EAJSE

Synthesis and Characterization of Some New Bis-(Dihydropyrimidinones-5-Carboxamide) by Using Ultrasonic Irradiation

Faiq H.S.Hussain¹ & Havall O. Abdulla²

¹Research Center, Ishik University, Erbil, Iraq
 ²Department of Chemistry, College of Science, University of Salahaddin, Erbil, Iraq
 Correspondence: Faiq H. S. Hussain, Ishik University, Erbil, Iraq. Email: faiq.hussain@ishik.edu.iq

Received: April 19, 2018

Accepted: May 28, 2018

Online Published: June 1, 2018

doi: 10.23918/eajse.v3i3p132

Abstract: This investigation involves synthesis of two new series of bis-dihydropyrimidinone-5carboxamides (4 a-k) and (5 a-k) from reaction of 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbonyl chloride and its derivatives (3 a, b) with different diamines using ultrasonic irradiation. Compounds (3a, b) were synthesized from chlorination of 6-methyl-2-oxo-4phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid and its derivatives (2a,b) which were prepared from hydrolysis of ethyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimi-dine-5-carbo-xylate and its derivatives (1a, b) which was synthesized by one-pot Biginelli condensation. The synthesized products were characterized by physico-chemical methods such as elemental analysis (CHNS-O), FT-IR, ¹H-NMR and ¹³C-NMR. The prepared compounds were showed biological activity against two types of bacterial Escherichia coli Gram-negative bacteria (G -ve) and Staphylococcus aureas Gram-positive bacteria (G +ve).

Keywords: Dihydropyrimidinone, Biginelli Condensation, Ultrasonic, Hydrolysis, Catalytic Reaction

1. Introduction

Dihydropyrimidinones and their derivatives have attracted increasing interest, which are the core unit in several biological active marine alkaloids (Snidar & Shi, 1993; Patil et al., 1995; Kashman et al., 1989) among them the most potent are the erambine (Snider & Shi, 1993) and batzelladine alkaloids (Patil et al., 1995). These compounds have emerged as important target molecules due to their therapeutic and pharmacological properties (Kappe, 2000) such as antiviral (Hurst and Hull, 2000), antitumor (Hattori et al., 1961; Tawfik et al., 2009), antimitotic (Mayer et al., 1999), anticarcinogenic (Rovnyak et al., 1995), and antibacterial (Dong et al., 2007).

Organic compounds containing dihydropyrimidinones as a core unit show excellent calcium channel modulation (Singh et al., 2009) due to their therapeutic application. Different strategies have been employed for the synthesis of dihydropyrimidinones and several protocols have been reported (Salehi et al., 2003; Narsaiah et al., 2004). However, some of the methods employed have drawback

attention of researchers to the use of strongly acidic conditions (Hu et al.,1998), the use of the protic acids (Lu & Ma, 2000) and prolonged reaction times for the preparation.

Several methods for the preparation of dihydropyrimidinone have previously been developed to improve and modify this reaction by microwave (Stadler & Kappe, 2001), infrared radiation (Osnaya et al., 2003), and ultrasound irradiation (Zhidovinova et al., 2003) and by using Lewis acids (Carlos et al., 2007; Chitra & Pandiarajan, 2009; Zhu et al., 2006; Chen et al., 2007).

In the present work two new series of bis-dihydropyrimidi-none-5-carboxamides (4 a-k) and (5 a-k) were prepared by using ultrasonic technique. To the best of our knowledge of the open literature, these compounds have not been reported.

2. Literature Review

Various substituted 3,4-dihydropyrimidn-2-one were synthesized in one-pot reaction of aldehydes, β -ketoesters and urea using KBr in THF without any side reactions (Baruah et al., 2002), and under solvent-free conditions using lanthanide triflate as catalyst (Ma et al., 2000) (Scheme 1).

Metal hydrogen sulphate M (HSO₄)₄ [Ca(HSO₄)₂ and Zn(HSO₄)₂] were used to catalyze one-pot three-component condensation reactions of aldehydes , 1,3-dicarbonyl compounds and urea at 90 0 C under solvent-free conditions and high yields (Khodabakhsh et al., 2007) (Scheme 2).

