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Abstract
In this research work, the Hellmann potential is studied in the presence of external 
magnetic and AB flux fields within the framework of Schrodinger equation using the 
Nikiforov–Uvarov functional analysis method. The energy equation and wave func-
tion of the system are obtained in closed form. The effect of the fields on the energy 
spectra of the system is examined in detail. It is found that the AB field performs 
better than the magnetic field in its ability to remove degeneracy. Furthermore, the 
magnetization and magnetic susceptibility of the system were discussed at zero and 
finite temperatures. We evaluate the partition function and use it to evaluate other 
thermodynamic properties of the system such as magnetic susceptibility, 
𝜒m

(

B⃗,𝛷AB, 𝛽
)

 , Helmholtz free energy F
(

B⃗,𝛷AB, 𝛽
)

 , entropy S
(

B⃗,𝛷AB, 𝛽
)

 , inter-

nal energy U
(

B⃗,𝛷AB, 𝛽
)

 and specific heat C
v

(

B⃗,𝛷AB, 𝛽
)

 . A comparative analysis 
of the magnetic susceptibility of the system at zero and finite temperatures shows a 
similarity in the behavior of the system. A straightforward extension of our results to 
three dimensions shows that the present result is consistent with what is obtained in 
the literature.
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1  Introduction

The Hellmann potential proposed by Han Hellman in 1935 is used as an approxima-
tion for the simplified description of complex systems. This potential arose in an 
attempt to replace the tedious effects of the motion of the core (i.e., nonvalence) 
electrons of an atom and its nucleus with an effective potential [1–4]. Subsequently, 
several investigations were carried out with this potential; for instance, it has been 
applied to study bound state problems using different advanced mathematical tech-
niques [5, 6]. The Hellmann potential has been put to use to study the approximate 
scattering state solutions in the relativistic regime [7–9]. The applications of this 
potential model include the following among many others: atomic physics and neu-
tron scattering electron core [10, 11], electron–ion [12], inner-shell ionization prob-
lem, alkali hydride molecules” and condensed matter physics [13, 14]. The Hell-
mann potential is a superposition of the well-known Coulomb potential and the 
Yukawa (screened Coulomb) potential, and it is expressed as [1, 5, 6]:

where a and b are parameters that represent the strength of the Coulomb and Yukawa 
potentials, respectively, � represents the screening parameter and � is the distance 
between the particles.

Based on much applicability of the Hellman potential, it is essential to look 
into the bound state solutions of the two-dimensional (2D) nonrelativistic (i.e., 
Schrödinger) wave equation with this potential under the collective influence 
of magnetic and Aharonov–Bohm (AB) fields. The solutions of the nonrelativ-
istic wave equation in two dimensions with external fields have been a subject of 
great interest, as many researchers in the past have used this model to study many 
quantum mechanical phenomena. For instance, Zakrzewski et  al. [15] studied the 
hydrogen atom model in two dimensions. The hydrogen atom under discussion was 
examined as an atomic spectroscopy and employed as an easy model for the ioniza-
tion procedure which is extremely excited by circular-polarized microwaves. Eshghi 
et al. [16] solved this equation in 2D with external magnetic and Aharonov–Bohm 
(AB) flux fields alongside a position-dependent mass (PDM) interacting with a 
superposed potential of Morse and Coulomb potentials, respectively. The authors 
obtained the energy of the systems as well as their wave functions for two mass dis-
tribution functions that depend on position. Furthermore, the authors analyzed the 
thermal properties of the system. Again, Eshghi et al. [17] solved this equation with 
a particle that is charged with mass function that is position-dependent in a Hulthen 
potential coupled with Coulomb-like potential field under the actions of the exter-
nal magnetic and Aharonov–Bohm (AB) flux fields. The authors calculated bound 
state eigenvalues and eigenfunctions. Eshghi and Mehraban [18] also reported a 
general form of this equation in curved space by introducing Aharonov–Bohm (AB) 
flux and magnetic fields to the system. Subsequently, they solved the generalized 
model with the radial scalar power potential (RSPP) with the curvilinear coordinates 
system. The pseudoharmonic oscillator potential in the presence of magnetic field 

