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Abstract
Using the asymptotic iteration method, the class of Yukawa potential is investigated 
in the non-relativistic regime, taking into account the influence of magnetic and 
Aharanov–Bohm flux fields. The system’s energy equation and wave function are 
computed in compact form. The effect of the fields on the system’s energy spectra 
is studied in depth. The presence of external magnetic and Aharanov–Bohm fields 
eliminates degeneracy from the system’s energy spectrum. The partition function 
is determined using the energy equation, and it is then used to evaluate thermody-
namic and magnetic properties of the system, such as persistent current and mag-
netic susceptibility.
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1  Introduction

The Schrödinger equation (SE) is a fundamental equation in quantum mechanics 
(QM). This is because it is the equation that defines a particle’s action in a micro-
scopic setting. The solutions of SE with a given central potential have a wide variety 
of applications. Furthermore, several researchers have proposed that the SE’s eigen-
solutions (eigenvalues and eigenfunction) provide important knowledge about the 
quantum system [1–10]. Many studies of SE solutions with a variety of QM possible 
models have been published in the literature [11–14]. The class of Yukawa Poten-
tial (CYP) is one of the potentials. Onate and Ojonubah [15] were the first to sug-
gest this model. Since it is a generalization of the Yukawa, Hellmann, Coulomb, and 
Inverse quadratic Yukawa potentials [15, 16], this atomic model is important. CYP 
has a wide range of uses in other areas of physics, including high-energy physics, 
atomic physics, and solid-state physics [16, 17]. The CYP can be written as [15]:

where r is the inter-particle distance, V0,V1 , and V3 are the potential parameters and 
� is the screening parameter which characterize the range of the interaction [15, 16].

In this research, we are interested in providing answers to the following ques-
tions: (i) what happens to the energy spectra of this model in the presence of the 
all-inclusive effect of magnetic and Aharanov–Bohm (AB) fields? (ii) What happens 
when there is a solitary effect? and (iii) What happens to its thermal and magnetic 
properties in the presence of this fields? This questions motivated us to carry out 
this study. Many researchers have recently concentrated their efforts on studies that 
look at the impact of magnetic and AB fields on the energy spectra and thermal 
properties of different potentials. Edet et al. [18] used the Nikiforov–Uvarov-Func-
tional Analysis (NUFA) approach to solve the SE with Hellmann potential in the 
presence of external magnetic and AB flux fields. According to the authors, the AB 
field eliminates degeneracy more effectively than the magnetic field. Rampho et al. 
[19] used non-relativistic quantum mechanics to investigate the increased screened 
Kratzer potential (ISKP) in the presence of external magnetic and AB fields. Ikot et 
al. [20] used the factorization approach to solve the SE with the screened Kratzer 
potential (SKP) in the presence of magnetic and AB fields. The system’s magnetic 
and other thermal properties were investigated. Ikot et al. [21] used the superstatis-
tics formalism to examine the thermal properties of pseudo-harmonic potential in 
the presence of magnetic and AB fields for chosen diatomic molecules, and several 
experiments [22–36] have investigated the thermodynamic properties for various 
physical structures in recent times.

Jia et al. [37–42] have presented predictive studies of thermodynamic properties 
in diatomic molecules and gaseous substances, in carbonyl, and hydrogen sulfide 
and in carbon dioxide; Their studies have also included simulations of the ideal-
gas thermodynamic properties for water. They have obtained excellent agreement 
between the calculated values and experimental data without needing to use an 
appreciable number of experimental spectroscopy parameters in their models. The 
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average relative deviations of their calculated values for the thermodinamical prop-
erties from the National Institute of Standards and Technology database over a wide 
temperature range are appreciably small. Essentially, their models have been based 
on the minimization of the Gibbs free energy of the system. In the same direction of 
research, Servatkhah et al. [43] have studied the thermodynamic functions of H 2 and 
LiH. In their study, the Schrödinger equation was analytically solved with the gen-
eralized Morse potential using the Nikiforov–Uvarov method and considering the 
constant and the position-dependent effective mass models. They found that their 
theoretical findings of the thermodynamic functions are in agreement with experi-
mental data when the generalized Morse potential includes the position-dependent 
effective mass model.

