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Abstract. Nitric oxide, carbon monoxide and hydrogen sulfide 
are three endogenous gasotransmitters that serve a role in 
regulating normal and pathological cellular activities. They 

can stimulate or inhibit cancer cell proliferation and invasion, 
as well as interfere with cancer cell responses to drug treat‑
ments. understanding the molecular pathways governing the 
interactions between these gases and the tumor microenviron‑
ment can be utilized for the identification of a novel technique 
to disrupt cancer cell interactions and may contribute to the 
conception of effective and safe cancer therapy strategies. 
The present review discusses the effects of these gases in 
modulating the action of chemotherapies, as well as prospec‑
tive pharmacological and therapeutic interfering approaches. 
a deeper knowledge of the mechanisms that underpin the 
cellular and pharmacological effects, as well as interactions, 
of each of the three gases could pave the way for therapeutic 
treatments and translational research.
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1. Introduction

cancer is one of the most dreaded diseases and is a major threat 
to human life. among different clinical disorders, cancer is 
the second most common cause of death after cardiovascular 
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diseases (1). different approaches and strategies, such as 
chemotherapy, radiotherapy, surgery, immunotherapy and 
small molecule‑targeted therapy, have been studied and 
applied to target and treat cancer (2,3).

chemotherapeutic drugs work by targeting fast‑growing 
and proliferating cells, leading to cell death and shrinking 
of the tumors. The conventional cancer chemotherapy, ‘the 
standard treatment’, is not always successful, even after 
50‑100 years of research and clinical experience, although cases 
of lymphocytic leukemia and Hodgkin's lymphoma have been 
treated successfully in this manner (1). conventional chemo‑
therapy indiscriminately delivers the toxic anticancer agent 
to tumors and normal tissues simultaneously (4). Therefore, 
cancer‑selective drug delivery approaches are required to 
avoid undesirable systemic side effects. one way of tackling 
these problems is to deliver anticancer drugs selectively to 
the tumor site (5). one of the different approaches is using 
gasotransmitters to selectively provide anticancer drugs to the 
tumor site (6).

The three small, diffusible gaseous mediators nitric oxide 
(no), carbon monoxide (co) and hydrogen sulfide (H2S) 
serve multiple roles in normal physiology and the pathogen‑
esis of numerous diseases. Several studies have emphasized 
the roles of no, co and H2S in cancer (7‑10); however, there 
are numerous puzzles and controversies. Some studies have 
demonstrated that these mediators are pro‑tumorigenic, 
while others have reported that they have an antitumorigenic 
effect (11‑13). it is now recognized that these three gases 
exhibit bell‑shaped (also termed ‘biphasic’, ‘bimodal’ or 
‘Janus‑faced’) pharmacological characteristics in cancer (6). 
an improved understanding of the complicated pharmacolog‑
ical nature of these mediators has far‑reaching consequences. 
It also tackles some of the difficulties of the field, enabling 
the development of novel therapeutic techniques based on 
pharmacologically suppressing mediator production (6). The 
present review discusses the important roles of no, co and 
H2S in tumor pathophysiology, addressing how different levels 
of these gases can affect tumor growth, angiogenesis and 
survival. Furthermore, it highlights the potential therapeutic 
value of the gasotransmitters in cancer chemotherapy.

2. Chemotherapy

History of chemotherapy. The use of chemicals to treat a 
disease is called chemotherapy. This therapeutic model was 
conceptually born in the early 20th century when the German 
physician Paul ehrlich adopted chemicals to treat infectious 
diseases (14,15). Ehrlich stepped into the field of oncology 
with great ambition, trying to explore de novo pharmaco‑
logical bullets to shoot cancer cells (16). The net findings of all 
his experiments were disappointing since none of the proposed 
drugs worked on cancer cells (17).