(1)V(�) = −
a

�
+

b

�
e
−��
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and Aharonov–Bohm (AB) flux field has been studied by Khordad [19], where he 
solved this nonrelativistic equation exactly to obtain its bound state energy. Ikhdair 
and Falaye [20] solved the two-dimensional spinless Klein–Gordon (KG) equation 
with harmonic oscillator potential with and without magnetic and Aharonov–Bohm 
(AB) flux fields, and the authors obtained exact energy eigenvalues and normal-
ized wave functions. They went further to investigate the effects of these fields on 
the nonrelativistic energy eigenvalues and wave functions obtained [20]. Ikhdair 
et al. [21] solved the two-dimensional Schrödinger wave equation (SWE) with vari-
ous power interaction potentials in the presence of magnetic and Aharonov–Bohm 
(AB) flux fields. The authors computed the energy levels of some diatomic mol-
ecules in the presence and absence of magnetic and AB flux fields using different 
quantum mechanical models. It was noted that the effect of the AB field is abundant 
as it makes a broader shift for m ≠ 0 and its influence on m = 0 states was found 
to be superior to that of the magnetic field. Falaye et al. [22] studied the effect of 
restraining the hydrogen atom with the AB flux and electric and magnetic fields 
surrounded by quantum plasmas. The overall effects result in an intensely attrac-
tive system, while the localizations of quantum levels change and the eigenvalues 
decrease accordingly. The authors found that the combined effect of the fields is 
much stronger than the isolated effect and consequently that there is a significant 
shift in the bound state energy of the system [22]. Aygun et al. [23] also solved the 
SWE in 2D solution for the Kratzer potential in the presence and absence of a con-
stant magnetic field. The magnetic field effect on the energy spectra of the Kratzer 
potential was studied. Oyewumi et al. [24] examined the effect of magnetic field on 
the bound state solution of the SWE with the pseudoharmonic oscillator potential. It 
was discovered that the energy spectrum obtained mainly depends on dissociation 
energy and the magnetic quantum numbers m , which are influenced by the magnetic 
field. Ferkous and Bounames [25] solved the two-dimensional Pauli equation with 
Hulthen potential for spin-1/2 particle in the presence of AB field. They obtained 
singular and regular solutions of the problem. It is shown that the AB field raises 
the degeneracy of the energy levels. Çetin [26] examined the effect of magnetic field 
on an electron that is free to move on a nanosphere. The exact energy levels and 
wave functions were also obtained. Landau energy levels were depicted for magnetic 
fields occurring on two-dimensional flat surfaces, when the radius is very large. In 
another interesting development, the Dirac–Weyl equation was used by Orozco et al. 
[27] to find the exact energy equation of the graphene quantum dot interacting with 
AB flux field and magnetic field. It was discovered that apart from using the gra-
phene sheet and external magnetic field, the Aharonov–Bohm (AB) flux field could 
as well be utilized to control the carriers’ state energies in graphene.

It is recognized that thermodynamics is a branch of physics that offers analysis 
of macroscopic thermodynamic quantities at the molecular level. It employs prob-
ability theory to investigate the thermodynamic activity of systems comprised of a 
large number of particles. The elucidation of the macroscopic theory of thermody-
namics in terms of the more abstract microscopic statistical mechanics was one of 
the most important triumphs of physics in the early twentieth century [28–30]. For 
a quantum system influenced by magnetic and AB field, some studies on thermo-
dynamic properties have been carried out by a number of researchers. Among the 
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selected few are; Khordad and Sedehi [31] studied the thermodynamic properties of 
a gallium arsenide double-ring-shaped quantum dot in the presence of magnetic and 
electric fields. The radial part of the nonrelativistic wave equation was solved with 
the ring-shaped quantum. The expressions obtained for the energy equations from 
the graphene sheet, external magnetic field and the Aharonov–Bohm (AB) flux field 
could be utilized to control the carriers’ state energies in graphene. They calculated 
the entropy, heat capacity, average energy and magnetic susceptibility of the quan-
tum dot in the presence of a magnetic field via the canonical ensemble approach. 
Sukirti et  al. [32] examined the thermodynamic features of Rashba quantum dots 
with magnetic field. The thermodynamic properties of asymmetric parabolic quan-
tum dot have been extensively treated by Ibragimov [33]. Again, Khordad and Sedeh 
[34] employed extensive and nonextensive entropies to study magnetic susceptibility 
of grapheme in noncommutative phase space. From their results, it was found that 
the magnetic susceptibility has a positive value using the Shannon entropy. On the 
other hand, the authors obtained both positive and negative values for the magnetic 
susceptibility of graphene when Tsallis entropy was used. The magnetization and 
magnetic susceptibility of donor impurity in parabolic GaAs quantum dot have been 
studied by Alia et al. [35] at finite temperature under the joint effect of external elec-
tric and magnetic fields. All the energy matrix elements were obtained analytically. 
Their computed results show that electric field can modify the magnetic properties 
of the QD GaAs medium by flipping the sign of its magnetic susceptibility from 
diamagnetic 

(

𝜒m < 0
)

 to paramagnetic 
(

𝜒m > 0
)

 . Baghdasaryan et al. [36] rewrote 
the magnetic field operator and the SWE in toroidal coordinates. This Hamiltonian 
operator in toroidal coordinates was used to evaluate the dependence of one-elec-
tron energy spectrum and wave function on the geometrical parameters of a toroidal 
quantum dot and magnetic field strength. The energy levels were used to evaluate 
the canonical partition function, which was used to obtain mean energy, heat capac-
ity, entropy, magnetization and susceptibility of noninteracting electron gas. Khor-
dad et al. [37] scrutinized the effect of a functional magnetic field on the entropy and 
internal energy of GaAs cylindrical quantum dot. For this reason, the Tsallis formal-
ism is applied to obtain internal energy and entropy. It was noted that the entropy 
maximum increases with increasing dot radius and internal energy increases with 
increasing magnetic field.

In this investigation, our aim is in fourfold. First, we extend the works in Refs [5, 
6] and solve the SWE with the Hellmann potential model in the presence of exter-
nal magnetic and AB flux fields. By using the Nikiforov–Uvarov functional analysis 
(NUFA) method, we give detailed solutions of the 2D SWE with Hellmann poten-
tial models in the presence of magnetic and Aharonov–Bohm (AB) flux fields. The 
derived energy equation will be used to obtain the partition function, which will in 
turn be used to obtain other thermodynamic quantities such as entropy, mean free 
energy, specific heat capacity and magnetic susceptibility. We analyze the effect of 
the fields on these properties. More so, magnetization and magnetic susceptibility at 
zero temperature are considered as well.