Ar: C₆H₅, 4-Cl-C₆H₄, R: OC₂H₅, CH₃

3. Experimental

Melting points were measured using Gallinkamp electrothermal 9100 melting point apparatus and are uncorrected. IR spectra were obtained on a Thermo-Mattson IR-300 spectropohotometer using KBr disk for solid materials, ¹H NMR and ¹³C NMR spectra were recorded on the Bruker ultra shield 300 MHz in DMSO. Elemental analysis was obtained using Eurovector EA300A instrument, the sonication was an UltraMet Sonic Cleaner Buehler Ltd. (220/240V, 50/60Hz). TLC was carried on using precoated DC-plastic foli silica gel 60F.

Preparation of ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyri-midine-5-carboxylate and its derivatives (1a,b) under classical method and ultrasonic waves by using different catalysts :

Using HCl as catalyst:

To a mixture of benzaldehyde or 4-nitro benzaldehyde (0.01mol), urea (0.01mol, 0.6g) and ethyl acetoacetate (0.01mol, 1.26ml) in 10ml ethanol, (1-2drops) of conc. HCl was added as a catalyst.

In classical method:

The mixture was refluxed for 7-8 hours, the reaction was monitored by TLC. After cooling the precipitate was filtered and washed with water then recrystallized from ethanol to get the pure product.

Compound (1a): The yield is 45%, (m.p 202-203°C), $R_f = 0.75$ [Chloroform: Ethyl acetate (3:1)], reaction time (9h).

Compound (1b): The yield is 42%, (m.p 207-208°C), $R_f = 0.38$ [Chloroform: Ethyl acetate (3:1)], reaction time (10h).

In ultrasonic waves (Zhidovinova et al., 2003):

The mixture was sonicated in ultrasonic bath reactor at room temperature for (5-10) min. (Sonication was continued until the benzaldehyde disappeared, as indicated by TLC). After completion of the reaction, the crude product, which precipitated on standing, was filtered and washed with water then recrystallized from ethanol to get the pure product.

Compound (1a): The yield is 95%, reaction time (5 min.); Anal. Calcd for $C_{14}H_{16}N_2O_3$: C, 64.54; H, 6.15; N, 10.75.

Found: C, 64.1; H, 6.29; N, 10.4

Compound (1b): The yield is 91%, reaction time (10 min.).

The above procedures were followed to four other catalysts [LiBr (0.09 g, NH₄Cl (0.25 g), I_2 (3 g) and LaCl₃(1.85 g)] the obtained results are shown in Table 1.

Preparation of 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid and its derivatives (2a,b) (Mehta et al. 1971):

A stirring mixture of compound (1a) or (1b) (0.005 mol) and sodium hydroxide (5% solution, 10ml) was refluxed for 7-7.5 hours. After cooling, the solution was acidified with hydrochloric acid and the precipitate was filtered then recrystallized from ethanol or [ethyl acetate: n-hexane (1:1)].

Compound (2a): The yield is 80 %,(m.p 221-223°C), reaction time (7h), recrystallized from ethanol.

Compound (2b): The yield is 78 %,(m.p 227-229 °C), reaction time (7.5h), recrystallized from [ethyl acetate: n-hexane (1:1)].

Preparation of 6-methyl-2-oxo-4-phenyl-1,2,3,4 tetrahydro-pyrimid-ine-5-carbonyl chloride and its

derivatives (3a,b):

A mixture of compound (2a) or (2b) (0.005 mol) and thionyl chloride (SOCl₂) (10ml) was refluxed gently for 7-8 hours (the reaction was monitored by TLC). Excess thionyl chloride was removed under vacuum and the precipitate was collected, dried under vacuum then recrystallized from [chloroform or ethyl acetate: n-hexane (1:1) (Bose et al., 2003).

Compound (3a): The yield is 72 %, (m.p 171-173 °C), R_f=0.4 [Chloroform: Ethyl acetate (3:1)], reaction time (7h), recrystallized from chloroform.

Compound (3b): The yield is 70 %, (m.p 165-167 °C), R_f=0.4 [Chloroform: Ethyl acetate (3:1)], reaction time (8h), recrystallized from ethyl acetate: n-hexane (1:1)

General procedure for preparation of N, N'-(substituted)-bis-(6- methyl – 4 - (4-substituted phenyl)-3,4 dihydropyri-midinone-5-carboxamide) (4a-k) or (5a-k):

According to the modified procedure (Kim & Jing, 2009), to a stirring solution of compound (3a) or (3b) (0.002 mol) in toluene (20ml), a solution of different diamines (0.001mol) was added drop wise. The mixture was sonicated in a water bath of an ultrasonic cleaner, after completion of the reaction (25-45 min.), the reaction mixture was diluted with toluene and washed with hydrochloric acid (0.01M). The organic layer was washed with a solution of (%5 Na₂CO₃) then with water. The organic layer was separated, cooled and the solid desired product was filtered, dried and recrystallized from ethanol or methanol.

