-107                                                                                                                       102 
  

 

The simplest of non-Euclidean geometry on the plane is Galilean geometry. It is enough for students 

to grasp the basic concepts of Euclidean geometry and the features of the coordinate system to visualize 

Galilean geometry. The point, straight line, and parallelism in Galilean geometry are the same as in 

Euclidean geometry. The only difference between these geometries is the different definitions of the 

distance between two points.  

Let’s take the distance between two given points 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2) as follows; 𝑑1 = |𝑥2 − 𝑥1| , 

if 𝑑1 = 0 then 𝑑2 = |𝑦2 − 𝑦1|. If 𝑑1 = 0 and 𝑑2 = 0  then 𝐴 = 𝐵. Therefore, it may be concluded that 

these points coincide [1]. It can be phrased to help students understand it more practically as follows: 

𝑑 = {
|𝑥2 − 𝑥1| ,  𝑥2 ≠ 𝑥1;
|𝑦2 − 𝑦1|,  𝑥2 = 𝑥1.

 

This distance in the Galilean plane 𝐺2 has its meaning in the Euclidean plane 𝐸2. The projection of 

the cross-section connecting the two points on the 𝑂𝑥 axis. If the projection on the 𝑂𝑥 axis is a point, 

then the projection on the 𝑂𝑦  axis is obtained. 

Definition 2.1 The geometric location of the points seen by the unchanging perimeter of the non-

special line segment given in the geometric plane is called the cycle [7]. We can consider the cycle in 

the Galilean plane to confirm the definition of the circle in Euclidean geometry.  

If the 𝑥𝑂𝑦 coordinate system is given in the Galilean plane, the cycle equation is written as 𝑦 = 𝑎𝑥2 +

𝑏𝑥 + 𝑐 [8]. 

Using the parallel shift method of the coordinate axes, we can write the cycle equation in a simpler 

view. In a truthful way,  

𝑦 = 𝑎(𝑥2 + 2
𝑏

2𝑎
𝑥 +

𝑏2

4𝑎2
) + 𝑐 −

𝑏2

4𝑎
 ⇒ 𝑦 = 𝑎(𝑥 +

𝑏

2𝑎
)2 −

𝑏2 − 4𝑎𝑐

4𝑎
 

⇒ 𝑦 +
𝑏2 − 4𝑎𝑐

4𝑎
= 𝑎(𝑥 +

𝑏

2𝑎
)2

 

can be obtained. Here, 

{
𝑋 = 𝑥 +

𝑏

2𝑎

𝑌 = 𝑦 +
𝑏2 − 4𝑎𝑐

4𝑎

 

shifting the coordinates head gives the equation for the simple form of the cycle 𝑦 = 𝑎𝑥2. The cycle's 

axis of symmetry is 𝑥 =
𝑏

2𝑎
 a special line. As is commonly understood, motion in the Galilean plane 

[4], 

{
𝑋 = 𝑥 + 𝑥0

𝑌 = ℎ𝑥 + 𝑦 + 𝑦0
 

it consists of changing the lines of the 𝑦 -parallel and is formed by turning it to the ℎ  angle. Now let's 

try to prove these properties of the cycle. 
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𝐴′ 𝑀′ 𝐵′ O 

𝐵 

𝑦 

𝑥 

𝑀(𝑥0, 𝑦0) 

𝐴 

Figure 3: Cycle with tangent lines 

3. Properties 

Property 3.1 𝑎 is a constant variable with a cycle coefficient. Here the coefficient 𝑎 is also called the 

radius of the cycle [1].    

If 𝑎 = 0 so, the cycle would be an ordinate axis. If the radius 𝑎 > 0 of the cycle is in the direction of 

the ordinate axis, if 𝑎 < 0, the cycle is in the opposite direction to the ordinate axis.  

Of course, the cycle divides the Galilean plane into two regions. If 𝑎 > 0, the region located in the 

positive direction of the plane axis is called the inner region of the cycle, the second part of the plane 

is called the outer region of the cycle. 

Property 3.2 Any two tangent lines can be drawn from the point 𝑀(𝑥0, 𝑦0) that is outside the cycle. 

For this, let’s take the cycle 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and the point 𝑀(𝑥0, 𝑦0) outside the cycle. The line 

equation which passes through the point 𝑀(𝑥0, 𝑦0) is 𝑦 − 𝑦0 = 𝑘(𝑥−𝑥0).  