Our goal in this paper is to use the asymptotic iteration method (AIM) to solve 
the SE with the CYP model in the presence of magnetic and AB flux fields, and then 
use the obtained energy to measure the partition function and other thermodynamic 
functions including entropy, mean energy, free energy, specific heat capacity, mag-
netization, and magnetic susceptibility. The effects of the fields on the energy spec-
tra, as well as the system’s thermal and magnetic properties, will be discussed. The 
following is a breakdown of the paper’s structure. In Sect. 2, we present our theo-
retical framework which is divided in two subsections where the first one is devoted 
to the solution of the SE with a CYP that takes AB flux and magnetic fields into 
account and in the second one we present the implications of the control parameter 
on the thermodynamic properties in the presence of the external fields. The discus-
sions of results are presented in Sect. 3. Finally, a brief concluding remarks is given 
in Sect. 4.

2 � Theoretical Framework

2.1 � Schrödinger Equation with Class of Yukawa Potential Under Aharanov–Bohm 
and Magnetic Fields

In cylindrical coordinates, the Schrödinger equation of a charged particle confined 
by CYP under the combined effect of AB flux and external magnetic fields can be 
written as [18–36, 44]:

where Enm denotes the energy level and � is the effective mass of the system. The 
vector potential which is denoted by A⃗ can be written as a superposition of two 
terms A⃗ = A⃗1 + A⃗2 having the azimuthal components [47] and external magnetic 
field with ∇⃗ × A⃗1 = B⃗, ∇⃗ × A⃗2 = 0 , where B⃗ is the magnetic field. Here 
A⃗1 =

Be−𝛼r

(1−e−𝛼r)
𝜑̂ and A⃗2 =

𝜙AB

2𝜋r
𝜑̂ represents the additional magnetic flux �AB created by 

a solenoid with ∇⃗ ⋅ A⃗2 = 0 [18–36, 44]. The full vector potential is written in a sim-
ple form as [18, 44]
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Let us take a wave function in the polar coordinates as �(r,�) = 1√
2�r

eim��nm(r) , 
where m denotes the magnetic quantum number. Inserting this wave function and 
the vector potential into Eq. 2, we arrive to the following radial second-order differ-
ential equation:

where �m = (m + �)2 − 1

4
 , � =

�AB

�0

 is an integer with the flux quantum �0 =
hc

e
 , and 

�c =
eB

�c
 denotes the cyclotron frequency.

The Eq. 4 is not exactly solvable due to the presence of the r−2 centrifugal term. 
Therefore, we employ the Greene and Aldrich approximation scheme [45] to over-
come the centrifugal term. This approximation is given by

We point out here that this approximation is only valid for small values of the � 
screening parameter. If we consider the approximation above given by Eq. 5 com-
bined with the transformation s = e−�r , the Eq. 4 can be rewritten as follows:
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Substituting Eq. 7 into Eq. 6 gives the following equation:

The Eq. 10 is a second-order homogeneous linear differential equation, which can 
be solved using the well-known asymptotic iteration method [46]. Rewriting Eq. 10 
in the following form [47] to begin the methodical methodology of the AIM:

where

and

The primes of the function ynm(s) in Eq. 11 means the derivatives with respect to s. 
The asymptotic feature of the method for sufficiently large k is given as [46, 47]

where

and

The recurrence relations [46, 47] are established by Eqs. 15, 16. The equation we 
search can be derived from the roots of the following equation using the asymptotic 
iteration method [46, 47]

Thus, we can easily obtain the following simple arithmetic progressions:
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√
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(11)y��
nm
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|||| = 0, where k = 1, 2, 3… .
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and

By considering the finiteness of the solutions, the quantum condition is given by

from which we obtain

Hence, if one substitutes the value of the dimensionless parameters defined after 
Eq. 6 into Eq. 22, we obtain the solutions as follows:

We continue to find the system’s wave function for completeness’ sake. Let’s figure 
out what this system’s wave function is. In general, the differential equation we want 
to solve should be translated into a format that makes AIM [46, 47] easy to use

where a, b, and M are constants. The exact solutions for Eq. 24 is given by

where (�)n =
Γ(�+n)

Γ(�)
 , � =

2M+N+3

N+2
 , and t = (2M+1)b+2a

(N+2)b
.

By comparing Eq. 11 with Eq. 24, we can deduce that M = �m −
1

2
 , t = 2(� + �m) , 

a = �m � = 2� + 1 , b = 1 , N = −1 (�n) =
Γ(2�+1+n)

Γ(2�+1)
 and
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Γ(2� + 1) 2F1(−n, 2(� + �m) + n;2� + 1;s).