Compound (4a-k): recrystallized from ethanol.

- **Compound 4a**; Anal. Calcd for C₃₈H₃₆N₆O₄: C, 71.2; H, 5.6; N, 13.1. Found: C, 72.3; H, 6.08; N, 13.8.
- **Compound 4b**; Anal. Calcd for C₃₇H₃₄N₆O₄: C, 70.9; H, 5.4; N, 13.4. Found: C, 69.5; H, 5.6; N, 14.4.
- **Compound 4c**; Anal. Calcd for $C_{26}H_{28}N_6O_4$: C, 63.9; H, 5.7; N, 17.2. Found: C, 64.5; H, 6.2; N, 16.8.

Compound (5a-k): recrystallized from methanol.

Compound 5b; Anal. Calcd for C₃₇H₃₂N₈O₈: C, 62.01; H, 4.5; N, 15.6. Found: C, 61.7; H, 5.2; N, 15.2.

Determination of antimicrobial activity:

- 1. The culture medium (Muller-Hinton agar) was prepared, and poured in Petri dish to a depth of 4mm.
- 2. Activation of the bacteria (*S-aurous* and *E-coli*) before culturing on the nutrient agar in nutrient broth which was used for dilution of bacteria and cultivation of culture incubated for (24h) in 37 °C.
- 3. Muller-Hinton agar streaked with bacteria, the pores filled by extracts, then incubated at 37 $^{\circ}C$

for (24 h).

4. Reading of the zone inhibition. The larger zone of inhibition represented by more +ve but the unaffected zone represented by–ve this was interpreted by national committed for clinical laboratory.

4. Result and Discussion

The started compounds (1 a, b) were obtained through Biginelli three components condensation of benzaldehyde or 4-nitrobenzaldehyde, ethyl acetoacetate and urea in ethanol using five different catalysts (HCl, LiBr, NH₄Cl, I₂ and LaCl₃) (Table 1) via both classical and ultrasonic technique (Scheme 3). In classical method the compounds (1 a,b) were produced in low yields and long reaction time while in the ultrasonic irradiation they were produced in higher yields and shorter time. The products were characterized by spectral methods (Table 3,4, and 5).

 Table 1: Percentage of yield obtained of prepared compounds (1a, b) from both ultrasonic and classical methods

Compounds	inds Catalysts Solvents		Clas Me	ssical thod	Ultrasonic wave Method	
Compounds	Catalysis	Solvents	Yield, %	Yield, %	Yield, %	Yield, %
1a		Ethore of	45	9	95	5
1b	псі	Ethanoi	42	10	91	10
1a	I ;Dr	Acatonitrila	68	4.5	85	20
1b	LIDI	Acetomune	65	5	84	25
1a	NH CI	Ethanol	70	4.5	88	25
1b	NH ₄ CI	Ethanoi	67	5	85	30
1a	т	Taluana	60	5	80	20
1b	\mathbf{I}_2	Toluelle	56	5.5	75	30
1a	$\mathbf{L} \circ \mathbf{C}^{1}$	Ethonol	82	6	90	25
1b	LaC ₁₃	Emanol	80	6.5	87	30

Preparation of (2a and 2b) was produced in high yields by hydrolysis of compounds (1a and 1b) respectively with sodium hydroxide by refluxing. After cooling, the solution was acidified with hydrochloric acid (Scheme 3). The spectral methods IR, ¹H-NMR and ¹³C-NMR were utilized for structured determination of compound (2a and 2b) (Tables 3, 4, and 5).

The reaction of compounds (2a and 2b) with thionyl chloride yielded acid chlorides (3a and 3b) by gently refluxing. Excess thionyl chloride was removed under vacuum and the solid products were recrystallized from dry [chloroform or ethyl acetate: n-hexane (1:1)] to give pure compounds (3a) and (3b) respectively. Structures of the compounds (3a and 3b) were elucidated by using spectral methods IR, ¹H-NMR and ¹³C-NMR (Tables 3, 4, and 5).

(Scheme 3)

The sonication of compounds 6-methyl-4-(4-substituted phenyl)-3,4-dihydro-pyrimidin-2(1H)-one-5-carbonyl chloride (3a,b) with different diamines in ultrasonic bath yield N,N`-substituted-bis-(6methyl-4-(4-substituted phenyl)-3,4-dihydro pyrimidin-2(1H)-one-5-carboxamide (4a-k and 5a-k) (Table 2) (Scheme 4).