cancer chemotherapy remained indistinct for >30 years, 
and scientists continued to follow Ehlrich's fishing strategy 
after his death. certain researchers studied the effect of 
mustard gas or its derivatives on bone marrow eradication; 
an idea that was obtained from using the gases during the 
First World War (18,19). others, such as Sidney Farber, used 
anti‑folates, such as aminopterin and 6‑mercaptopurine, to 
treat childhood cancers (20). in 1950, 6‑mercaptopurine was 

selected for a clinical trial investigating the treatment of acute 
lymphatic leukemia in children. despite the promising initial 
results leading to cancer remission, all investigated chemicals 
had significant adverse effects indicated by quick relapse a 
few weeks after treatment (21). The chemotherapeutic drug 
screening mission was continued. By 1964, ~215,000 chemi‑
cals, plant derivatives and fermentation products were studied, 
and several million mice were included in these studies (22). 
The challenges encountered in the discovery and delivery of 
the proper anticancer chemotherapeutics were developing a 
convenient model to reduce the vast repertoire of chemicals 
into a considerable list that could have efficiency against 
cancer, obtaining suitable funds to support the suggested 
studies and treatment modalities, and admission to clinical 
facilities to examine the impact of the selected substances. 
Therefore, different organizations, funding agencies and 
research centers were established to support scientists and 
oncologists economically, in order to defeat cancer.

after all these chemotherapeutic screening failures, scien‑
tists turned the view back, asking what makes cancer cells 
switch their response to treatment from sensitive to resistant. 
Scientists examined if it would be better to employ dual chemo‑
therapy rather than the conventional monotherapy approach 
used, and this idea of using multiple chemical combinations 
immediately appeared promising. Freireich et al (23) were 
the first scientists who combined a four‑drug regime (vincris‑
tine, amethopterin, mercaptopurine and prednisone) to treat 
leukemia in children. despite full cancer remission for several 
months, they observed severe brain metastasis and death, and 
thus, stopped this chemotherapeutic regimen. The outcome 
of tetra‑combinatorial therapeutic approaches, including 
mechlorethamine, oncovin, procarbazine and prednisone 
(MoPP), and mechlorethamine, oncovin, methotrexate and 
prednisone, in treating Hodgkin's diseases was surprising, as 
the complete remission rate increased to 80% in the uSa (24). 
Furthermore, ~60% of patients with Hodgkin's treated with 
MoPP never relapsed (25). MoPP, ‘the miracle’, made the 
concept of cancer curability possible. indications from combi‑
nation chemotherapies in treating certain types of advanced 
hematological malignancies motivated scientists to consider 
a similar therapeutic regime for solid tumors; however, the 
primary method for treating solid tumors was surgery (26). 
By the early 1970s, the adjuvant chemotherapy approach was 
introduced, where chemotherapy was used after surgery to 
target microscopic tumors and reduce cancer recurrence (26). 
Bonadonna et al (27) introduced the first combinational 
chemotherapeutic‑postoperative approach, called cyclophos‑
phamide, methotrexate, fluorouracil‑adjuvant therapy, to treat 
early‑stage breast cancer in women. The concept of combi‑
national adjuvant chemotherapy was popular in the uSa. 
Fisher et al (28) examined l‑phenylalanine mustard to target 
breast cancer and other solid tumors, such as colorectal cancer. 
depending on the type and size of the tumor, an additional 
approach, called neoadjuvant chemotherapy, is currently used. 
in this approach, chemotherapy is applied before the surgery 
or the primary therapy (29).

Most, if not all, solid tumors acquire drug resistance 
after a few cycles of chemotherapy, and thus, an efficient 
chemotherapeutic approach has not been developed yet. This 
is mainly due to dynamic phenotypic and genotypic changes 
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in cancer cells and their surrounding microenvironment. 
despite the common non‑curative effect of chemotherapy, the 
disease progression‑free survival curves have been markedly 
improved (30). Any effective therapeutic approach requires 
systematic knowledge regarding the drug's mechanism of 
action, primary pharmacologic metabolites, the differences in 
pharmacokinetics and pharmacodynamics, and the behavior of 
cancer cells and their crosstalk with the tumor microenviron‑
ment (TMe) (31). This knowledge has markedly progressed 
during the last 20‑30 years upon the emergence of novel 
technical avenues in genomic and proteomic analysis. as a 
result, novel treatment modalities, such as immunotherapy and 
targeted therapy, have been introduced and suggested to be 
applied either separately or in combination with chemotherapy.

Mechanism of action and classification of chemotherapy. 
chemotherapeutic drugs are clustered into subgroups 
according to their structure and overall mechanisms of action. 
each subgroup is subdivided into several cytostatic drugs, 
which are used to treat different types of cancer (32). Table Si 
lists the most prominent types of drugs, their mechanism of 
action, the targeted cancer types and the number of clinical 
trials for each drug.