The outline of our paper is as follows. In Sect.  2, we give the solutions of 
the 2D Schrödinger equation with the Hellmann potential and vector potential 
A⃗ under the influence of external magnetic and AB flux fields. In Sect.  3, the 
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computations of numerical energy spectrum under external fields are considered 
and the comparison with previous results is given when fields become zero. In 
Sect.  4, magnetization and magnetic susceptibility at zero temperature are con-
sidered. We study the behavior of thermodynamic properties in the presence 
of external fields in Sect. 5. Finally, the paper ends with concluding remarks in 
Sect. 6.

2 � Schrödinger Equation with Hellmann Potential with AB Flux 
and an External Magnetic Fields

The Hamiltonian operator of a particle that is charged and subjected to move in 
the Hellmann potential under the combined impact of AB flux and an external 
magnetic fields can be written in cylindrical coordinates. Thus, the SWE is writ-
ten as in Ref. [16–18] taking into consideration the Hellmann potential:

where E
nm

 denotes the energy level, � is the effective mass of the system, the vector 
potential which is denoted by “ �⃗A ” can be written as a superposition of two terms 
�⃗A = �⃗A1 +

�⃗A2 having the azimuthal components [22] and external magnetic field with 
��⃗∇ × �⃗A1 =

�⃗B, ��⃗∇ × �⃗A2 = 0 , where �⃗B is the magnetic field. �⃗A1 =
B⃗e

−𝜂𝜌

1−e−𝜂𝜌
�𝜙  and �⃗A2 =

𝜙
AB

2𝜋𝜌
�𝜙  

represent the additional magnetic flux �AB created by a solenoid with ��⃗∇. �⃗A2 = 0 . The 
vector potential in full is written in a simple form asA⃗ =

(

0,
B⃗e

−𝜂𝜌

1−e−𝜂𝜌
+

𝜙
AB

2𝜋𝜌
, 0

)

,

Let us take a wave function in the cylindrical coordinates as 
�(�,�) =

1
√

2��
e
im�

R
nm
(�), where m denotes the magnetic quantum number. 

Inserting this wave function, the vector potential into Eq.  (2) and using the 
approximation proposed by Greene and Aldrich [38] with some simple algebraic 
calculations, we arrive at the following radial second-order differential equation:

where � = −
e

c
,�0 =

hc

e
 and � =

�AB

�0

.
For Mathematical simplicity, let us introduce the following dimensionless 

notations:
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and

By substituting s = e
−�� into Eq. (3), we can simply write Eq. (3) in the s-coordi-

nate as follows:

By taking the following radial wave functions of the form

and employing the NUFA method as reported in Ref. [39], we obtain the following:

The energy equation of the Hellmann potential in the presence of external mag-
netic and AB flux fields is now obtained as

Hence, if one substitutes the value of the dimensionless parameters in Eq. (4) into 
Eq. (9), we obtain the solutions as follows:
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where 𝜅 =
1

2
+

√

(m + 𝜉)2 −
2m𝜏B⃗

�𝜂
+

𝜏2B⃗𝛷AB

�2𝜂𝜋
+

𝜏2B⃗2

�2𝜂2
,m = ± 1,± 2,± 3… , and m is 

the magnetic quantum number.
The three-dimensional nonrelativistic energy solutions are obtained by setting 

m = � +
1

2
 where � is the rotational quantum number in Eq. (10) to obtain

Equation  (11) is in excellent agreement with Eq.  (33) of Ref. [40], and these 
results can also be used in some applications as those reported in Refs. [41, 42].

The corresponding unnormalized wave function is obtained as

where N
nm

 is the normalization constant and 2F1(−n, n + 2(� + �);2� + 1, s) is the 
hypergeometric function.

3 � Results and Discussion

In Table 1, we compute the energy eigenvalue using Eq. (10) for three cases when 
� = 0.005 ; when both fields are absent, degeneracy is present. By subjecting the 
system to only the magnetic field, the energy values are reduced and degeneracies 
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−�1+� (1 − s)

1

2
+

√

1

4
+�−�1+�2+�3

2F1(−n, n + 2(� + �);2� + 1;s)

Table 1   Energy values for the Hellmann potential model under the influence of AB flux and external 
magnetic fields with various values of magnetic quantum numbers

The following fitting parameters have been employed: ℏ = b = � = � = e = c = 1,a = 2 and � = 0.005 . 
All values are in natural units

m n B = 0,�
AB

= 0 B = 5,�
AB

= 0 B = 0,�
AB

= 5 B = 5,�
AB

= 5

0 0 − 2.010003125 − 1,251,0002.01 − 0.021986596 − 1881.110061
1 − 0.230008681 − 1,389,994.674 − 0.017892474 − 1791.688849
2 − 0.087621125 − 500,394.0875 − 0.015344014 − 1708.475408
3 − 0.048407207 − 255,300.0486 − 0.013661603 − 1630.908157

1 0 − 0.228892014 − 1522.367263 − 0.01722206 − 841.7223671
1 − 0.087215125 − 1456.955969 − 0.014823347 − 814.4719178
2 − 0.048197003 − 1395.655192 − 0.013241014 − 788.5143204
3 − 0.032157446 − 1338.127599 − 0.012152709 − 763.7690685