(Scheme 4)

						R _f
Compounds	R	Molecular formula	Reaction time(min.)	Yield%	m.p.(°C)	(Chlorof orm:Eth ylacetate 3:1)
4a	CH ₃	$C_{38}H_{36}N_6O_4$	40	75	182-184	0.40
5a	H ₃ C	$C_{38}H_{34}N_8O_8$	40	72	191-193	0.39
4b	H ₂ C	$C_{37}H_{34}N_6O_4$	35	76	189-190	0.47
5b		$C_{37}H_{32}N_8O_8$	40	75	218-220	0.55
4c	-CH ₂ CH ₂ -	$C_{26}H_{28}N_6O_4$	25	84	159-160	0.49
5c		$C_{26}H_{26}N_8O_8$	30	80	183-184	0.45
4d		$C_{30}H_{28}N_6O_4$	35	79	176-177	0.51
5d		$C_{30}H_{26}N_8O_8$	35	76	189-191	0.32

Table 2: Some physical properties for prepared compounds (4a-k and 5a-k)

EAJSE

213-215

227-229

0.41

0.43

59

53

4e	-(CH ₂) ₁₀ -	$C_{34}H_{44}N_6O_4$	30	73	156-158	0.55
5e		$C_{34}H_{42}N_8O_8$	35	77	161-163	0.36
4f	H ₃ C CH ₃	C ₃₄ H ₃₆ N ₆ O ₄	35	79	180-182	0.50
5f	H ₃ C CH ₃	$C_{34}H_{34}N_8O_8$	35	76	195-197	0.42
4g	-(CH ₂) ₁₂ -	$C_{36}H_{48}N_6O_4$	30	69	153-155	0.47
5g		$C_{36}H_{46}N_8O_8$	35	65	177-179	0.37
4h	H ₂ C-	C ₃₈ H ₃₆ N ₆ O ₄	40	70	208- 209.5	0.43
5h		$C_{38}H_{34}N_8O_8$	35	69	215.5- 217	0.42
4i		$C_{36}H_{32}N_6O_4$	35	72	211-213	0.46
5i		$C_{36}H_{30}N_8O_8$	35	71	217-219	0.34
4j	CH ₃	$C_{27}H_{30}N_6O_4$	25	76	179-180	0.39
5j	$-CHCH_2 -$	$C_{27}H_{28}N_8O_8$	35	72	186-187	0.38

 $C_{30}H_{28}N_6O_4$

C30H26N8O8

45

45

For synthesis of bis-(3, 4-dihydropyrimidinone-5-carbox-amide), one equivalent of diamines and two
equivalents of dihydropyrimidinones-5-carbonyl chloride was used. A variety of substituted
diamines provided favorable results in this reaction. The synthesis compounds (4a-k) and (5a-k)
were characterized by IR, ¹ H-NMR and ¹³ C-NMR (Table 3, 4 and 5).

4k

5k

EA	JSE
	/

Compounds	O-H	N-H	C-H str.	С-Н	C=O str.	C=O	N-H	C=C	NC	D ₂ str.
-	str.	str.	Arom.	str.	Ester,	str	def.	str.		
		Amide		Aliph.	Carboxylic acid,	Amide			Assvm.	Svmm.
					Acid chloride					
1a	-	3242	3116	2978	1724	1702	1648	1599	-	-
1b	-	3233	3116	2976	1729	1699	1645	1606	1520	1349
2a	2600- 3500	3244	3112	2978	1720	1703	1647	1599	-	-
2b	2600- 3500	3210	3060	2920	1720	1697	1647	1608	1520	1349
3a	-	3249	3107	2957	1809	1694	1646	1610	-	-
3b	-	3242	3110	2977	1807	1698	1648	1607	1520	1348
4 a	-	3210	3060	2920	-	1690	1633	1618	-	-
4b	-	3234	3062	2924	-	1690	1637	1612	-	-
4c	-	3233	3101	2932	-	1691	1640	1615	-	-
4d	-	3230	3101	2977	-	1697	1641	1622	-	-
4e	-	3227	3053	2928	-	1691	1647	1605	-	-
4f	-	3238	3115	2926	-	1691	1652	1620	-	-
4g	-	3227	3064	2917	-	1691	1639	1595	-	-
4h	-	3208	3030	2915	-	1692	1638	1597	-	-
4i	-	3230	3087	2924	-	1689	1635	1613	-	-
4j	-	3230	3091	2927	-	1691	1653	1623	-	-
4k	-	3231	3086	2922	-	1688	1634	1624	-	-
5a	-	3239	3110	2926	-	1698	1637	1612	1520	1347
5b	-	3244	3119	2928	-	1690	1645	1603	1521	1348
5c	-	3232	3054	2912	-	1698	1637	1618	1520	1348
5d	-	3244	3119	2928	-	1699	1645	1622	1521	1348
5e	-	3234	3108	2928	-	1690	1637	1604	1520	1347
5f	-	3240	3109	2920	-	1697	1636	1612	1520	1347
5g	-	3244	3119	2928	-	1690	1645	1625	1521	1348
5h	-	3246	3116	2925	-	1696	1648	1607	1519	1348
5i	-	3245	3116	2927	-	1698	1645	1628	1516	1348
5j	-	3275	3116	2924	-	1691	1647	1617	1519	1348
5k	-	3237	3114	2927	-	1697	1637	1611	1518	1347