 

 

 

 

 

 

 

 

 

𝑀′𝐴′ = 𝑀′𝐵′ 

Intersecting points of this line with the cycle  

{
𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑦 = 𝑘(𝑥 − 𝑥0) + 𝑦0
 

is the solution of the system given above. From here, for the abscissa of the intersection points,  

(1)       𝑥1,2 =
(𝑘−𝑏)±√(𝑘−𝑏)2−4𝑎(𝑐+𝑘𝑥0−𝑦0)

2𝑎
 

we can form the result. For the line to be tangent to the cycle, the intersection points must overlap. 

That is, the system must have a solution. 

From here, to be 𝑥1 = 𝑥2,   

(𝑘 − 𝑏)2 − 4𝑎(𝑐 + 𝑘𝑥0 − 𝑦0) = 0  or  𝑘2 − 2(𝑏 + 2𝑎0)𝑘 + 𝑏2 − 4𝑎(𝑐 + 4𝑎)𝑦0 = 0 

should be.  
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Thus the coefficient of tangent angle;  

(2)    𝑘1,2 = (𝑏 − 2𝑎𝑥0) ± √4𝑎(𝑎𝑥0
2 + 𝑏𝑥0 + 𝑐 − 𝑦0)     

                   

If 𝑎 > 0 and 𝑎𝑥2 + 𝑏𝑥0 + 𝑐 − 𝑦0 > 0, then the equation would have two different 𝑘1 ≠ 𝑘2 solutions. 

Because the given point 𝑀(𝑥0, 𝑦0) is outside the cycle, this requirement was completed. Hence, the 

second property was proved too. 

Property 3.3 The tangent lines can be drawn to a cycle from a point that is outside of the cycle. Thus 

the lengths of the segments from a point that is outside of the cycle to the two tangent points are equal. 

Let's clarify the tangency points of the tangents drawn from the given point 𝑀(𝑥0, 𝑦0) to the cycle. 

For this, by adding the values of  𝑘1 and 𝑘2 in (1) to the equality (2) if we determine the abscissa, 

𝑥1,2 = 𝑥0 ± √
1

𝑎
(𝑎𝑥0

2 + 𝑏𝑥0 + 𝑐 − 𝑦0)  

obtained. 

The distance from the point  𝑀(𝑥0, 𝑦0) to the distance of tangency points,  

(3)   |𝑥1 − 𝑥0| = |𝑥2 − 𝑥0| = √
1

𝑎
(𝑎𝑥0

2 + 𝑏𝑥0 + 𝑐 − 𝑦0)    

exists with this equation, and this equation shows the proof of property. 

Property 3.4  Let the point 𝐿 be given outside the cycle, and 𝐿𝐴 line that intersects the point 𝐴 and 𝐵 

is drawn. For the given cycle 𝐿𝐴. 𝐿𝐵  depends on only the point 𝐿.  

 

 

 

 

 

 

 

 

𝐿𝐴. 𝐿𝐵 = 𝐿𝑀2 

If we show the coordinates of point 𝐿  by (𝑥0, 𝑦0), and the coordinates of the point 𝐴 and 𝐵 by (𝑥1, 𝑦1), 

(𝑥2, 𝑦2) then  𝑥1, 𝑥2  is confirmed by the equation (1). 

From here, since 𝐿𝐴 = |𝑥0 − 𝑥1|, and 𝐿𝐵 = |𝑥0 − 𝑥2|, 

(4)  𝐿𝐴. 𝐿𝐵 = |𝑥0
2 − 𝑥0(𝑥1 + 𝑥2) + 𝑥1. 𝑥2| = |𝑥0

2 − 𝑥0
𝑏−𝑘

𝑎
+

𝑘𝑥0−𝑦0+𝑐

𝑎
| 

𝑀 

𝐿′ 

 

𝐴′ 

 

𝑦 

 

𝐵 

𝑥 

 

𝐿 

 

𝐵′ 

 

𝐴 

Figure 4: Cycle with tangent and secant lines 
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                    =
1

𝑎
|𝑎𝑥0

2 + 𝑏𝑥0 + 𝑐 − 𝑦0| = 𝐿𝑀2 

derived from property 3.3. So, the 𝐿𝐴. 𝐿𝐵 product depends only on the coordinates of the L point and 

the cycle parameters, proving that the property is correct. 

Theorem 3.1 Let’s draw a line from a given 𝐿 point that intersects the cycle at 𝐴 and 𝐵 points. For 

those lines that are secant and tangent; If a tangent and a secant are drawn from an external point to a 

cycle, then the square of the length of the tangent 𝐿𝐶 is equal to the product of the length of the secant’s 

external part 𝐿𝐴 and the length of the entire secant 𝐿𝐵. 