− 1 0 − 0.228892014 1570.192051 − 0.030250039 7959.937689
1 − 0.087215125 1565.505879 − 0.022748993 7839.387741
2 − 0.048197003 1556.180231 − 0.018454308 7604.307172
3 − 0.032157446 1542.307525 − 0.015780014 7266.113808
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are removed. The energy spectra become more negative, and the system becomes 
strongly attractive as the quantum number n increases for fixed m . When only the 
AB field is applied, the degeneracy is affected and the energy eigenvalues increase. 
The all-inclusive effect of the fields is stronger than the individual effects, and con-
sequently, there is a significant shift in the bound state energy of the system. In 
Table 2, we compute the energy eigenvalue using eq.  (10) for three cases with an 
increased value of the screening parameter (� = 0.01) . When both fields are absent, 
i.e., B = 0,�AB = 0 , degeneracy is observed. Again, by exposing the Hellmann 
potential to only the magnetic field, the energy values are reduced and degeneracy is 
not affected. The energy levels become more negative, and the system becomes more 
bounded as the quantum number n increases for invariant m . When only AB flux is 
functional, the degeneracy is removed rapidly and energy eigenvalue increases. The 
overall effects indicate that the system is strongly attractive. Also, the joint effect of 
the external fields is stronger than the individual effects, and consequently, there is 
a substantial change in the bound state energy of the system. Table 3 shows a com-
parison of the present results with results of other authors in three dimensions using 
eq.  (11). It is noted here that our result is consistent with what is obtained in the 
literature.

In Fig. 1, we show the combined effect of the AB flux and magnetic fields on the 
energy values of the Hellmann potential. The confinement effect of the AB flux field 
on the quantum system is stronger than that of the magnetic field. This can be seen 
in Fig. 1a, b, which shows that the energy eigenvalue decreases as B⃗ increases. But 
the effect of the AB flux is seen as the energy increases with increasing value of 
�AB . In Fig. 2, we show the combined effect of the AB flux and magnetic fields on 
the energy values of the Hellmann potential. Again, the confinement effect of the 
AB flux field on the quantum system is stronger than that of the magnetic field. This 

Table 2   Energy values for the Hellmann potential model under the influence of AB flux and external 
magnetic fields with various values of magnetic quantum numbers

The following fitting parameters have been employed: ℏ = b = � = � = e = c = 1,a = 2 and � = 0.01 . 
All values are in natural units

m n B = 0,�
AB

= 0 B = 5,�
AB

= 0 B = 0,�
AB

= 5 B = 5,�
AB

= 5

0 0 − 2.0200125 − 3,130,002.02 − 0.027450517 − 914.5349707
1 − 0.2378125 − 347,772.46 − 0.023995932 − 854.4683858
2 − 0.0952845 − 125,194.0953 − 0.021909389 − 800.0935723
3 − 0.056077806 − 63,871.48466 − 0.020597967 − 750.7134985

1 0 − 0.235568056 − 751.357965 − 0.035814969 4146.443075
1 − 0.0944605 − 706.3267065 − 0.0290125 4016.824466
2 − 0.055645153 − 665.194507 − 0.02517818 3770.791577
3 − 0.039740895 − 627.523898 − 0.022853389 3432.021333

− 1 0 − 0.235568056 − 751.357965 − 0.02261605 − 411.0410648
1 − 0.0944605 − 706.3267065 − 0.0208045 − 392.4168263
2 − 0.055645153 − 665.194507 − 0.01967686 − 375.0124326
3 − 0.039740895 − 627.523898 − 0.018970949 − 358.7236448
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can be seen in Fig. 2a, b which shows that the energy eigenvalue increases as �AB 
increases. But the effect of the magnetic field is seen as the energy decreases with 
increasing value of B⃗ . The energy increases monotonically with increasing AB flux 
field in Fig. 1a, and a similar behavior is observed in Fig. 1b but the curve represent-
ing energy eigenvalue variation for B⃗ = 1T  shows an invariant trend. Figure  3a 
shows the variation in the magnetization against a varied magnetic field �AB . It is 
shown that the magnetization increases precipitously with increasing B⃗ but decreases 
for increasing values of �AB . From Fig. 3b, it is observed that at zero temperature, 
the magnetic susceptibility of the quantum system is seen to be paramagnetic in the 

Table 3   Comparison of energy spectrum obtained from FAA with SUSY, Nikiforov–Uvarov (NU) and 
amplitude-phase method with ℏ = b = 2� = 1 and a = 4�

State Present SUSY [5] PNU [6] APM [6]

1 s 0.001 − 0.251500250 − 0.251 500 − 0.251 500 − 0.250 969
0.005 − 0.257506250 − 0.257 506 − 0.257 506 − 0.254 933
0.01 − 0.265025000 − 0.265 025 − 0.265 025 − 0.259 823

2 s 0.001 − 0.064001000 − 0.064 001 − 0.064 001 − 0.063 243
0.005 − 0.070025000 − 0.070 025 − 0.070 025 − 0.067 106
0.01 − 0.077600000 − 0.077 600 − 0.077 600 − 0.071 689

2p 0.001 − 0.064250250 − 0.063 750 − 0.064 000 − 0.063 495
0.005 − 0.071256250 − 0.068 756 − 0.070 000 − 0.067 377
0.01 − 0.080025000 − 0.075 025 − 0.077 500 − 0.072 020