Table 3: Assignment	of characteristic fre	quencies (cm-1) of IR	data for the pre	pared compounds
U			1	1 1

Table 4: Assignment of ¹H-NMR data of compounds(1a,b, 2a, 3a,b, 4b,c,f and 5h: solvent DMSO

Compounds	δppm (Multiplicity, Intensity, Assignment)
1a	9.1(s, 1H, N ₁ –H), 7.6(s, 1H, N ₃ –H), 7.34-7.2(m, 5H, Ar-H), 5.1(s, 1H, CH), 4(q, 2H, O <u>CH₂</u> CH ₃), 2.2(s, 3H, CH ₃), 1.1(t, 3H, OCH ₂ <u>CH₃</u>)
1b	9.1(s, 1H, N ₁ –H), 7.6(s, 1H, N ₃ –H), 7.4-7.5(d, 2H, Ar-H), 8.2-8.22(d, 2H, Ar-H), 5.2(s, 1H, CH), 4(q, 2H, O <u>CH₂CH₃), 2.2(s, 3H, CH₃), 1.1(t, 3H, OCH₂CH₃)</u>
2a	12.3(s, 1H, -OH), 9.1(s, 1H, N ₁ –H), 7.6(s, 1H, N ₃ –H), 7.3-7.0(m, 5H, Ar-H), 5.16(s, 1H, CH), 2.2(s, 3H, CH ₃)
3a	9.1 (s, 1H, N ₁ –H), 7.7(s, 1H, N ₃ –H), 7.5-7.2(m, 5H, Ar-H), 5.2(s, 1H, CH), 2.25(s, 3H, CH ₃)
3b	9.3 (s, 1H, N ₁ –H), 7.8(s, 1H, N ₃ –H), 7.4-7.5(d, 2H, Ar-H), 8.2-8.22(d, 2H, Ar-H), 5.2(s, 1H, C ₄ –H), 2.2(s, 3H, CH ₃)
4b	9.8(s, 2H, 2N–H), 9.1(s, 2H, 2N ₁ –H), 7.6(s, 2H, 2N ₃ –H), 7.2-7.5 and 7.8-8.0(m, 18H, Ar-H), 5.1(s, 2H, 2C ₄ –H), 3.9(s, 2H, CH ₂), 2.2(s, 6H, 2CH ₃)
4c	8.9(s, 2H, 2N–H), 9.1(s, 2H, 2N ₁ –H), 7.6(s, 2H, 2N ₃ –H), 7.2-7.33(m, 10H, Ar-H), 5.1(s, 2H, 2C ₄ –H), 3.2(s, 4H, 2CH ₂), 2.2(s, 6H, 2CH ₃)
4f	10.07(s, 2H, 2N–H), 9.1(s, 2H, 2N ₁ –H), 7.6(s, 2H, 2N ₃ –H), 7.2-7.33(m, 10H, Ar-H), 5.1(s, 2H, 2C ₄ –H), 2(s, 12H, 4CH ₃), 2.2(s, 6H, 2CH ₃)
5h	9.6(s, 2H, 2N–H), 9.1(s, 2H, 2N ₁ –H), 7.6(s, 2H, 2N ₃ –H), 7.1-7.5 and 7.8-8.2 (m, 16H, Ar-H), 5.1(s, 2H, 2C ₄ –H), 2.8(s, 4H, 2CH ₂), 2.2(s, 6H, 2CH ₃)