The proof of the theorem is derived from equations (4) and (3). The properties and theorem we tried 

to explain above show that the cycle in the Galilean plane has the properties of the circle in the 

Euclidean plane.  

4. Recommendations 

If educators are obliged to teach non-Euclidean geometry, they must first study the material or have 

previously reviewed it. According to the above principles, teachers who study non-Euclidean geometry 

will be mathematically more competent than those who do not. Even if non-Euclidean geometry is not 

part of the school curriculum, teachers must be conversant with it to effectively teach Euclidean 

geometry. Non-Euclidean geometry, however, is only taught in some colleges and universities' 

mathematics programs for future educators.  

As a result, in-service courses must be developed to allow teachers to study topics in mathematics, 

such as non-Euclidean geometry, which are on the outskirts of the conventional school curriculum yet 

profoundly linked to it. This will enable teachers to teach with greater confidence, which is required if 

they are to rely on their knowledge and skills rather than coercive tactics to ensure that pupils learn 

properly [9]. 

Attempts by some of the most skilled mathematicians over the last two thousand years to establish the 

parallel postulate or construct an appropriate substitute postulate have failed miserably. Because this 

disagreeable truth could not be explained, the parallel postulate could not be demonstrated using other 

definitions, shared ideas, or postulates. As a result, a study focused on the geometries that followed 

the parallel postulate's denial. The discovery of non-Euclidean geometry was thus a foregone 

conclusion.  

Applying appropriate teaching methodologies is crucial to realizing the characteristics that first 

inspired secondary school students to explore non-Euclidean geometry. Students must first exhibit the 

skills associated with the rank of formal deduction before studying non-Euclidean geometry in depth 

since geometric reasoning develops in phases.  

For example, in an axiomatic system such as Euclidean geometry, students should understand the 

concepts of terms, definitions, postulate, theorems, and proof and their interrelationships. This ability 

can be tested by assigning students a test item in which they must classify claims as definitions, 

postulates, or theorems, and then determine which can be inferred from the ones they have classified 

as theorems.  

The discovery technique is the most appropriate teaching technique because the new topic matter 

mainly involves new concepts and principles. However, there are drawbacks to utilizing the discovery 
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technique, such as children being upset and discouraged if they fail to discover continuously. This 

problem can be solved in several ways. 

The foundations of Euclidean geometry, for example, can be appropriately introduced through a 

teacher-led or group-based discussion. In contrast, alternative geometry can be better introduced by 

having students interact with manipulative objects and remark on their discoveries. Students will build 

new knowledge based on past information and experiences and reorganize it to fit the new knowledge. 

Unfortunately, teachers frequently concentrate on teaching strategies that only target the lowest levels 

of cognition because most school-level mathematics assessments entail memorizing facts and 

procedures. Since students cannot acquire these qualities in the classroom, they cannot be held 

accountable for their lack of originality, independence, or creativity. Discussions, oral and written 

presentations, quizzes, and research should all be encouraged by teachers [9]. These could be helpful 

methods for routinely evaluating pupils' understanding of new content. 

5. Conclusion 

We should take full advantage of non-Euclidean geometry's capacity to give our students fresh insights 

into the world and their place as math educators. The potential for non-Euclidean geometry to be a 

significant part of the mathematics curriculum has been shown. False assumptions about the beginning 

and nature of mathematics can be disproved, and workable alternatives can be offered by studying 

non-Euclidean geometry.  

Non-Euclidean geometry is a more accurate representation of our world than Euclidean geometry 

claims to be. It is important to emphasize that non-Euclidean geometry may be recommended for all 

appropriate students.  

When the specific conclusions gained in this study are compared to the goals described above, it is 

evident that learning non-Euclidean geometry can assist in achieving them, meaning that non-

Euclidean geometry can play an essential role in the syllabus.  

The students will enjoy these exciting topics. They will admire it and be fascinated, we should manage 

to get their attention, and finally, they will be so interested in non-Euclidean geometry that we will be 

astounded.  

To summarize, the cycle in the Galilean plane can be viewed as a circle in the Euclidean plane. Is the 

Galilean cycle identical to the Euclidian cycle? This concern was mentioned in response to the previous 

inquiry. I hope the cycle and properties I discovered as an innovator and sought to present to you will 

occur. They deserve to be included in the mathematics curriculum at the most reasonable time in this 

study, from which I have profited with valuable resources. 
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