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Abstract: This paper presents approximate solutions of linear system of fractional differential equations 

(FDEs) by extending the approach of shifted Legendre operational matrix of derivatives together with 

spectral method. The results obtained in solving differential systems of linear FDE shows that the 

proposed method is factual.  Fractional differential equations (FDEs) have been a useful tool for 

computing and modelling of computer components in telecommunication companies, mobile companies 

and for industrial practitioners and also plays a vital role in science and engineering. 

1. Introduction 

Consider the system of FDEs: 

 𝐷𝛼1𝑦1(𝑥) = 𝑓1(𝑥, 𝑦1, 𝑦2,⋯𝑦𝑛) 

𝐷𝛼2𝑦2(𝑥) = 𝑓2(𝑥, 𝑦1, 𝑦2,⋯𝑦𝑛) 

 ⋮                              ⋮ 

𝐷𝛼𝑛𝑦𝑛(𝑥) = 𝑓𝑛(𝑥, 𝑦1 , 𝑦2,⋯𝑦𝑛), 

[1] 

where, 𝐷𝛼𝑖 is the 𝛼𝑖 order derivative in the sense of Caputo and 0 < 𝛼𝑖 < 1, with initial conditions 

𝑦𝑖(0) = 𝑑𝑖 , 𝑖 = 1,2,⋯𝑛.  

Ordinary differentiation and integration is a common branch of calculus that have un limited 

application at various field of studies, fractional calculus constitute the completion of integration and 

ordinary differentiation which have been proved to be an important tool that is used in computing and 

modelling of physical components in telecommunication companies, mobile companies and for 

industrial practitioners, it plays a vital role in science, aerodynamics, engineering, and control systems, 

see (Kilbas, Srivastava, & Trujillo 2006; Agarwal, Andrade, & Cuevas, 2020) and (Agarwal, 

Lakshmikantham, & Nieto 2010; Podlubny, 1999; Samko,  Kilbas,  & Marichev, 1993). The process 

of simulation and modelling of physical systems lead to requirement of fractional derivatives that 

involves the solution of FDEs. Based on this fact, many researchers have work on numerical, analytic, 

and explicit methods for solving FDEs, few among the once that exist are in (Ray, Chaudhuri, & Bere, 

2006; Yang, Xiao, & Su, 2010; Odibat, 2011), this are the analytical and numerical methods for solving  
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FDEs. Podlubny in (Podlubny, 1999) make use of some properties related to Riemann-Liouville 

derivative and the Grunwald-Letnikov and introduce a numerical technique for solving arbitrary order 

derivative. The authors in (Diethelm, Ford, & Freed, 2020) proposed predictor-corrector a numerical 

approach for solving FDEs. 

There are many difficulties that may arise when solving FDEs like convergent problem, singularity 

difficulties in solving complex systems which lead to no solution. Because of these issues, the authors 

in (Doha, Bhrawy, & Ezz-Eldien, 2011; Doha, Bhrawy, & Ezz-Eldien, 2012; Saadatmandi, & 

Dehghan, 2010) came up with operational matrix method that decomposed the FDEs into system of 

algebraic equations. The author in (Ibrahim, 2020) and the authors in (Ibrahim, & Rababah, 2020; 

Rababah, & Ibrahim, 2016a; Rababah, & Ibrahim, 2016b; Rababah, & Ibrahim, 2018) proposed 

different technique that involve numerical approximation of differential equations and curves 

respectively, which is an important issue in techniques for solving fractional differential equations. 

To tackle this problem, we introduce the application of the Legendre operational matrix of fractional 

order derivative that provide approximate solutions to the system of FDEs in Eq. (1). The paper 

scheduled as, Mathematical preliminaries and definitions is provided in Section 2. Legendre 

operational matrix is introduced in this Section 3 to solve system of FDEs. In section 4, the result 

obtained is used to show the effectiveness of the method by considering an example. We conclude in 

section 5. 

