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A B S T R A C T   

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that are distinguished by the 
inability in social interaction, communication, and repetitive behavior pattern. One of the etiologic factors of the 
disease is believed to be methionine synthase reductase (MTRR) A66G polymorphism, which participates in 
homocysteine (Hcy)/folate metabolism. The aim of this study was to explore the link between polymorphism 
A66G (rs1801394) of MTRR and susceptibility of Kurdish autistic children to develop ASD in Iraq. In this study, 
200 samples were included and divided into two equal groups: 100 autistic and 100 control children. After 
extraction of genomic DNA, the allele-specific polymerase chain reaction (AS-PCR) was performed. Our results 
showed that a significant association between heterozygote and homozygote variants (AG vs. AA: OR = 3.333, 
95%CI: 1.723 to 6.449; P = 0.0004) and (GG vs. AA: OR = 2.500, 95%CI: 1.362 to 18.35; P = 0.021) respec
tively, when compared with wild homozygote. Also, this study demonstrated a statistical difference in the fre
quencies of the two alleles in MTRR A66G (G vs. A: OR = 1.857, 95%CI: 1.243 to 2.775; P = 0.003). Our study 
revealed that the polymorphism of MTRR A66G genotypes and alleles could influence the ASD susceptibility 
among Kurdish children in Erbil, Iraq.   

1. Introduction 

Autism spectrum disorder (ASD) is a neuropsychiatric disorder that 
manifests in children in the early 3 years of life that characterized by an 
abnormality in social behaviors, eye contact and repetitive behaviors 
(Mohammad et al., 2009). The autistic children are mentally retarded, 
there is a defect in brain development postnatally and poor growth 
during childhood (Hazlett et al., 2011). ASD occurs in male four times 
more than females (Werling & Geschwind, 2013). 

The etiology of ASD, which is still not clear, is divided into non- 
genetics and genetics factors (Chaste & Leboyer, 2012). Non-genetic 
factors include environmental factors, which include heavy metals, 
some microbes, and chemical substances, affect the development of the 
brain and enhanced oxidative stress in the nervous system (Sung et al., 
2005; London, 2000). Besides, environmental factors include some 
important vitamins such as folic acid, B12, and B6 that have essential 
roles in converting detrimental amino acids Hcy into beneficial amino 
acids such as methionine and cysteine. Hcy is non-standard amino acids 
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which means don’t involve in protein synthesis instead it is regarded as 
new cholesterol causes cardiovascular abnormality in one hand and it 
also damages to the neuron in nervous system developing neuropsy
chiatric disorders such as ASD, Alzheimer’s disease (Kieling et al., 2011; 
da Silva et al., 2006), depression and schizophrenia (James et al., 2004; 
Permoda-Osip et al., 2013). 

Regarding the anabolism of Hcy, the demethylation pathway of 
methionine, which can be taken from the diet, forms S-adenosylme
thionine (SAM). The latter is transmethylated to S-adenosylhomocys
teine that finally hydrolyzed into adenosine and Hcy (Gao et al., 2018). 
The main function of SAM is to donor methyl in the formation of nucleic 
acids, phospholipids and some neurotransmitters (Almeida et al., 2014). 
Hcy is a harmful substance to neurons; it must be converted by two 
pathways. The first pathway involves remethylation reaction by the 
methionine synthase (MTR) that transfer methyl from 5-methyltetrahy
drofolate (5-MTHF), which is generated by methyltetrahydrofolate 
reductase (MTHFR), to Hcy, this pathway depends on two vitamins: folic 
acid and B12 (Selhub, 1999). The latter is a cofactor for MTRR that has an 
essential role in maintaining MTR inactive state; While, the former is 
essential for the formation of 5-MTHF (Puig-Alcaraz et al., 2015). The 
second pathway implicates a transsulfuration reaction that requires 
cystathionine B synthase (CBS) as an enzyme and B6 as a cofactor that 
results in the production of cysteine from Hcy (Tsiami & Obersby, 2017). 

Hyperhomocysteinemia (HHcy) is a disorder which is characterized 
by the high level of Hcy in the blood; it is believed to be an etiologic 
factor for many diseases including ASD. HHcy develops either by envi
ronmental factors such as disturbance the level of vitamin B6, B12, and 
folic acid that have a significant role in the metabolism of Hcy (Brosnan 
et al., 2004) or by genetic factors such as defect or polymorphism of 
MTR, MTRR and MTHFR which are the essential enzymes for catabolism 
of Hcy (Li et al., 2015). 