1 3

International Journal of Thermophysics (2021) 42:138	 Page 7 of 18  138

It is therefore straightforward to deduce that the corresponding unnormalized wave 
function is obtain as

where C2 is the normalization constant and 2F1(−n, 2(� + �m) + n;2� + 1;s) is the 
hypergeometric function.

The particular case of the three-dimensional non-relativistic energy solutions 
are obtained by setting m = � +

1

2
 , where −� is the rotational quantum number, in 

Eq. 23 to obtain

2.2 � Thermo‑magnetic Properties of Class of Yukawa Potential

It is well understood that the partition function of a system can be used to obtain all 
thermodynamic properties [48–51]. Easy summation over all vibrational energy lev-
els available to the system can be used to calculate the vibrational partition function. 
Given the energy spectrum in Eq. 23, the partition function Z(�) of the CYP at finite 
temperature, T, is obtained with the Boltzmann factor as [48];

where � =
1

kT
 , with k the Boltzmann constant.

Substituting Eq. 23 in Eq. 29, we have

where n is the vibrational quantum number, n = 0, 1, 2, 3… nmax . Here nmax denotes 
the upper bound vibration quantum number. We have introduced the following nota-
tions: Q0 =

ℏ2�2�m
2�

− V1� , Q1 =
ℏ2�2

8�
 , and Q2 =

2�V1

ℏ2�
−

2�V2

ℏ2�
−

2�lV0

ℏ2
+
(

��c

ℏ�

)2

− �m.
The maximum value nmax can be obtained by setting dEn

dn
= 0 , i.e., 

nmax = −�m ±
√
Q2.

Replacing the summation in Eq. 30 by an integral, we have;

(27)
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e
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,
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If we set x = Q2

(n+�m)
− (n + �m) , we can rewrite the above integral in Eq.  31 as 

follows:

where x1 =
Q2

�m
− �m and x2 =

Q2

(nmax+�m)
− (nmax + �m).

On evaluating the integral in Eq. 32, we obtain the partition function of the CYP 
in magnetic and AB fields as follows

The classical partition function is represented by the previous Eq. 33. The expla-
nation for this is that Eq. 33 lacks quantum corrections. The partition function in 
Eq. 33 can be used to obtain both thermal and magnetic properties of the CYP in 
the presence of the AB and magnetic fields, such as the free energy (F), entropy (S), 
mean energy (U), specific heat (C), magnetization (M), magnetic susceptibility ( � ), 
and persistent current (I). The following expressions can be used to calculate the 
system’s thermodynamic functions [48–51]:

(31)Z(�) = ∫
nmax

0

e
−�

(
Q0−Q1

(
Q2−(n+�m)2

(n+�m)

)2
)

dn.

(32)
∫

x2

x1

e
−�

�
Q0−Q1

�
Q2−(n+�m)2

(n+�m)

�2
�

dx

=
1

2
e−�Q0 ∫

x2

x1

e�Q1x
2

�
x√

x2 + 4Q2

− 1

�
dx,

(33)Z(�) =
1

2
e−�Q0

⎡⎢⎢⎢⎢⎢⎢⎣

√
�(Erfi[

√
Q1x1

√
�]−Erfi[

√
Q1x2

√
�])

2
√
Q1

√
�

−

e−4�Q1Q2
√
�

�
Erfi

�√
Q1

√
4Q2+x

2

1

√
�

�
−Erfi

�√
Q1

√
4Q2+x

2

2

√
�

��

2
√
Q1

√
�

⎤⎥⎥⎥⎥⎥⎥⎦

.

(34)F(�) = −
1

�
ln Z(�),

(35)S(�) = lnZ(�) − �
d ln Z(�)

d�
,

(36)U(�) = −
d lnZ(�)

d�
,

(37)C(�) = �2
d2 ln Z(�)

d�2
,
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and

3 � Discussion and Application of Results

In this section we present our main findings for the CYP energy structure given by 
Eq. 23 and the corresponding thermal properties obtained by Eqs. 34–40. For the 
units and main parameters we have used: e = 1 , h = 1 , ℏ = 1 , c = 1 , � = 1 , V0 = 1 , 
V1 = 2 , V2 = 1 , � = 0.005 . All the energies will be in eV, the �-parameter in eV−1 , 
and the magnetic field in Teslas (T). We note that Eqs.  33–40 are presented as a 
function of the �-parameter which is equivalent to report the results a function of the 
temperature, T.