2. Mathematical Preliminaries 

Definitions with basic properties of fractional calculus are introduced in this section. Regarding the 

modelling of a physical systems, the Riemann-Liouville definition has some short comings (Podlubny, 

1999). For this reason, the Caputo’s definition is more guarantee in practical point of view, based on 

this fact, we are going to make use of it. 

Definition 2.1 Consider the Caputo fractional derivative 𝐷𝛼 as: 

 

𝐷𝛼𝑓(𝑡) =
1

𝛤(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,   𝑛𝜖 ℕ

𝑡

0

 

[2] 

The Caputo fractional derivative has the following properties. 

 𝐷𝛼𝐶 = 0, (𝐶 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) [3] 

 

 
𝐷𝛼𝑡𝛽

= {

       0,                               𝛽 ∈ ℕ ∪ {0} 𝑎𝑛𝑑 𝛽 < ⌈𝛼⌉
𝛤(𝛽 + 1)

𝛤(𝛽 + 1 − 𝛼)
𝑡𝛽−𝛼 ,   𝛽 ∈ ℕ ∪ {0}  𝑎𝑛𝑑  𝛽 ≥ ⌈𝛼⌉   𝑜𝑟 𝛽 ∉ ℕ  𝑎𝑛𝑑  𝛽 > ⌊𝛼⌋,

 
[4] 

where ⌈𝛼⌉ stand for the least integer ≥ 𝛼 and ⌊𝛼⌋ stand for the greatest integer ≤ 𝛼. 

Observe that, the operator defining Eq (2) is linear, since, 

 𝐷𝛼(𝜆𝑓(𝑡) + µ𝑔(𝑡)) =  𝜆𝐷𝛼𝑓(𝑡) + µ𝐷𝛼𝑔(𝑡). [5] 

Where 𝜆 𝑎𝑛𝑑 µ are constants. 
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Definition 2.2 Consider the Legendre polynomials on the interval [-1, 1], which can be generated from 

the recurrence formulae. 

𝐿𝑖+1(𝑡) =
2𝑖 + 1

𝑖 + 1
𝑡𝐿𝑖(𝑡) −

𝑖

𝑖 + 1
𝐿𝑖−1(𝑡), 𝑖 = 1,2,⋯, 

where 𝐿0(𝑡) = 1 𝑎𝑛𝑑 𝐿1(𝑡) = 𝑡. Transforming the Legendre polynomial on the interval [−1,1] to the 

interval [0,1] requires the change of variable 𝑡 = 2𝑥 − 1, The process is called the shifted Legendre 

polynomials given by  𝐿𝑖(2𝑥 − 1) and indicated by 𝑃𝑖(𝑥).  

  
𝑃𝑖+1(𝑥) =

(2𝑖 + 1)(2𝑥 − 1)

𝑖 + 1
𝑃𝑖(𝑥) −

𝑖

𝑖 + 1
𝑃𝑖−1(𝑥),    𝑖 = 1,2,⋯, 

[6] 

where 𝑃0(𝑥) = 1 𝑎𝑛𝑑 𝑃1(𝑥) = 2𝑥 − 1 

The formulae for the shifted Legendre polynomials 𝑃𝑖(𝑥) of degree 𝑖 is expressed in analytical form 

as: 

 

𝑃𝑖(𝑥) =  ∑(−1)𝑖+𝑘
(𝑖 + 𝑘)𝑥𝑘

(𝑖 − 𝑘)! (𝑘!)2

𝑖

𝑘=0

. 
[7] 

Observe that,  𝑃𝑖(0) = (−1)
𝑖  𝑎𝑛𝑑 𝑃𝑖(1) = 1 . 

The orthogonality condition is.  

 

∫𝑃𝑖(𝑥)𝑃𝑗(𝑥) 𝑑𝑥 = {

1

2𝑖 + 1
, 𝑓𝑜𝑟 𝑖 = 𝑗

0, 𝑓𝑜𝑟 𝑖 ≠ 𝑗.