3 s 0.001 − 0.029280028 − 0.029 280 − 0.029 280 − 0.028 283
0.005 − 0.035334028 − 0.035 334 − 0.035 334 − 0.031 993
0.01 − 0.043002778 − 0.043 003 − 0.043 003 − 0.036 142

3p 0.001 − 0.029390250 − 0.029 169 − 0.029 279 − 0.028 765
0.005 − 0.035867361 − 0.034 756 − 0.035 309 − 0.032 480
0.01 − 0.044025000 − 0.041 803 − 0.042 903 − 0.036 142

3d 0.001 − 0.029611361 − 0.028 945 − 0.029 388 − 0.028 767
0.005 − 0.036950694 − 0.033 617 − 0.035 817 − 0.032 526
0.01 − 0.046136111 − 0.039 469 − 0.043 825 − 0.036 613

4 s 0.001 − 0.017129000 − 0.017 129 − 0.029 280 − 0.016 601
0.005 − 0.023225000 − 0.023 225 − 0.035 334 − 0.020 077
0.01 − 0.031025000 − 0.031 025 − 0.043 003 − 0.023 551

4p 0.001 − 0.017190563 − 0.017 066 − 0.017 128 − 0.016 602
0.005 − 0.023514063 − 0.022 889 − 0.023 200 − 0.020 098
0.01 − 0.031556250 − 0.030 306 − 0.030 925 − 0.023 641

4d 0.001 − 0.017314063 − 0.016 939 − 0.017 189 − 0.016 604
0.005 − 0.024101563 − 0.022 227 − 0.023 464 − 0.020 098
0.01 − 0.032656250 − 0.028 906 − 0.031 356 − 0.023 641

4f 0.001 − 0.017500250 − 0.016 750 − 0.017 311 − 0.016 607
0.005 − 0.025006250 − 0.021 257 − 0.024 024 − 0.020 142
0.01 − 0.034400000 − 0.026 900 − 0.032 356 − 0.024 056
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Fig. 1   Variation in energy values for the Hellmann potential and under the influence of the magnetic field 
and the AB flux field in natural units using the fitting parameters ℏ = b = � = � = e = c = 1,a = 2 and 
� = 0.005 a as a function of external magnetic field with various �AB and m = n = 0 . b Same as a but 
with m = n = 1 (Color figure online)

Fig. 2   Variation in energy values for the Hellmann potential and under the influence of the magnetic field 
and the AB flux field in natural units using the fitting parameters ℏ = b = � = � = e = c = 1,a = 2 and 
� = 0.005 a as a function of AB flux field with various B⃗ and m = n = 0 . b Same as a but with m = n = 1 
(Color figure online)
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region of B⃗ values considered. 𝜒m

(

B⃗,𝛷AB

)

 decreases with increasing values of 

�AB . More so, the relationship between 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 and B⃗ is linear as 

𝜒m

(

B⃗,𝛷AB, 𝛽
)

 increases linearly as B⃗ increases.
From Fig.  4a, it is shown that the partition function was almost constant but 

increased at B⃗ ≈ 1.8T  and decreased again at B⃗ ≈ 2.4T  . Beyond this point, it 
remained constant throughout B⃗ = 3T  . Furthermore, the partition function decreased 
as temperature value increased. In Fig. 4b, it is seen that the partition function was 
pseudoconstant as AB field increased but the three curves converged at B ≈ 3T  and 
unanimous increase is observed in three curves. In the nearly constant region, the 
partition function was observed to be low as temperature upsurges but beyond this 
region, the partition function was found to increase with increasing values of tem-
perature. Figure 4c, d shows that the partition function decreases as � increases.

In Fig. 5a, the relationship between magnetizationM
(

B⃗,𝛷AB, 𝛽
)

 and B⃗ shows a 
pseudosinusoid in the region 1 < B⃗ < 3 . The magnetization rises and drops simulta-
neously for all three curves and rises again. This rise was continuous to B⃗ = 6T  . The 
magnetization increases with increasing values of temperature in the latter region 
but the converse is observed in the former region. Magnetization M

(

B⃗,𝛷AB, 𝛽
)

 
against AB flux field �AB with different � is graphically displayed in Fig. 5b, which 
shows that the magnetization looks similar in the region 0 < 𝛷AB < 2 . Beyond this 
region, a sharp rise is observed. It is shown in Fig.  5c, d that the magnetization 
decreases as � increases for varying B⃗ and �AB . In both cases, a sharp rise is noticed 

Fig. 3   a Plot of magnetization against magnetic field for different values of AB flux field at zero tem-
perature. b Plot of magnetic susceptibility against magnetic field for different values of AB flux field at 
zero temperature (Color figure online)
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in a certain value of � . This rise continues B⃗ = 0.01 without drop but when B⃗ = 0.02 
and B⃗ = 0.03 , the trend remained unchanged. In Fig. 5d, we notice a similar behav-
ior when the representative curve for �AB = 1 shows a sharp rise at � ≈ 0.06 ; this 
continues smoothly and drops again at � ≈ 0.13.