Compounds	(δ) in ppm	Assignment	(δ) in ppm	Assignment
10	14	C ₁₅	127	C ₁₀
	18	C ₆ - <u>C</u> H ₃	128	C _{9,11}
H_2	54	C_4	145	C ₇
	59	C ₁₄	148	C_6
H H	99	C ₅	152	C_2
la	126	C _{8,12}	165	C ₁₃
NO ₂	14	C ₁₅	147	C ₁₀
11	18	C ₆ - <u>C</u> H ₃	128	C _{9,11}
H_2 H_2 T_1 T_2 T_1	54	C_4	149	C ₇
$H_{3}C_{14} O_{13} + A_{3}NH$	59	C ₁₄	152.4	C ₆
H₃C Ň O	98	C ₅	152	C_2
1b	124	C _{8,12}	165	C ₁₃
	18	C6-CH3	128	C9,11
	54	C4	149	C7
HO IS A SNH	99	C5	152.4	C6
H₃C N O	126	C8,12	152	C2
2a	127	C10	172	C13
11/200	18	С6-СН3	128	C9,11
	54	C4	149	C7
	99	C5	152.4	C6
H ₃ C N O H	126	C8,12	152	C2
3a	127	C10	165.8	C13
NO ₂	18	C6-CH3	147	C10
	54	C4	149	C7
	99	C5	152	C2
	124	C8,12	152 4	C6
3b	128	C9,11	165.5	C13
30			10010	212

Table 5: The $^{13}\text{C-NMR}$ data for the synthesized compounds (1a,b , 2a, 3a,b , 4b,c,f and 5h): solvent DMSO

	18	2C6-CH3	127.7	2C9,11
	54	2C4	128.5	2C17.19
	61	CL	130	2015
	99	2C5	141	2013
$\begin{array}{c} HN^{\prime} \\ \downarrow \\ $	122	2C16,20	141	207
о‴ н ⊂сн ₃ н ₃ с № 1 4b	125	2C10	140	200
	126	2C8,12	152	202
	127.1	2C18	162	2C13
	18	2C6-CH3		
· · · · · · · · · · · · · · · · · · ·	24	Cy,y∖	128	2C9,11
$ \begin{array}{c} \bullet \\ \bullet $	54	2C4	141	2C7
	54	2C5	146	2C6
H ₃ C ^M H	99	2C8,12	152	2C2
*	126	2C10	164	2C13
40		2010	-	
4c	127	2010		
4c	127 14	2Cz,z\-CH3	127	2C10
4с	127 14 18	2Cz,z\-CH3 2C6-CH3	127 128	2C10 2C9,11
4c	127 14 18 54	2Cz,z∖-CH3 2C6-CH3 2C4	127 128 141	2C10 2C9,11 2C7
4c	127 14 18 54 99	2Cz,z\-CH3 2C6-CH3 2C4 2C5	127 128 141 146	2C10 2C9,11 2C7 2C6
4c $\downarrow \downarrow $	127 14 18 54 99 123	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\	127 128 141 146 152	2C10 2C9,11 2C7 2C6 2C2
4c	127 14 18 54 99 123 126	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12	127 128 141 146 152 161	2C10 2C9,11 2C7 2C6 2C2 2C13
4c	127 14 18 54 99 123 126 18	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12 2C6-CH3	127 128 141 146 152 161	2C10 2C9,11 2C7 2C6 2C2 2C13 2C14
$4c$ $\downarrow \qquad \qquad$	127 14 18 54 99 123 126 18 41	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12 2C6-CH3 Cy,y\	127 128 141 146 152 161 132 134	2C10 2C9,11 2C7 2C6 2C2 2C13 2C14 2C17
$4c$ $\downarrow \downarrow $	127 14 18 54 99 123 126 18 41 54	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12 2C6-CH3 Cy,y\ 2C4	127 128 141 146 152 161 132 134	2C10 2C9,11 2C7 2C6 2C2 2C13 2C14 2C17 2C10
$4c$ $\downarrow \downarrow $	127 14 18 54 99 123 126 18 41 54 99	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12 2C6-CH3 Cy,y\ 2C4 2C5	127 128 141 146 152 161 132 134 141.09	2C10 2C9,11 2C7 2C6 2C2 2C13 2C14 2C17 2C10 2C6
$4c$ $\int_{HH}^{HH} \int_{HH}^{HH} \int_{H}^{HH} \int_{HH}^{HH} $	127 14 18 54 99 123 126 18 41 54 99 124	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12 2C6-CH3 Cy,y\ 2C4 2C5 2C15,19	127 128 141 146 152 161 132 134 141.09 141.8	2C10 2C9,11 2C7 2C6 2C2 2C13 2C14 2C17 2C10 2C6 2C7
4c $(+)$	127 14 18 54 99 123 126 18 41 54 99 124 127	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12 2C6-CH3 Cy,y\ 2C4 2C5 2C15,19 2C8,12	127 128 141 146 152 161 132 134 141.09 141.8 147	2C10 2C9,11 2C7 2C6 2C2 2C13 2C14 2C17 2C10 2C6 2C7 2C2
$\begin{aligned} +c \\ & \qquad \qquad$	127 14 18 54 99 123 126 18 41 54 99 124 127 128	2Cz,z\-CH3 2C6-CH3 2C4 2C5 2Cz,z\ 2C8,12 2C6-CH3 Cy,y\ 2C4 2C5 2C15,19 2C8,12 2C16,18	127 128 141 146 152 161 132 134 141.09 141.8 147 152	2C10 2C9,11 2C7 2C6 2C2 2C13 2C14 2C17 2C10 2C6 2C7 2C2 2C13