The second cause for the development of ASD is genetic factors that 
involve polymorphism of critical enzymes of Hcy metabolism. MTRR 
polymorphism is believed to be one of the genetic etiological factors for 
the development of HHcy and ASD. MTRR gene locates on chromosome 
5 (5p15.2–15.3) which consists of 15 exons and 14 introns; it is 3.5 Kb in 
size (Leclerc et al., 1998). This gene produces an MTRR enzyme which 
contains 698 amino acids and it is 77 kDa in weight (Leclerc et al., 
1998). The most common polymorphism of MTRR gene is A66G, 
Ile22Met or rs1801394 which results in substitution of A allele by G 
allele at position 66 of the MTRR gene thereby isoleucine substitutes by 
methionine in the position of MTRR enzyme (Wilson et al., 1999); this 
substitution leads to decrease the affinity of the enzyme for recycling 
MTR enzyme that consequently causes HHcy. There is a strong associ
ation between HHcy and ASD (Ali et al., 2011). Additionally, the MTRR 
gene polymorphism had been selected for this study because we could 
not find a single study from literature of Iraq while other genes like 
MTHFR (Muftin et al., 2020) and MTR (Jabbar & Jebor, 2018) genetic 
polymorphism have been studied extensively. This study aimed to 
investigate the relationship between gene polymorphism of MTRR A66G 
and ASD among Kurdish children in Erbil, Iraq. 

2. Materials and methods 

2.1. Subjects 

Hundred children with autism (mean age = 7.005 ± 0.273) and 100 
healthy children (mean age = 7.520 ± 0.258) were included in this 
study, there is no statistical difference in the age of them (Table 1). The 
ASD cases were diagnosed by pediatric neurologist and psychologist 
according to DSM-IV criteria (Bell, 1994). Five milliliters of blood was 
taken from children from the vein and transferred to lavender top tubes. 
We have stored tubes directly at − 20 until DNA extraction would 
perform. 

2.2. DNA extraction 

The DNA has been isolated from the genome by applying spin col
umn (Add prep Genomic DNA extraction Kit; Add bio, Daejeon, South 
Korea) depending on the recommendation of the manufacturer. 

2.3. Allele specific-polymerase chain reaction (AS-PCRS) 

The whole blood has been collected, and genomic DNA has been 
extracted as described above. The AS-PCR was performed to estimate 
MTRR A66G gene polymorphism was amplified with the following 
primers (Ajabi et al., 2017) and verified their specificity from the web
site (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

(5’-TCAAGCCCAAGTAGTTTCGAG– 3’) (F1), 
(5’–TGTACCACAGCTTGCTCACAT– 3’) (RI), 
(5’– CTTGTCTACAGGGTTGCACT–3’) (F2) and 
(5’– TGTACCACAGCTTGCTCACAC– 3’) (R2), 

The optimized PCRs have been performed in 20 μl reactions 
comprising two reactions for each sample, 1 μl of F1 and R1 for A allele 
(367 bp) while, 1 μl of F2 and R2 for G allele (401 s bp) then remaining 
were the same for both reactions which include 2 μl of genomic DNA, 10 
μl of master mix (Ampliqon, Denmark) and 6 μl of deionized distilled 
water. Amplifications have been carried out on a thermal cycler 
(Applied biosystem, USA) using the following conditions: initial dena
turation at 94 ◦C for 3 min followed by 35 cycles of the 30s at 94 ◦C, 30s 
at 60 ◦C, 30s at 72 ◦C and a final extension at 72 ◦C for 5 min. The PCR 
products were loaded into 2% agarose gel and run at 130 mV for about 
30 min then the gel was stained with ethidium bromide and visualized 
under gel doc (Bio-Rad, USA), the PCR products have been analyzed 
(Homberg et al., 2016). If 367 and 401 bp found separated reactions of a 
sample, it was heterozygote (AG). If 367 bp was seen in both reactions of 
a sample, it was wild homozygote (AA), If 401 bp was seen in both re
actions of a sample, and it was mutant homozygote (GG). 

2.4. Statistical analysis 

Statistical analysis was performed with GraphPad Prism 6 software 
(GraphPAd Software, Inc., La Jolla, CA, USA). To compare the results of 
two variables that participated in the same experiment, it was analyzed 
using an unpaired student t-test. For the statistical analysis of the 
polymorphism the Chi-square test was used to evaluate the differential 
hypothesis between the two categorical variables ASD and controls, a 
contingency table was used where each variable was divided into 
different categories (A/A, A/G, and G/G alleles). Subsequently, the ex
pected frequencies were calculated. 

3. Results 

In this case-control study, 100 ASDs patients and 100 controls 
compared according to SNP on the MTRR A66G gene by the AS-PCR 
method. The genotypes and allele frequencies of SNPs on MTRR A66G 
gene are given in (Table 3). Regarding Hardy-Weinberg equilibrium 
(HWE), genotype distribution in the case was not in line, but in controls 

Table 1 
Demographic characteristics of children with ASD and controls.   