1

0

 

[8] 

A function 𝑦(𝑥) ∈ 𝐿2[0,1] can be given in form of shifted Legendre polynomials as 

𝑦(𝑥) = ∑ 𝑐𝑘𝑃𝑘(𝑥)

∞

𝑘=1

, 

where 𝑐𝑘 is 

𝑐𝑘 = (2𝑘 + 1)∫𝑦(𝑥)

1

0

𝑃𝑘(𝑥)𝑑𝑥, 𝑘 = 0,1,2,⋯ 

By considering the first (n + 1) terms 

𝑦(𝑥) = ∑ 𝑐𝑘

𝑛

𝑘=0

𝑃𝑘(𝑥) = 𝑪Ф(𝒙), 

where C and Ф(𝒙)  are the shifted Legendre coefficient and vectors respectively  

 𝑪 = [𝑐0, 𝑐1, ⋯ 𝑐𝑛]. [9] 

 

 Ф(𝒙) = [𝑃0(𝑥), 𝑃1(𝑥),⋯ , 𝑃𝑛(𝑥)]. [10] 

 

3. Operational Matrix for Legendre 

Differentiating the vector Ф(𝒙) lead to 
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 𝑑Ф(𝒙)

𝑑𝑥
=  𝑫(1)Ф(𝒙) 

[11] 

Where 𝑫(1) is the (𝑛 + 1) × (𝑛 + 1) operational matrix of derivatives 

 
𝑫(1) = (𝑑𝑖𝑗) = {

2(2𝑗 + 1), 𝑓𝑜𝑟 𝑗 = 𝑖 − 𝑘
         0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 
[12] 

where {
𝑘 = 1,3,… ,𝑚,            𝑓𝑜𝑟 𝑚 𝑜𝑑𝑑
𝑘 = 1,3,… ,𝑚 − 1,    𝑓𝑜𝑟 𝑚 𝑒𝑣𝑒𝑛

 

However, the generalization of the operational matrix of derivative given in (12) to arbitrary fractional 

order say, 𝛼 > 0, was proved in (Saadatmandi & Dehghan, 2010) and is given by. 

 𝐷𝛼𝛷(𝑥) ≃ 𝐃(𝛼)𝛷(𝑥), [13] 

where 𝐃(𝛼) is the (𝑚 + 1) × (𝑚 + 1) operational matrix of order 𝛼  

𝐃(𝛼) =

(

 
 
 
 
 
 
 
 
 
 
 
 

0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 0

∑ 𝜃⌈𝛼⌉,0,𝑘

⌈𝛼⌉

𝑘=⌈𝛼⌉

∑ 𝜃⌈𝛼⌉,1,𝑘

⌈𝛼⌉

𝑘=⌈𝛼⌉

⋯ ∑ 𝜃⌈𝛼⌉,𝑚,𝑘

⌈𝛼⌉

𝑘=⌈𝛼⌉

⋮ ⋮ ⋯ ⋮

∑ 𝜃𝑖,0,𝑘

𝑖

𝑘=⌈𝛼⌉

∑ 𝜃𝑖,1,𝑘

𝑖

𝑘=⌈𝛼⌉

⋯ ∑ 𝜃𝑖,𝑚,𝑘

𝑖

𝑘=⌈𝛼⌉

⋮ ⋮ ⋯ ⋮

∑ 𝜃𝑚,0,𝑘

𝑚

𝑘=⌈𝛼⌉

∑ 𝜃𝑚,1,𝑘

𝑚

𝑘=⌈𝛼⌉

⋯ ∑ 𝜃𝑚,𝑚,𝑘

𝑚

𝑘=⌈𝛼⌉

)

 
 
 
 
 
 
 
 
 
 
 
 

. 

Also, 𝜃𝑖,𝑗,𝑘 is given by. 