Figure  6a reveals that as B⃗ increases, magnetic susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 

increases. If we monitor closely the variation in 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 against B⃗ under dif-

ferent temperature conditions, it is observed that 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 decreases with 
increasing � . The system also reveals some sort of saturation at large B⃗ . The plot 
also shows that a paramagnetic 

(

𝜒m

(

B⃗,𝛷AB, 𝛽
)

> 0

)

 behavior is dominant in the 
system over a range of B⃗ . This is similar to the behavior of the quantum system at 
zero temperature. A closer look at the curves for � = 0.04 and � = 0.08 reveals that 
in the region where 0.2T < B⃗ < 1.1T  , the susceptibility was quasi-constant but 
increased swiftly from B⃗ = 1.1T  . Figure 6b shows that as �AB increases, magnetic 
susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 decreases monotonically. The susceptibility increases 
for increasing values of � . The variation in the magnetic susceptibility with the AB 
flux field shows a diamagnetic behavior for � = 0.04 and � = 0.08 . The magnetic 
susceptibility shows a slightly paramagnetic behavior for � = 0.01 . Figure 6c shows 
that as � increases, magnetic susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 increases monotonically. 

Fig. 4   a Plot of partition function against magnetic field for different values of temperature. b Plot of 
partition function against AB flux field for different values of temperature. c Plot of partition function 
against � for different values magnetic field,B⃗ . d Plot of partition function against � for different values 
AB flux field, �AB (Color figure online)
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Fig. 5   a Plot of magnetization against B⃗ at finite temperature. b Magnetization M
(

B⃗,𝛷AB, 𝛽
)

 against AB 
flux field �AB with different � . c Magnetization M

(

B⃗,𝛷AB, 𝛽
)

 against � varying B⃗ . d Magnetization 
M

(

B⃗,𝛷AB, 𝛽
)

 against � varying B⃗ (Color figure online)

Fig. 6   a Magnetic susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 against B⃗ varying � . b Magnetic susceptibility 
𝜒m

(

B⃗,𝛷AB, 𝛽
)

 against �AB varying � . c Magnetic susceptibility𝜒m

(

B⃗,𝛷AB, 𝛽
)

 against � varying B⃗ . (d) 
Magnetic susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 against � varying �AB (Color figure online)
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The susceptibility increases for increasing values of B⃗ . The variation in the magnetic 
susceptibility with � shows a diamagnetic behavior for varying B⃗ . Figure  6d plot 
shows that as � increases, magnetic susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 increases mono-
tonically. The susceptibility decreases for increasing values of �AB . The variation in 
the magnetic susceptibility with � shows a diamagnetic behavior for varying �AB.

Figure 7a shows the variation in the internal energyU
(

B⃗,𝛷AB, 𝛽
)

 with increasing 
magnetic field. The internal energy reduces for increasing values of � . It is observed 
that the U

(

B⃗,𝛷AB, 𝛽
)

 decreases with increasing B⃗ . We also notice a uniform drop of 

U

(

B⃗,𝛷AB, 𝛽
)

 in all three cases at B⃗ = 2T  and sharp rise. Figure 7b shows the inter-
nal energy variation with AB flux field at varied � . The internal energy decreases 
with increasing �AB and also increases with increasing value of � . We also notice 
that the three curves converge at �AB = 2.5 for all � values. Figure 7c shows the 
internal energy U

(

B⃗,𝛷AB, 𝛽
)

 against � with varied B⃗ . The internal energy increases 
with increasing � but drops and remains unchanged up to � ≈ 0.20 . This behavior is 
evident in three cases of B⃗ . The internal energy U

(

B⃗,𝛷AB, 𝛽
)

 is plotted against � 
with varied �AB in Fig. 7d. The internal energy of the system decreases with increas-
ing �.

Fig. 7   a Internal energy,U
(

B⃗,𝛷AB, 𝛽
)

 against B⃗ varying � . b Internal energy,U
(

B⃗,𝛷AB, 𝛽
)

 against �AB 
varying � . c Internal energy,U

(

B⃗,𝛷AB, 𝛽
)

 against � varying B⃗ . d Internal energy,U
(

B⃗,𝛷AB, 𝛽
)

 against � 
varying �AB (Color figure online)
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Figure 8a shows the variation in specific heat C
v

(

B⃗,𝛷AB, 𝛽
)

 with B⃗ at varied 
temperature. The specific heat capacity increases with increasing B⃗ , up to B⃗ ≈ 2T  ; 
beyond this point, the specific heat drops at B⃗ = 4T ,B⃗ = 4.5T  and B⃗ = 6T  for 
� = 0.08,� = 0.04 and � = 0.01 , respectively. After this point, the specific heat 
capacity rises again and maintains a constant trend.

Figure  8b shows the variation in specific heat capacityC
v

(

B⃗,𝛷AB, 𝛽
)

 against 
�AB with varied � . The specific heat capacity lowers as AB flux field increases. 
We also note that there is a sharp rise at �AB ≃ 2 ; afterward, the decrease was 
continuous. Figure 8c shows the specific heat capacityC

v

(

B⃗,𝛷AB, 𝛽
)

 with varying 
� and B⃗ . The specific heat capacity decreases with increasing � , for B⃗ = 0.02T  
and B⃗ = 0.03 , although the variation shows a rising and low pattern. On the other 
hand, the curve for B⃗ = 0.01T  shows a rising trend up to � ≃ 0.14 where it drops 
continuously to � ≃ 0.17 . Figure 8d shows the variation in the specific heat capac-
ity with � with varying values of �AB . C

v

(

B⃗,𝛷AB, 𝛽
)

 decreases with increasing � , 
although it shows a rising and low nature in the trend. For �AB = 1 and �AB = 2 , 
the specific heat drops at � ≃ 0.05 and � = 0.06 , respectively, and increases very 
slightly and drops again immediately. Thereafter, a constant trend is maintained. 
When � = 3 , the specific heat capacity peaks at � = 0.05 and then drops 