Table  1 shows the numerical energy values for the CYP under the influence 
of AB flux and magnetic fields with various values of magnetic and vibrational 
quantum numbers. We observe that when both fields are absent B = � = 0 , there 
exist degeneracy in the energy spectra (note the same energy values for states with 
m ± 1 and n = 1 and states with m ± 1 and n = 2 . Also states with m ± 1 and n = 3 
are very close in their energy values). By introducing only applied magnetic field 
(B ≠ 0, � = 0 ) to the system, the energy eigenvalues is increased and bounded as 

(38)M(�) =
1

�

(
1

Z(�)

)(
�

�B
Z(�)

)
,

(39)�m(�) =
�M(�)

�B
,

(40)I(�) = −
e

hc

�F(�)

��AB

.

Table 1   Energy values (in 
eV) for the Class of Yukawa 
potential under the combined 
influence of the �-Aharanov–
Bohm flux and B-magnetic 
fields with various values of the 
m-principal and n-vibrational 
quantum numbers

m n B = 0, � = 0 B = 5, � = 0 B = 0, � = 5 B = 5, � = 5

0 0 0.163822 − 0.0100042 − 0.0229687 − 0.0100415
1 − 0.0143748 − 0.0100242 − 0.0184652 − 0.0101856
2 − 0.0384761 − 0.0100691 − 0.0157032 − 0.0103542
3 − 0.0325643 − 0.0101388 − 0.0138989 − 0.0105472

− 1 0 0.229206 − 0.0099968 − 0.0328492 − 0.0100341
1 − 0.0658725 − 0.0099918 − 0.024119 − 0.0101534
2 − 0.0567804 − 0.0100117 − 0.0192563 − 0.0102974
3 − 0.0391438 − 0.0100566 − 0.016285 − 0.0104659

1 0 0.229206 − 0.0100117 − 0.0176456 − 0.0100489
1 − 0.0658725 − 0.0100566 − 0.0150874 − 0.0102177
2 − 0.0567804 − 0.0101263 − 0.0134145 − 0.0104108
3 − 0.0391438 − 0.0102208 − 0.0122711 − 0.0106284
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well. The presence of magnetic field takes away the degeneracy. The application 
of the AB field only (B = 0, � ≠ 0 ), also lifts the degeneracy and the system is 
still bounded. The combined effect of both fields is robust and therefore, there 
is an upward shift in the bound state energy of the system. The combined effect 
shows that the system is highly attractive and bounded. The combined effects of 
AB flux and magnetic fields completely eliminates the degeneracy.

Figure  1 shows the plots of partition function of CYP in magnetic and AB 
fields: (a) versus � varying nmax , (b) versus B for varying � , and (c) versus � varying 
� . In Fig. 1a, the partition function increases with increasing � . Figure 1b shows 
that the partition function decreases and then increases with increasing magnetic 
field. Figure  1c shows that the partition function increases with increasing AB 
field. The partition function diverges if the distance En+1 − En between successive 
energy levels becomes smaller rather than larger as nmax → 0 . Then the later terms 
in the partition function Z = ⋯ + e−(En−E1)∕kT + e−(En+1−E1)∕kT + e(En+2−E1)∕kT +⋯ , 
all start having about the same value since, if limn→∞(En+1 − E1) = 0 , the energy 
differences En − E1 in the numerators of the Boltzmann factors all start having 
about the same value, i.e., you are adding infinitely many numbers that are all 
basically the same value and you will get divergence. An example would be the 
partition function over the infinitely many bound states of an atom like Hydro-
gen. The bound-state energy levels are given by En = −13.6∕n2 eV so the levels 
get closer and closer together as they all approach the limiting value E, which 
separates the bound states from the ionized (unbound) states. From the results in 
Fig. 1, it is concluded that the increase of the nmax and � parameters allow to rein-
force the temperature, the magnetic field, and the �-parameter effects. It is clear 
from Fig. 1b that, the Z-function reaches saturation values for high magnetic field 
values, regardless of the �-parameter.