 

𝜃𝑖,𝑗,𝑘 = (2𝑗 + 1)∑
(−1)𝑖+𝑗+𝑘+𝑙(𝑖 + 𝑘)! (𝑙 + 𝑗)!

(𝑖 − 𝑘)! 𝑘! 𝛤(𝑘 − 𝛼 + 1)(𝑗 − 𝑙)! (𝑙!)2(𝑘 + 𝑙 − 𝛼 + 1)

𝑗

𝑙=0

 [14] 

 

3.1 Using the Operational Matrix to Solve Linear System of FDEs 

Considering the system of FDEs in Eq. (15), we make use of the shifted Legendre operational matrix 

to solve such problem. 

   

 

{
 
 
 
 
 

 
 
 
 
 
𝐷𝛼1𝑦1 +∑𝑎1,𝑗

𝑘1

𝑗=1

𝑦𝑗 = 𝑔1(𝑥),   ⌈𝛼1⌉ = 𝑚1,

𝐷𝛼2𝑦2 +∑𝑎2,𝑗

𝑘2

𝑗=1

𝑦𝑗 = 𝑔2(𝑥),   ⌈𝛼2⌉ = 𝑚2,

⋮             ⋮                ⋮                     ⋮

𝐷𝛼𝑛𝑦𝑛 +∑𝑎𝑛,𝑗

𝑘𝑛

𝑗=1

𝑦𝑗 = 𝑔𝑛(𝑥),   ⌈𝛼𝑛⌉ = 𝑚𝑛 ,

 [15] 

with initial condition  𝑦𝑖
𝑗
(0) = 𝑑𝑖,𝑗,    𝑖 = 1,2,⋯ , 𝑛,    𝑗 = 0,1,⋯ ,𝑚 − 1, 
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where 𝑘𝑖,   𝑎𝑖,𝑗, and 𝑑𝑖,𝑗 are constants. Here the 𝐷𝛼𝑖 stand for the Caputo derivative of order 𝛼𝑖 . 

Lets  𝑦𝑖(𝑥) and 𝑔𝑖(𝑥)  in Eqs. (16) and (17) be the approximate Shifted Legendre polynomials  

 
𝑦𝑖(𝑥) = ∑𝑐𝑖,𝑘

𝑚

𝑘=0

𝑃𝑘(𝑥) = 𝐂𝑖𝛷(𝑥) [16] 

 

𝑔𝑖(𝑥) = ∑𝑔𝑖,𝑘

𝑚

𝑘=0

𝑃𝑘(𝑥) = 𝐆𝑖𝛷(𝑥), [17] 

where the vector 𝐶𝑖 = [𝑐𝑖,0,   𝑐𝑖,1,⋯ , 𝑐𝑖,𝑚] can be identified vector, while the vector 𝐺𝑖 =

[𝑔𝑖,0,   𝑔𝑖,1,⋯ , 𝑔𝑖,𝑚] is familiar. Making use of (13) on (16) lead to 

 𝐷𝛼𝑖𝑦𝑖(𝑥) ≃ 𝐂𝑖𝐃
(𝛼𝑖)𝛷(𝑥),    𝑖 = 1,2,⋯ , 𝑛. [18] 

Calculating the residual of (15) with the help of (13) and (16) yields 

 

𝑅𝑚
𝑖 (𝑥) = (𝐂𝑖𝐃

(𝛼𝑖) +∑𝑎𝑖,𝑗

𝑘𝑖

𝑗=1

𝐂𝑗 − 𝐆𝑖)𝛷(𝑥),    𝑖 = 1,2,⋯ , 𝑛. [19] 

Applying tau method led to  (𝑚 −𝑚𝑖 + 1) linear equations  

 