Microenvironment and chemotherapy. in non‑hematological 
malignancy, a tumor is a disorganized, miscommunicated 
aberrant tissue, where tumor cells are surrounded by stroma 
and they all interact unsystematically within one unit. The 
stroma consists of cellular and non‑cellular compartments, 
and altogether they are referred to as the TMe. The TMe 
is made up of different types of cells, such as cancer‑asso‑
ciated fibroblasts (CAFs), tumor‑associated macrophages 
(TAMs), different sub‑types of anti‑ and pro‑inflammatory 
immune cells, adipocytes and tumor‑associated vasculature 
(endothelial cells and pericytes), and extracellular matrix 
(ecM) (33). These compartments interact with each other 
and with tumor cells, initiating various biochemical and 
cellular signals, which drive cancer cell proliferation, 
invasion and the response to treatment (34). chemotherapy 
eliminates and reduces tumor growth primarily, whereas 
a small population of cancer cells shift their survival 
machinery and do not respond to the treatment, as they 
become more aggressive cells, which serve as the source 
of relapse. The TMe has the potential to drive the 
anti‑chemotherapeutic effect of cancer cells by interfering 
with different survival mechanisms and cellular signaling 
pathways (35). This is evident in different types of cancer, 
such as breast and ovarian cancer, in which enriched TMe 
signatures associated with a treatment‑resistant phenotype 
are observed (34). among the different signatures, the 
hypoxic nature of the TMe decreases the proliferation rate 
and induces survival of cancer cells, thus reducing their 
response to chemotherapy (36‑38). The hypoxic TMe trig‑
gers angiogenic switch by inducing aberrant blood vessel 
formation in cancer, and due to the leaky properties of 
cancer‑associated vasculature, the drugs that circulate in 
the blood will not be delivered efficiently to the core of the 
tumor (39,40). additionally, the pharmacokinetic action of 
certain chemotherapeutic drugs depends on the availability 
of free radicals. Therefore, the cytotoxic activity of those 

drugs is reduced in the absence or presence of low oxygen 
(o2) levels (40,41).

The architecture of the TMe, characterized by its pheno‑
typic plasticity and heterogenic properties, is essential to allow 
or prevent drug delivery to the tumor (42). The reorganization 
of the ecM due to the interaction of cancer cells with caFs 
and TAMs leads to drug sequestration, preventing them from 
reaching the cancer cells (34,43,44).

3. Gasotransmitters

in the last decades, three gaseous molecules have been identi‑
fied as gasotransmitters: NO, CO and H2S. These particular 
gases are similar to each other in their production and 
function, but exert their functions in unique ways in the human 
body (45). no is produced endogenously in endothelial cells 
from l‑arg by a family of enzymes, called no synthases 
(noS), in the vasculature, which modulates vascular tone 
by activating soluble guanylyl cyclase (sGc) enzyme and 
producing cyclic GMP (46). endogenous co is produced by 
the enzyme heme oxygenase (Ho), which converts free heme 
to biliverdin (47). co has a vasorelaxant and an antiprolif‑
erative action on vascular smooth muscles cells (VSMcs), 
making it an important determinant of vascular tone in 
several pathophysiological conditions (48). H2S is produced 
endogenously in mammalian tissues from l‑cysteine by 
cystathionine‑β‑synthase (cBS), cystathionine γ‑lyase and 
another mitochondrial enzyme, 3‑mercaptopyruvate sulfur‑
transferase (49). it regulates vascular diameter, and protects 
the endothelium from oxidative stress, ischemia reperfusion 
injury and chronic inflammation by activating several K+ 
channels in VSMcs (50,51). according to Wang et al (52), 
other molecules, such as sulfur dioxide, methane, hydrogen 
gas, ammonia and carbon dioxide, are also considered to be 
potential gasotransmitter candidates, despite the fact that they 
have not been adequately explored or do not completely fit the 
diagnostic criteria for endogenous gasotransmitters.