5. Conclusion

It has been noted that in this work, ultrasonic irradiation was applied successfully in the reaction of dihydropyrimidinone-5-carbonyl chloride with diamines. There was substantial enhancing effect in the yield and the rate of the reaction. On the other hand, most of the prepared compounds have

EAJSE

EAISE

biological activity against of micro-organisms, S. two types aureus (Gr+ve) and E-coli (Gr-ve).

Appendices

¹H-NMR spectrum of compound (1a)

¹H-NMR spectrum of compound (2a)

¹³C-NMR spectrum of compound (1a)

¹³C-NMR spectrum of compound (2a)

¹H-NMR spectrum of compound (3a)

¹³C-NMR spectrum of compound (3a)

145.

¹H-NMR spectrum of compound (4c)

¹³C-NMR spectrum of compound (4c)

EAISE

References

- Baruah, P., Gadhwal, S., Prajabati, D., & Sandhu, J. (2002). The biginelli condensation: A novel and efficient regioselective synthesis of dihydropyrimidin-2(1h)-ones using lithium bromide. *Chemistry Letters*, 31(10), 1038-1039.
- Bose, D., Fatima, D., & Merelya, L. (2003). Green chemistry approaches to the synthesis of 5alkoxycarbonyl-4-aryl-3, 4- dihydropyrimidin-2(1h)-ones by a three-component coupling of one-pot condensation reaction: comparison of ethanol, water, and solvent-free conditions. J. Org. Chem., 68, 587-590.
- Carlos, J., Bernardi, D., & Kirsch, G. (2007). ZrCl4 or ZrOCl2 under neat conditions: Optimized green alternatives for the Biginelli reaction. *Tetrahedron Letters*, 48, 5777-5780.
- Chen, W., Dong, S., & Jin, J.(2007). HBF4-catalyzed Biginelli reaction: One-pot synthesis of dihydropyrimidin-2(1H)-ones under solvent-free conditions. *Catalysis Communications*, 8, 123-126.
- Chitra, S., & Pandiarajan, K. (2009). Calcium fluoride: An efficient and reusable catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H) thione: An improved high yielding protocol for the Biginelli reaction. *Tetrahedron Letters*, 50, 2222-2224.
- Dong, F., Jun, L., Xinli, Z., Zhiwen, Y., & Zuliang, L. (2007). One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids. *Journal of Molecular Catalysis A: Chemical*, 274, 208-211.
- Hattori, K., Kohchi, Y., Oikawa, N., Suda, H., Ura, M., & Ishikawa, T.(2003). Design and synthesis of the tumor-activated prodrug of dihydropyrimidine dehydrogenase (DPD) inhibitor, RO0094889 for combination therapy with capecitabine. *Bioorganic & Medicinal Chemistry Letters*, 13,867-872.
- Hu, E., Sidler, D., & Dolling, U. (1998). Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl- 4-aryl-3, 4dihydropyrimidin-2(1H)-ones. J. Org. Chem., 63, 3454-3457.
- Hurst, E., & Hull, R. (1961). Two new synthetic substances active against viruses of the psittacosislymphogranuloma-trachoma group. J. Med. Pharm. Chem., 3, 215-229.
- Kappe, C. (2000). Biologically active dihydropyrimidones of the Biginelli-type a literature survey. *Eur. J. Med. Chem.*, 35, 1043-1052.
- Kashman, Y., Hirsh, S., McConnel, O., Ohtani, I., Takenori, K., & Kakisawa, H. (1989). Ptilomycalin A: A novel polycyclic guanidine alkaloid of marine origin. J. Am. Chem. Soc., 111, 8925-8926.