(a) (b) (c)

Fig. 1   Plots of partition function of Class of Yukawa potential in magnetic and Aharanov–Bohm fields: 
(a) versus � , varying n

max
 and keeping fixed the B and � parameters; (b) versus B, for varying � and keep-

ing fixed the n
max

 and � parameters; and (c) versus � , varying � and keeping fixed the B and n
max

 param-
eters
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Figure 2 shows the plots of free energy of CYP in magnetic and AB fields: (a) 
versus � varying nmax , (b) versus B for varying � , and (c) versus � varying � . In 
Fig. 2a, it can be seen that the free energy exhibits saturation. This means that as 
the �-Boltzmann factor increases, the free energy reach a limit. Figure 2b shows 
that the free energy increases with increasing magnetic field. Figure 2c shows that 
the free energy decreases with increasing AB field. The results in Fig. 2 show that 
the free energy is highly sensitive to changes in the nmax-parameter, slightly sensi-
tive to the �-parameter, and essentially insensitive to the applied magnetic field 
changes. For � → 0 the presence of the divergence in the free energy is associated 
with the almost zero value of the corresponding Z-function.

Figure  3 shows the plots of entropy of CYP in magnetic and AB fields: (a) 
versus � varying nmax , (b) versus B for varying � , and (c) versus � varying � . In 
Fig. 3a, the entropy decreases with increasing � . Figure 3b shows that the entropy 
increases with increasing magnetic field. Figure  3c shows that the entropy 
decreases with increasing AB field. The results in Fig.  3 allow us to infer that 
entropy is a function equally sensitive to temperature, the applied magnetic field, 
and the AB field, presenting the most important changes for high values of the 
nmax and � parameters. This shows the importance on the entropy of the highly 
excited states in the system.

Figure 4 shows the plots of mean energy of CYP in magnetic and AB fields: 
(a) versus � varying nmax , (b) versus B for varying � , and (c) versus � varying � . 
In Fig. 4a, the mean energy reduces with increasing � . Figure 4b shows that the 
mean energy increases and then slightly decreases with increasing magnetic field. 
Figure 4c shows that the mean energy decreases with increasing AB field. From 
the results in Fig. 4, it is inferred that mean energy is mostly sensitive to changes 
in the nmax parameter. Note the presence of the 10−2 global factor in Fig. 4b and 
c, which is associated with significantly small variations in the U-function.

(a) (b) (c)

Fig. 2   Plots of the free energy of Class of Yukawa potential in magnetic and Aharanov–Bohm fields: (a) 
versus � , varying n

max
 and keeping fixed the B and � parameters; (b) versus B, for varying � and keeping 

fixed the n
max

 and � parameters; and (c) versus � , varying � and keeping fixed the B and n
max

 parameters
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Figure 5 shows the plots of specific heat capacity of CYP in magnetic and AB 
fields: (a) versus � varying nmax , (b) versus B for varying � , and (c) versus � vary-
ing � . In Fig. 5a, the specific heat capacity rises with increasing � . Figure 5b shows 
that the specific heat capacity decreases at the origin to almost zero-point and then 
increases again with increasing magnetic field. Figure 5c shows that the specific heat 
capacity increases with increasing AB field. From Fig. 5 it can be concluded that the 

(a) (b) (c)

Fig. 3   Plots of the entropy of Class of Yukawa potential in magnetic and Aharanov–Bohm fields: (a) 
versus � , varying n

max
 and keeping fixed the B and � parameters; (b) versus B, for varying � and keeping 

fixed the n
max

 and � parameters; and (c) versus � , varying � and keeping fixed the B and n
max

 parameters

(a) (b) (c)

Fig. 4   Plots of the mean energy of Class of Yukawa potential in magnetic and Aharanov–Bohm fields: 
(a) versus � , varying n

max
 and keeping fixed the B and � parameters; (b) versus B, for varying � and keep-

ing fixed the n
max

 and � parameters; and (c) versus � , varying � and keeping fixed the B and n
max

 param-
eters
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C-function is essentially insensitive to changes in temperature, in the applied mag-
netic field, and in the AB field. Note the presence of the 10−6 global factor in Fig. 5a 
and of the 10−7 factor in Fig. 5b and c.