⟨𝑅𝑚
𝑖 (𝑥), 𝑃𝑗(𝑥)⟩ = ∫𝑅𝑚

𝑖

1

0

(𝑥)𝑃𝑗(𝑥)𝑑𝑥 = 0,     𝑗 = 0,1,⋯ ,𝑚𝑖 − 1. [20] 

Using (13) and (16), one can obtain 

 𝑦𝑖
𝑗
(0) = 𝐂𝑖𝐃

(𝑗)𝛷(0) = 𝑑𝑖,𝑗 ,     𝑗 = 0,1,⋯ ,𝑀𝑖 − 1. [21] 

(20) and (21) generate 𝑛(𝑚 + 1) set of linear equations, our goal is to obtain the solution  𝑦𝑖(𝑥) for 

𝑖 = 1,2,⋯ , 𝑛. This can be achieved by solving for the unknown vector 𝐂𝑖.  

4. Numerical Example  

In this section, the explicit and numerical result obtained from the previous section will be used to 

solve some linear systems of FDE. 

Example 4.1. Consider the system of linear FDEs. 

 𝐷𝛼1𝑦1(𝑥) = 𝑦1(𝑥) + 𝑦2(𝑥) 

𝐷𝛼2𝑦2(𝑥) = −𝑦1(𝑥) + 𝑦2(𝑥) 
[22] 

with initial conditions 

 𝑦1(0) = 0,   𝑦2(0) = 1. [23] 

Then, with 𝑚 = 8 the approximation of 𝑦1(𝑥) and 𝑦2(𝑥) will be. 

𝑦𝑖(𝑥) = ∑ 𝑐𝑖,𝑘

8

𝑘=0

𝑃𝑘(𝑥) = 𝐂𝑖𝛷(𝑥)   𝑖 = 1,2. 

Let us solve this problem first with 𝛼1 = 𝛼2 = 1, and exact solution as 
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𝑦1(𝑥) = 𝑒
𝑥𝑠𝑖𝑛𝑥 and 𝑦2(𝑥) = 𝑒

𝑥𝑐𝑜𝑠𝑥. 

So, we have  

𝐃(1) =

(

 
 
 
 
 
 

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
2 0 10 0 0 0 0 0 0
0 6 0 14 0 0 0 0 0
2 0 10 0 18 0 0 0 0
0 6 0 14 0 22 0 0 0
2 0 10 0 18 0 26 0 0
0 6 0 14 0 22 0 30 0)

 
 
 
 
 
 

 

Using (19) we rewrite (22) as  

{
𝑅8
1(𝑥) = (𝐂1𝐃

(1) − 𝐂1 − 𝐂2)𝛷(𝑥)

𝑅8
2(𝑥) = (𝐂2𝐃

(1) + 𝐂1 − 𝐂2)𝛷(𝑥).
 

By using Eqs. (20) and (21), we obtained 18 equations that leads to 

𝐂1,0 = 0.9093306736, 𝐂1,1 = 1.13407384, 𝐂1,2 = 0.2363240605, 𝐂1,3 = 0.009901654498, 

 𝐂1,4 = −0.001959877229, 𝐂1,5 = −0.0002975652235, 𝐂1,6 = −0.00001723840079, 

 𝐂1,7 = −0.2863271581 × 10
−6 , 𝐂1,8 = 0.2511255047 × 10

−7, 𝐂2,0 = 1.378024614, 𝐂2,1 =

0.2720079791, 𝐂2,2 = −0.1402860310, 𝐂2,3 = −0.03758092173,  

, 𝐂2,4 = −0.003401450684, 𝐂2,5 = 0.00008112711784, 𝐂2,6 = 0.9793894685 × 10
−5,  𝐂2,7 =

0.1039703672 × 10−5, 𝐂2,8 = 0.4420102768 × 10
−7.   

Consequently, the solutions 𝑦𝑖(𝑥) for 𝑖 = 1,2 are calculated and the Fig.1 and Fig.2 shows that the 

proposed method provide a solution that is equivalent to the exact solution with minimum error. 