History of gasotransmitters. no was discovered in 1772 by 
Joseph Priestley as a clear, colorless gas with a half‑life of 
6‑10 sec (53). in 1979, Gruetter et al (54) found that adding no 
in a mixture with nitrogen or argon gases into an organ bath 
vessel containing isolated pre‑contracted strips of a bovine 
coronary artery induces vascular smooth muscle relaxation. in 
1980, Furchgott and Zawadzki (55) revealed that endothelial 
cells produce endothelium‑derived relaxing factor (edrF) in 
response to stimulation by acetylcholine in vessels with intact 
endothelium. after 7 years and in two unrelated studies, both 
ignarro et al (56,57) and Palmer et al (56,57) demonstrated 
that edrF is no. Moncada et al (58) demonstrated that 
no is synthesized from the amino acid l‑arginine. earlier, 
Murad et al (59) reported that nitro vasodilators, such as nitro‑
glycerin (GTn) and sodium nitroprusside, induce vascular 
tissue relaxation, stimulate sGc expression and increase cGMP 
levels in tissues. all these studies contributed to the establish‑
ment of a signaling molecule in the cardiovascular system. in 
1992, the cover of Science magazine proclaimed no as the 
molecule of the year (60). Furthermore, 6 years later, Pfizer, Inc. 
introduced Viagra, a drug that inhibits phosphodiesterase‑5 
via the no‑cGMP signaling cascade, which revolutionized 
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the management of erectile dysfunction (61). in the same 
year, the importance of the no discovery was acknowledged 
by awarding the nobel Prize in Physiology and Medicine to 
Furchgott, ignarro and Murad (62).

Few discoveries have had the type of impact on biology 
that no has had since it was discovered (63). The first 
scientific article described NO in 1816 (64), while in 1994, 
Thomsen, et al (48,65) were the first to report a link between 
no and cancer action. in 1993, there were >1,000 new publica‑
tions on the biology of no. at the end of the 20th century, the 
rate of no publications approached a plateau at ~6,000 papers 
per year, spanning almost every area of biomedicine (63). The 
number of published articles in PubMed (pubmed.ncbi.nlm.
nih.gov/) reached 58,848 by the end of 2020.

in the late 1200s, a poisonous gas produced by the incom‑
plete combustion of wood similar to co was described by the 
Spanish alchemist arnold of Villanova (66). Between 1772 
and 1799, an english chemist, Joseph Priestley, recognized 
and characterized CO (53). The first scientific article described 
CO in 1899 (67), and subsequently, the ‘first paper linking 
co to cancer was published in 1927 (68). Between 1920 and 
1960, roughton performed several kinetic studies on co and 
hemoglobin (69‑71). in 1944, he revealed that co bound to 
hemoglobin changed the oxyhemoglobin dissociation curve, 
and demonstrated that co was produced in the body during the 
metabolism of the hemoglobin molecule (72). Subsequently, 
Tenhunen et al (73) described and characterized Ho as the 
enzyme responsible for breaking down heme in the body, 
demonstrating that heme catalysis resulted in the subsequent 
release of co and free iron as by‑products.

H2S was first discovered in 1777 by carl Wilhelm 
Scheele (74), and the first paper related to H2S was published 
in 1917 (75). The importance of H2S in cell physiology was 
highlighted in the mid‑1990s, and the first link between 
H2S and cancer was reported in 2005. H2S at physi‑
ological concentrations can reduce the apoptotic effects of 
chemopreventative drugs and play an important role in the 
response of colonic epithelial cells of the human adeno‑
carcinoma cell line HcT116 to both beneficial and toxic 
chemicals (76). it is clear that H2S, similar to other endogenous 
gases, has now been identified as a gasotransmitter (77). It was 
initially regarded as highly poisonous in the environment; 
however, this perception has changed as a growing number 
of studies have illustrated H2S as a cytoprotective and cardio‑
protective agent (78,79). Fig. 1 depicts a timeline of important 
scientific developments in the history of gasotransmitter 
research and therapeutic usage.

Role of NO in cancer. no is a small biomolecule that exerts 
different effects on tumor growth and invasion. it is a pleiotropic 
regulator and serves essential roles in various intercellular or 
intracellular processes, including vasodilatation, neurotrans‑
mission and macrophage‑mediated immunity (7). Vascular 
endothelial cells can synthesize no from l‑arginine, and 
this biosynthetic pathway has been thoroughly documented 
in numerous other cell types, including nervous and immune 
cells (80,81). it can display a cytotoxic property at higher 
concentrations as generated by activated macrophages and 
endothelial cells (7). a total of three different isoforms of the 
NOS family synthases have been identified: Endothelial NOS 