Control (N = 100) Autism (N = 100) P value 

Age 7.520 ± 0.258 7.005 ± 0.273 0.171 
Male 49 40 – 
Female 51 60 – 
Height 1.254 ± 0.014 1.219 ± 0.015 0.105 
Weight 24.21 ± 1.070 27.62 ± 1.143 0.444 
BMI 15.04 ± 0.417 18.13 ± 0.537 < 0.0001  

M.H. Miasko et al.                                                                                                                                                                                                                              

https://www.ncbi.nlm.nih.gov/tools/primer-blast/


Gene Reports 21 (2020) 100949

3

agreed with it with a p-value of 0.0006 and 1.000 respectively (Table 2). 
The polymorphism of MTRR A66G genotypes and alleles were 

associated with an increased risk of ASD as compared with the control. 
Regarding model analysis, we found significant association in dominant 
model comparison (AA/AG vs. GG: OR = 1.333, 95% CI: 0.6842 to 
2.598; P = 0.498), and a significant association was also found in the 
recessive model (AA vs. AG/GG: OR = 3.000, 95% CI: 1.648 to 5.460; P 
= 0.0004). Regarding genotypes, there was a significant association in 
heterozygote model and homozygote variants (AG vs. AA: OR = 3.333, 
95%CI: 1.723 to 6.449; P = 0.0004) and (GG vs. AA: OR = 2.500, 95%CI: 
1.362 to 18.35; P = 0.021) respectively, if compared to wild homozy
gote. Moreover, the carrier frequency of the A allele was higher in the 
patient group in comparison to the G allele. Finally, there was a statis
tical difference in the frequencies of the two alleles in MTRR A66G (G vs. 
A: OR = 1.857, 95%CI: 1.243 to 2.775; P = 0.003) (Table 3). The BMI in 
ASD group (18.13 ± 0.537) was higher than control group (15.04 ±
0.417). 

4. Discussion 

Prior work has documented the role of polymorphism in A66G of 
MTRR gene in developing ASD. Ajabi et al. (2017) described that the 
polymorphism in A66G of MTRR is related with developing ASD in 
children who live in the north of Iran; conversely, Mohammad et al. 
(2009) authenticated that this polymorphism protects children from 
ASD in Indian children. Finally, Zhang et al. (2018) showed that the ASD 
among Hans Chinese population did not exhibit significant A66G poly
morphism of MTRR which means there is no relation between this 
polymorphism and the disease as done by Smail et al. (Smail et al., 
2020). 

The polymorphism of MTRR at A66G was strongly associated with 
increased susceptibility to ASD. This result is line with Ajabi et al. (2017) 
in Iran, but it is inconsistent with Mohammad et al. (2009) in India and 
Zhang et al. (2018) in China. These results provided evidence that ge
netics factors such as MTRR polymorphism may directly link to the 
environmental factors such as metabolism of folic acid and B12 in 
autistic children in the north of Iraq that may exuberates the disorder. 

One of the neurodevelopmental defects, that affects and appears in 
children in early 3 years of life and it is characterized by abnormal re
petitive behaviors, social isolation and non-verbal contacts such as fears 
of eye contacts, is ASD. The etiology may be linked to genetics and 
environmental factors (Homberg et al., 2016; Vijayakumar & Judy, 
2016; Modabbernia et al., 2017). The interactions between genetic 
predisposition and environmental factors have been proposed as the 
major mechanisms in the pathogenesis of ASD (Modabbernia et al., 
2017; Hallmayer et al., 2011; Ozonoff et al., 2011; Bourgeron, 2015; 
Gaugler et al., 2014). 

Hyperhomocysteinemia (HHcy) is an abnormally high level of Hcy in 
the blood which is non-protein sulfur-containing amino acids (Son & 
Lewis, 2020). This disorder may be caused by environmental nutritional 
factors such deficiency in the level of some vitamins including folic acid, 
B12, and B6 or may be due to the mutation and polymorphism of some 
enzymes that are critical in the metabolism of mentioned vitamins and 
conversion Hcy to protein and beneficial amino acids including methi
onine and cysteine (Son & Lewis, 2020). 

Enzymes such as (MTRR, MTR, MTHFR, and CBS) have important 
role metabolism of folic acid, B12, and B6; MTRR enzyme has a role in 
maintaining B12 in the active state which in turn donated methyl group 
to MTR that in turn convert Hcy to methionine amino acids (Weiner 
et al., 2012). MTRR enzyme is produced by the MTRR gene; the most 

common polymorphism of it is A66G in which methionine residue comes 
from Isoleucine after changing A allele to G allele at position 66, which 
diminishes the activity of the enzyme (Olteanu et al., 2002). MTRR 
(A66G) genes have also been suggested to increase the concentrations of 
Hcy (Barbosa et al., 2008). 