Fig.3 shows the approximate solution of system (22) for 𝛼1 = 0.7 and 𝛼2 = 0.9. The solution 
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 obtained is equivalent with the solution in Monami, & Odibat (2007) 
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Example 4.2. Consider the following linear system of FDEs. 

 𝐷𝛼1𝑦1(𝑥) + 𝑦2(𝑥) = 1,     0 < 𝛼1 ≤ 1

𝐷𝛼2𝑦2(𝑥) − 𝑦1(𝑥) = 4,     0 < 𝛼2 ≤ 1
 [24] 

subject to the initial conditions 

 𝑦1(0) = 1,   𝑦2(0) = −3. [25] 

with exact solution, for 𝛼1 = 𝛼2 = 1 as 

 𝑦1(𝑥) = 5𝑐𝑜𝑠𝑥 + 4𝑠𝑖𝑛𝑥 − 4
𝑦2(𝑥) = −4𝑐𝑜𝑠𝑥 + 5𝑠𝑖𝑛𝑥 + 1

 [26] 
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By considering the proposed method in section 3, the approximate solution  𝑦1(𝑥) and 𝑦2(𝑥) when 

𝛼1 = 𝛼2 = 1 and 𝑚 = 8 are depicted in fig. 4 and fig. 5 respectively. The approximate solution is 

equivalent with the exact solution with minimum error. 

 

 

 

Setting 𝛼1 = 𝛼2 =
1

2
 with 𝑚 = 8 and repeating the same process with the proposed method in section 

3, we evaluate the solution of 𝑦1(𝑥) and 𝑦2(𝑥).  Fig. 6 show the result. 

Since for the first two examples, we do not have the exact solution when 𝛼1 and 𝛼2 are in fractional 

form, hence, in the next example we purposely design a system where there is approximate known 

solution. 

Example 4.3 
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 𝑦1(𝑥) = 5𝑐𝑜𝑠𝑥 + 4𝑠𝑖𝑛𝑥 − 4
𝑦2(𝑥) = −4𝑐𝑜𝑠𝑥 + 5𝑠𝑖𝑛𝑥 + 1

 [27] 

subject to the initial conditions 

 𝑦1(0) = 0,   𝑦2(0) = 1. [28] 

if 𝛼1 = 𝛼2 = 1 and 𝑓1(𝑥) = 𝑐𝑜𝑠𝑥 + 𝑥𝑠𝑖𝑛𝑥,    𝑓2(𝑥) = −𝑠𝑖𝑛𝑥 − 𝑥
2𝑠𝑖𝑛𝑥, the solution is given by 

𝑦1(𝑥) = 𝑠𝑖𝑛𝑥   𝑦2(𝑥) = 𝑐𝑜𝑠𝑥. 

Using (19), we have 

{
𝑅8
1(𝑥) = (𝐂1𝐃

(1) + 𝑥𝐂2)𝛷(𝑥)

𝑅8
2(𝑥) = (𝐂2𝐃

(1) − 𝑥2𝐂1)𝛷(𝑥)
 

 

by considering the initial conditions and by expanding the RHS of (27) in series form, equating 

coefficients for 𝑅8
1(𝑥) = 𝑠𝑒𝑟𝑖𝑒𝑠(𝑓1(𝑥)) and 𝑅8

2(𝑥) = 𝑠𝑒𝑟𝑖𝑒𝑠(𝑓2(𝑥)), we get a system of linear 

equations. Solving the system of linear equations by Maple 18, we obtain the following 

 

𝑐1,0 =
3707

8064
,    𝑐1,1 =

51761

120960
,    𝑐1,2 =

−4747

120960
,    𝑐1,3 =

−457

63360
,    𝑐1,4 =

25

88704
,    𝑐1,5

=
1

34944
,    𝑐1,6 =

−1

1330560
,    𝑐1,7 =

−1

17297280
,    𝑐1,8 = 0,    𝑐2,0

=
305353

362880
,    𝑐2,1 =

−10099

43200
,    𝑐2,2 =

−143371

1995840
,    𝑐2,3 =

5617

1425600
,    𝑐2,4

=
1489

2882880
,    𝑐2,5 =

−37

2358720
,    𝑐2,6 =

−13

9979200
,    𝑐2,7 =

1

34594560
,    𝑐2,8

=
1

518918400
. 