Figure  6 shows the plots of magnetization of CYP in magnetic and AB fields: 
(a) versus � varying nmax , (b) versus B for varying � , and (c) versus � varying � . 
In Fig.  6a, the magnetization rises with increasing � . Figure  6b shows that the 

(a) (b) (c)

Fig. 5   Plots of the specific heat capacity of Class of Yukawa potential in magnetic and Aharanov–Bohm 
fields: (a) versus � , varying n

max
 and keeping fixed the B and � parameters; (b) versus B, for varying � 

and keeping fixed the n
max

 and � parameters; and (c) versus � , varying � and keeping fixed the B and n
max

 
parameters

(a) (b) (c)

Fig. 6   Plots of the magnetization of Class of Yukawa potential in magnetic and Aharanov–Bohm fields: 
(a) versus � , varying n

max
 and keeping fixed the B and � parameters; (b) versus B, for varying � and keep-

ing fixed the n
max

 and � parameters; and (c) versus � , varying � and keeping fixed the B and n
max

 param-
eters
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magnetization increases with increasing magnetic field. The magnetization also 
pseudo-saturates as the magnetic tends to high values. Figure 6c shows that the mag-
netization increases linearly with increasing AB field. The results in Fig. 6 allow us 
to conclude that magnetization is mostly sensitive to changes in the applied mag-
netic field and is essentially constant for variations in the AB field.

Figure 7 shows the plots of magnetic susceptibility of CYP in magnetic and AB 
fields: (a) versus � varying nmax , (b) versus B for varying � , and (c) versus � vary-
ing � . In Fig. 7a, the magnetic susceptibility decreases with increasing � . Figure 7b 
shows that the magnetic susceptibility decreases with increasing magnetic field. 
Figure 7c shows that the magnetic susceptibility decreases linearly with increasing 
AB field. From Fig. 7 it can be concluded that the magnetic susceptibility shows its 
greatest changes in the presence of the applied magnetic field and that this effect is 
reinforced as the �-parameter increases. Note the presence of the 10−3 global fac-
tor of in Fig. 7a and 10−4 factor in Fig. 7b. In Fig. 7a it is observed that variations 
in magnetic susceptibility with temperature are significant in the high temperature 
regime and mainly in the large nmax range, that is, when there is a greater contribu-
tion of highly excited.

Figure 8 shows the plots of persistent current of CYP in magnetic and AB fields: 
(a) versus � varying nmax , (b) versus B for varying � , and (c) versus � varying � . In 
Fig. 8a, the persistent current increases with increasing � . Figure 8b shows that the 
persistent current increases with increasing magnetic field. The persistent current 
also saturates as the magnetic tends to high values. Figure 8c shows that the persis-
tent current decreases linearly with increasing AB field. Fig. 8a shows that the most 
noticeable changes in persistent current occur for variations in the nmax parameter 
and that temperature has a significant effect on the high temperature regime, that is, 
when � → 0.

(a) (b) (c)

Fig. 7   Plots of the magnetic susceptibility of Class of Yukawa potential in magnetic and Aharanov–
Bohm fields: (a) versus � , varying n

max
 and keeping fixed the B and � parameters; (b) versus B, for vary-

ing � and keeping fixed the n
max

 and � parameters; and (c) versus � , varying � and keeping fixed the B 
and n

max
 parameters
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4 � Conclusions

In this paper, the CYP in the presence of external magnetic and AB flux fields is 
investigated. The Hamiltonian operator containing the vector potential and CYP is 
converted into a second-order differential equation. To obtain the energy equation 
and wave function of the system, we solve this differential equation using AIM. The 
effect of the fields on the system’s energy spectra is investigated in detail. The mag-
netic and AB fields were discovered to remove degeneracy. With the energy equa-
tion in hand, we calculated the partition function and used it to calculate the free 
energy, internal energy, entropy, specific heat capacity, magnetization, magnetic sus-
ceptibility, and persistent current, among other thermal and magnetic properties of 
the system. The magnetic susceptibility exhibits a diamagnetic behavior when plot-
ted against � , paramagnetic when plotted against magnetic field, and again diamag-
netic when plotted against AB field. This varying behavior of the magnetic suscep-
tibility (where the system changes from paramagnetism to diamagnetism and vice 
versa) depends on the particular values of magnetic and AB fields values at which 
the observation are made. This may also have it origin in the changing confinement 
of the system. The findings of this research can be used in condensed matter physics, 
as well as atomic and molecular physics.
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