Fig. 8   a Specific heat capacity, C
v

(

B⃗,𝛷AB, 𝛽
)

 against B⃗ varying � . b Specific heat capacity 
C
v

(

B⃗,𝛷AB, 𝛽
)

 against �AB varying � . c Specific heat capacityC
v

(

B⃗,𝛷AB, 𝛽
)

 against � varying B⃗ . d Spe-
cific heat capacity,C

v

(

B⃗,𝛷AB, 𝛽
)

 against � with varying �AB (Color figure online)
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immediately to its minimum at C
v

(

B⃗,𝛷AB, 𝛽
)

= −1.2
J

K
 at � = 0.11 and then rises 

again and drops at � ≃ 0.17.
Figure 9a shows the plot of free energy F

(

B⃗,𝛷AB, 𝛽
)

 against B⃗ with varying � . 
When � = 0.01 , the free energy is higher and we observe that the free energy 
increases with increasing magnetic field and reaches it maximum at B⃗ ≈ 0.04T  ; 
from then on, it falls sporadically. A similar trend is observed when � = 0.04 and 
� = 0.08 , and it rises at B⃗ ≈ 0.03T  and drops also. Figure 9b shows the plot of free 
energy F

(

B⃗,𝛷AB, 𝛽
)

 against �AB with varying � . When � = 0.01 , again, the free 
energy is higher and we observe that the free energy increases with increasing mag-
netic field and reaches it maximum at �AB ≈ 2.4 ; from then on, it falls sporadically. 
A similar trend is observed when � = 0.04 and � = 0.08 , and it rises at �AB ≈ 2.5 
and drops also. In Fig.  9c, the free energyF

(

B⃗,𝛷AB, 𝛽
)

 is plotted against � with 
varying B⃗ . It is observed that the free energy increases at a monotonic pattern as � 
increases for all values of B⃗.The free energy F

(

B⃗,𝛷AB, 𝛽
)

 is plotted against � with 
varying �AB in Fig. 9d. Once again, It is observed that the free energy increases at a 
monotonic pattern as � increases for all values of �AB . We also notice that the higher 
the AB flux field, the lower the free energy.

Fig. 9   a Free energy,F
(

B⃗,𝛷AB, 𝛽
)

 against B⃗ varying � . b Free energy,F
(

B⃗,𝛷AB, 𝛽
)

 against �AB varying 
� . c Free energy,F

(

B⃗,𝛷AB, 𝛽
)

 against � varying B⃗ . d Free energy,F
(

B⃗,𝛷AB, 𝛽
)

 against � varying �AB 
(Color figure online)
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The entropy of the quantum mechanical system against the external magnetic 
field with varying � is depicted in Fig. 10a; the entropy of the system reduces as B⃗ 
increases up to B⃗ ≈ 0.004T  and immediately rises again for all three values of � . 
Again, the entropy of the system against the AB flux field with varying � is plotted 
in Fig. 10b, and it diminishes as �AB up to �AB ≈ 2.6 and immediately rises again 
for all three values of � . It peaks up for � = 0.01 but a sharp decrease is observed for 
� = 0.04 and � = 0.08 . Figure 10c shows the entropyS

(

B⃗,𝛷AB, 𝛽
)

 with varying � 

and B⃗ . S
(

B⃗,𝛷AB, 𝛽
)

 decreases with increasing � , for B⃗ = 0.02T  and B⃗ = 0.03T  . On 
the other hand, the curve for B⃗ = 0.01T  shows a rising trend up to � ≃ 0.14 where it 
drops continuously to � ≃ 0.20 . Figure  10d shows the variation in 
entropyS

(

B⃗,𝛷AB, 𝛽
)

 with � and with varying �AB . The entropy decreases as � 
increases and decreases also for �AB.

4 � Magnetization and Magnetic Susceptibility at Zero Temperature

In the present study, we are interested in analyzing the magnetization and magnetic 
susceptibility at zero temperature.

Fig. 10   a Entropy S
(

B⃗,𝛷AB, 𝛽
)

 against B⃗ varying � . b Entropy S
(

B⃗,𝛷AB, 𝛽
)

 against �AB with varying 
� . c Entropy S

(

B⃗,𝛷AB, 𝛽
)

 against � varying B⃗ . d Entropy,S
(

B⃗,𝛷AB, 𝛽
)

 against � with varying �AB 
(Color figure online)
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4.1 � Magnetization

The magnetization of a system in a state (n,m) is defined as [43]:

4.2 � Magnetic Susceptibility at Zero Temperature

The magnetic susceptibility at zero temperature is given as [43]:

5 � Thermal Properties of Hellmann Potential with Magnetic and AB 
Fields

The vibrational partition function can be calculated with the aid of direct sum-
mation over all possible vibrational energy levels at a given temperature T  to be 
[44–46] 

Here, k
B
 is the Boltzmann constant and E

nm
 is the energy of the nth bound state.