 

Consequently the solutions 𝑦𝑖(𝑥) for 𝑖 = 1,2 are calculated and the Fig.7 and Fig.8 shows that our 

solution is in good agreement with the exact solution. 
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Now, If 𝛼1 = 𝛼2 = 0.5 and if we set the solution again to be 𝑦1(𝑥) = 𝑠𝑖𝑛𝑥 and 𝑦2(𝑥) = 𝑐𝑜𝑠𝑥. 

Then we should have the RHS is 

 

𝑓1(𝑥) =
2√𝑥

√𝜋
−
8

15

𝑥
5
2

√𝜋
+
32

945

𝑥
9
2

√𝜋
−

128

135135

𝑥
13
2

√𝜋
+

512

34459425

𝑥
17
2

√𝜋
−

2048

13749310575

𝑥
21
2

√𝜋
+ 𝑥 −

1

2
𝑥3

+
1

24
𝑥5 −

1

720
𝑥7 +

1

40320
𝑥9 −

1

3628800
𝑥11 

and 

𝑓2(𝑥) =
−4

3

𝑥
3
2

√𝜋
+
16

105

𝑥
7
2

√𝜋
−

64

10395

𝑥
11
2

√𝜋
+

256

2027025

𝑥
15
2

√𝜋
−

1024

654729075

𝑥
19
2

√𝜋
− 𝑥3 +

1

6
𝑥5 −

1

120
𝑥7

+
1

5040
𝑥9 −

1

362880
𝑥11 

 

Using (19), we have 

{
𝑅8
1(𝑥) = (𝐂1𝐃

(0.5) + 𝑥𝐂2)𝛷(𝑥)

𝑅8
2(𝑥) = (𝐂2𝐃

(0.5) − 𝑥2𝐂1)𝛷(𝑥),
 

 

by considering the initial conditions and by setting 𝑥 as 
1

16
,
3

16
,
5

16
, ⋯ ,

15

16
 we get a system of linear 

equations. Solving the system of linear equation by Maple 18, we obtain the following 

 

𝑐1,0 = 0.4596816778,  𝑐1,1 = 0.4276384606,  𝑐1,2 = −0.03980198886,  𝑐1,3
= −0.007860382622, 𝑐1,4 = −0.0009552411593,  𝑐1,5
= −0.001305466691,  𝑐1,6 = −0.00137331118,  𝑐1,7 = −0.001877028101,  𝑐1,8
= −0.0009555533489,  𝑐2,0 = 0.8415010942,  𝑐2,1 = −0.2337307134,  𝑐2,2
= −0.07177149475,  𝑐2,3 = 0.003996851546,  𝑐2,4 = 0.0005752980385,  𝑐2,5
= 0.0000160256798,  𝑐2,6 = −0.0000040218736,  𝑐2,7
= −0.00006562939305,  𝑐2,8 = −0.0000843410948. 
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Consequently the solutions 𝑦𝑖(𝑥) for 𝑖 = 1,2 are calculated and the Fig.9 and Fig.10 shows that our 

solution is in good agreement with the exact solution. 

 

 

5. Conclusion 

In this paper, we extend the application of Legendre operational matrix fractional order derivative to 

solve linear systems of FDEs. The main essence of the method is to use the operational matrices in 

collaboration with tau methods to decompose the system of FDEs to a system of algebraic equations. 

The results obtained is shown to be equivalent with the known exact solutions and are efficient and 

satisfactory compared to the existing results. 
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