One of the etiologies of ASD is HHcy which may be caused by 
polymorphism of MTRR A66G, however this polymorphism and their 
association with ASD is still not clear, several papers argue their role in 
pathogenesis which are not consistent with each other; some researchers 
documented that G carriers alleles have more subjected to HHcy 
(Gaughan et al., 2001; Kluijtmans et al., 2003). Besides, moderate 
increased Hcy may be due to AA genotypes, as Gueant-Rodriguez, 
Juilliere (Gueant-Rodriguez et al., 2005) reported. In contrast, some 
researchers revealed that this polymorphism has not critical role in the 
concentration of Hcy in the blood (Brilakis et al., 2003; Jacques et al., 
2003; Bosco et al., 2006). 

Kaluzna-Czaplinska et al. (2013) Found that HHcy and hyper 
homocystinuria are more common in autistic children and they are 
related to a developmental disorder of ASD; they can be regarded as a 
good diagnostic factor for the disease and they reflect the malnutrition 
in children which are suffering from the disease. Moreover, the folate/ 
methionine cycle, which determines the level of Hcy in the blood, plays 
an essential role in ASD and its symptoms (Kałużna-Czaplińska et al., 
2013). The HHcy and its role in neuropsychiatric diseases including ASD 
are supported by many studies (Obeid et al., 2007; Moustafa et al., 
2014). Hyper homocystinuria, that is followed by HHcy, reflects the 
abnormal elevation of Hcy in the blood; in parallel to homocystinuria, 
penetration of the Hcy to the central nervous system occurs since this 
amino acid crosses the blood-brain barrier (Obeid et al., 2007). Inside 
the brain, Hcy acts as glutamate agonist (Puig-Alcaraz et al., 2015), 
which increases the activity of glutamate in the brain that develops 
many neuropsychiatric disorders including ASD (Rojas, 2014). Unfor
tunately, we did not measure the level of Hcy in the study because most 
of ASD children were under the active folate treatment. As we know 
taking active folate decreases the level of Hcy in children (Sun et al., 
2016) so the result would not be accurate. 

Regarding HWE, ASD group deviated from it. The deviation from 
HWE may be due to that our Kurdish population is not stable; many 
people migrated to Europe due to economic and political crisis. This 
deviation may interfere with bias error and interfere with genetic as
sociation study (GAS); this problem was tackled by estimating adjusted 
variances for allele, additive, recessive and dominant models (Schaid & 
Jacobsen, 1999). This estimate was based on fixation of indices in the 
case and control (Sato et al., 2006). 

The BMI in ASD children would be differ from healthy children 
because of dietary life styles, genetics and metabolic disorders. The ASD 
children might eat more food and numerous barriers were found to 
prevent their physical activity (Obrusnikova & Cavalier, 2011). 

Table 2 
Hardy Weinberg equilibrium (HWE) tests (p-Values) for ASD and control groups.  

SNP ASD Control 

rs1801394 0.0006 1.000  

Table 3 
The genotypes and allele distribution of codon MTRR polymorphism in case and 
control.  

Polymorphism ASD (N =
100) 

Control 
(N = 100) 

OR 95% CI P value 

No % No % 

AA  50  72.22  25  25  1 – – 
AG  30  16.67  50  50  3.333 1.723 to 

6.449 
0.0004 

GG  20  11.11  25  25  2.500 1.362 to 
18.35 

0.021 

AG + GG  50  27.78  75  75  3.000 1.648 to 
5.460 

0.0004 

AA+AG  80  88.89  75  75  1.333 
0.6842 to 
2.598 0.498 

A  130  65  100  50  
1.857 

1.243 to 
2.775 

0.003 
G  70  35  100  50  
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Some facts should be taken into considerations, firstly this research 
has been investigated only in Kurdistan so we cannot generalize it to all 
countries and other societies. Secondly, due to the low number of cases, 
it limited our potential to distinguish between the groups precisely. 
Third, the levels of vitamin B12, folate, and their related metabolites 
were not examined in these children. Metabolic disorders of the vitamins 
might interact with certain polymorphisms in these genes to increase the 
risk of ASD. The role of such interactions was not examined in this study. 
Lastly, due to depending on different laboratories, gathering informa
tion in different processes also may not provide precise results. 

5. Conclusion 

To best of our knowledge, there is no published paper regarding 
MTRR at A66G polymorphism in the north of Iraq. Our result docu
mented that a highly significant association was found between MTRR at 
A66G polymorphism and ASD in Erbil city in the north of Iraq. 
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