Khodabakhsh, N., Mohammad, A., & Nader, D. (2007). Efficient synthesis of 3, 4-

Volume 3, Issue 3; June, 2018

dihydropyrimidin-2 (1H)-one using metal hydrogen sulfates M (HSO4) n as catalyst under solvent-free conditions. *Chin. J. Catal.*, 28(7), 591-595.

- Kim, J., & Jang, D. (2009). Mild and efficient cooper (ii) oxide-catalyzed acylation of amines and alcohols. *Bull. Korean Chem. Soc.*, 30, 1435-1436.
- Lu, J., & Ma, H.(2000). Iron (III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction. *Synlett*, 1, 63-64.
- Ma, Y., Qian, C., Wang, L., & Yang, M. (2000). Lanthanide triflate catalyzed biginelli reaction. onepot synthesis of dihydropyrimidinones under solvent-free conditions. J. Org. Chem., 65, 3864-3868.
- Mayer, T., Kapoor, T., Haggarty, S., King, R., Schreiber, S., & Mitchison, T.(1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. *Science*, 286, 971-974.
- Mehta, T., Tahilramani, D., & Talwalker, T. (1971). Synthesis of some s-triazoles with potential analgesic and antiinflammatory activities. *J. Med. Chem.*, 14, 335-338.
- Narsaiah, A., Basak, A., & Nagaiah, K. (2004). Cadmium chloride: An efficient catalyst for onepot *synthesis* of 3, 4-dihydropyrimidin-2- [1H] -ones. *Synthesis*, 8, 1253-1256.
- Osnaya, R., Arroyo, G., Parada, L., Delgado, F., Trujillo, J., Salmón, M., & Miranda, R. (2003). Biginelli vs Hantzsch esters study under infrared radiation and solventless conditions (MX-870EP). Arkivoc, xi, 112-117.
- Patil, A., Kumar, N., Kokke, W., Bean, M., Freyer, A., DeBrosse, C., Mai, S., Trunesh, A., Faulkner, D., Carte, B., Breen, A., Hertzberg, R., Johnson, R., Westley, J., & Potts, B. (1995). Novel Alkaloids from the Sponge Batzella sp.: Inhibitors of HIV gp120-Human CD4 Binding. J. Org. Chem., 60, 1182-1188.
- Rovnyak, G., Kimball, S., Cucinotta, G., Dimareo, J., Gougoutas, J., & Hedberg, A. (1995). Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 38, 119-129.
- Salehi, P., Dabiri, M., Zolfigol, M., & Fard, M. (2003). Silica sulfuric acid: An efficient and reusable catalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones. *Tetrahedron Lett.*, 44, 2889-2891.
- Singh, K., Arora, D., Singh, K., & Singh, S. (2009). Genesis of dihydropyrimidinone calcium channel blockers: Recent progress in structure-activity relationships and other effects. *Mini-Reviews in Medicinal Chemistry*, 9, 95-106.
- Snider, B., & Shi, Z. (1993). Biomimetic synthesis of (.+-.)-crambines A, B, C1, and C2: Revision of the structure of crambines B and C1. *J. Org. Chem.*, 58, 3828-3839.
- Stadler, A., & Kappe, O. (2001). Automated library generation using sequential microwave-assisted chemistry: Application toward the biginelli multicomponent condensation. *J. Comb. Chem.*, 3, 624-630.
- Tawfik, H., Bassyouni, F., Gamal-Eldeen, A., & Abo-Zeid, M. (2009). Tumor anti-initiating activity of some novel 3, 4-dihydropyrimidinones. *Pharmacological Reports*, 61, 1153-1162.
- Zhidovinova, M., Fedorova, O., Rusinov, G., & Ovchinnikova, I.(2003). Sonochemical synthesis of Biginelli compounds. *Russian Chemical Bulletin*, 52, 2527-2528.

Zhu, Y., Huang, S., Wan, J., Yan, I., & Pan, Y. (2006). Two Novel Diastereoselective Three-Component Reactions of Alkenes or 3, 4-Dihydro-(2H)-pyran with Urea/Thiourea–Aldehyde Mixtures: [4 + 2] Cycloaddition vs Biginelli-Type Reaction. Org. Lett., 8, 2599-2602.