We can rewrite eq. (10) to be of the form

We substitute Eq. (16) into Eq. (15) to have

where � is the maximum quantum number obtained by taking the first derivative of 
Eq. (16) and equating it to zero. Thus, we get

(13)M
nm

(

B⃗,𝛷AB

)

= −
𝜕E

nm

𝜕B⃗

(14)𝜒m =
𝜕M

𝜕B⃗

(15)Z(�) =

�
∑

n=0

e
−�E

nm , � =
1

k
B
T

(16)E
nm

= �1 −
ℏ2�2

2�

(

(n + �)2 + �2

2(n + �)

)2

(17)

𝛬1 =
�2𝜂2

2𝜇

(

(m + 𝜉)2 −
1

4

)

− 𝜂a; 𝛬2 = −
2𝜇(a − b)

�2𝜂
+ (m + 𝜉)2 −

1

4
−

𝜏2B⃗2

�2𝜂2

(18)Z(�) =

�
∑

n=0

e

−�

[

�1−
ℏ2�2

2�

(

(n+�)2+�2
2(n+�)

)2
]
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In the classical limit, the sum in Eq. (18) can be replaced by an integral, such that

where

The integral is evaluated in the region � ≤ � ≤ � + �
We therefore use the Mathematica software to evaluate the integral in eq. (22), thus 

obtaining the partition function for the Hellmann potential model as:

where we have also introduced the following parameters for mathematical simplicity,

The error function can be defined as [47] 

Thermodynamic functions such as magnetic susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 , Helm-

holtz free energy F
(

B⃗,𝛷AB, 𝛽
)

 , entropy S
(

B⃗,𝛷AB, 𝛽
)

 , internal energy U
(

B⃗,𝛷AB, 𝛽
)

 

and specific heat C
v

(

B⃗,𝛷AB, 𝛽
)

 can be obtained from the partition function as follows.

5.1 � Magnetization at Finite Temperature

The magnetization is given as [48]:

(19)� = −� +
√

�1 ±
√

�1 − �2

(20)Z(�) =

�

∫
0

e
�
(

P(n+�)2+
Q

(n+�)2
+R

)

dn

(21)P =
ℏ2�2

8�
;Q =

ℏ2�2�2

2

8�
;R =

ℏ2�2�2

2�
+ �1.

(22)Z(�) =

�+�

∫
�

e
−�

(

a

�2
+b�2+c

)

d� ,� = n + �

(23)
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AB

) =

e
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−Q𝛽𝜋
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−1 + Erf [𝜈 − 𝜃] + e
4

√
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−Q𝛽
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5.2 � Magnetic Susceptibility

The magnetic susceptibility of the system is calculated with [48] 

5.3 � Internal Energy

The internal energy of the system is obtained as [49]:

5.4 � Specific Heat Capacity

The specific heat capacity is evaluated using the following equation [49]:

5.5 � Free Energy

The free energy of the system is given as [49] 

5.6 � Entropy

The entropy of the system is evaluated with the expression below [49]:

(26)M

�

B⃗,𝛷AB, 𝛽
�

=
1

𝛽

⎛

⎜

⎜

⎜

⎝

1

Z

�

B⃗,𝛷AB, 𝛽
�

⎞

⎟

⎟

⎟

⎠

�

𝜕

𝜕B⃗
Z

�

B⃗,𝛷AB, 𝛽
�

�

(27)𝜒m
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)

=

𝜕M
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𝜕B⃗
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(
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= −
1
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6 � Conclusion

In this study, the Hellmann potential is examined in the presence of external mag-
netic and AB flux fields. The Hamiltonian operator consisting of both fields and the 
potential is transformed into a second-order differential equations. We solve the 
resulting differential equation via the Nikiforov–Uvarov functional analysis (NUFA) 
approach to obtain the energy equation and wave function of the system. The effect 
of the fields on the energy spectra of the system is closely examined. It was found 
out that the B⃗ and AB fields remove degeneracy when the screening parameter was 
� = 0.005 but when the screening parameter was increased to � = 0.01 , the AB field 
was found to perform better than the magnetic field in its ability to remove degener-
acy. Furthermore, the magnetization and magnetic susceptibility of the system were 
considered at zero temperature. The system was found to exhibit a paramagnetic 
behavior 

(

𝜒m

(

𝛽,𝛷AB, B⃗

)

> 0

)

 , and the system also reveals some sort of saturation 
at large B⃗ . We evaluate the partition function and use it to evaluate other thermody-
namic properties of the system such as magnetic susceptibility 𝜒m

(

B⃗,𝛷AB, 𝛽
)

 , 

Helmholtz free energy F

(

B⃗,𝛷AB, 𝛽
)

 , entropy S

(

B⃗,𝛷AB, 𝛽
)

 , internal energy 

U

(

B⃗,𝛷AB, 𝛽
)

 and specific heat C
v

(

B⃗,𝛷AB, 𝛽
)

 . A comparative analysis of the mag-
netic susceptibility of the system at zero and finite temperatures shows a similarity 
in the behavior of the system. All thermodynamic properties of Hellmann potential 
have been thoroughly investigated in the presence of both fields and can be applied 
to study the thermodynamic properties for some real physical potentials [50–54] 
with applications to molar entropy, enthalpy, Gibbs free energy and others [55–60]. 
Finally, our research findings could also be applied in condensed matter physics, 
atomic physics and chemical physics, mass spectra and quantum information [61, 
62].
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