(enoS), neuronal noS (nnoS) and inducible noS (inoS). 
The gene symbol nomenclatures are noS1 for nnoS, noS2 
for inoS and noS3 for enoS (7). However, the role of no in 
cancer biology, particularly in breast cancer, only started to be 
elucidated in 1994 (82). it has been detected that noS expres‑
sion is increased in various types of cancer, such as breast, 
cervical, brain, laryngeal, and head and neck cancer (83) 
(Table i). no exhibits a pro‑ or antitumorigenic effect (84). 
no appears to enhance tumor growth and cell proliferation at 
measurable concentrations in different clinical samples from 
different cancer types (85).

in contrast to conventional signaling molecules that act by 
binding to specific receptor molecules, NO exerts its biological 
actions via a wide range of chemical reactions (86). The no 
concentration and minor differences in the composition of 
the intracellular and extracellular environment determine the 
exact reactions attained. under normal physiological condi‑
tions, cells produce small but significant amounts of no, 
contributing to the regulation of anti‑inflammatory effects 
and its antioxidant properties (83). However, in tissues with 
a high no output, inoS is activated, and nitration (addition 
of no2), nitrosation (addition of no+) and oxidation will be 
dominant (87). The interaction of no with o2 or superoxide 
(o2

‑) results in the formation of reactive nitrogen species 
(rnS). The rnS, dinitrogen trioxide (n2o3) and peroxynitrite 
(onoo), can induce two types of chemical stresses: nitrosative 
and oxidative (88). n2o3 effectively nitrosates various 
biological targets to yield potentially carcinogenic nitrosa‑
mines and nitrosothiol derivatives, and n‑nitrosation may 
have essential implications in the known association between 
chronic inflammation and malignant transformation (88). O2

‑ 
and no may rapidly interact to produce the potent cytotoxic 
oxidants onoo‑ and its conjugated acid, peroxynitrous acid. 
in natural solutions, onoo is a powerful oxidant, oxidizing 
thiols or thioethers, nitrating tyrosine residues, nitrating and 
oxidizing guanosine, degrading carbohydrates, initiating 
lipid peroxidation, and cleaving dna, which has important 
implications in cancer (83).

Effect of NO on the TME. The effects of no in a multistage 
model of cancer have been reported previously, it can drive 
angiogenesis, apoptosis, the cell cycle, invasion and the 
metastatic process (83,85). no also serves a role in cellular 
transformation, the onset of neoplastic lesion formation, and 
the monitoring of invasion and colonization throughout metas‑
tasis (89). Therefore, understanding its role in promoting TMe 
elements is crucial as it will reduce the ambiguity, and aid the 
development of no‑based cancer therapeutics, which will be 
effective in the prevention and treatment of a range of human 
cancer types.

The TMe is characterized by hypoxia and acidity. Small 
pH drops (‑0.6 u) favor the production of bioactive no from 
nitrite, as evidenced by a higher degree of cyclic guanosine 
3',5'‑monophosphate‑dependent vasorelaxation in arterioles. a 
small dose of nitrite may make tumors more sensitive to radia‑
tion, resulting in a considerable growth delay and improved 
survival in mice (90). Therefore, low pH has been revealed to be 
an ideal setting for tumor‑selective no generation in response 
to nitrite systemic injection (90). The generation of no by 
inoS inhibits c‑X‑c motif chemokine ligand 10 expression 
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in melanoma cells, resulting in a protumorigenic TMe (91). 
Furthermore, enoS upregulation in the TMe reduced both 
the frequency and size of tumor implants in a surgical model 
of pancreatic cancer liver metastasis (92) and the influence of 
no on tumor cell protease expression since tumor cell anoikis 
and invasion are both regulated by myofibroblast‑derived 
matrix. Within tumor cells, enoS‑dependent downregula‑
tion of the matrix protease cathepsin B was detected, and 
cathepsin B silencing reduced tumor cell invasiveness in a 
manner comparable to enoS upregulation. Therefore, an 
NO gradient within the TME influences tumor progression 
through orchestrated molecular interactions between tumor 
cells and stroma.

The role of no in the complex interactions between 
the TMe and the immune response is a good example of 
how complicated the molecular and cellular mechanisms 
determining the involvement of no in cancer biology are. 
although the activities of no in the TMe are varied and 
context‑dependent, the evidence suggests that no is an immu‑
nosuppressive mediator (93). By targeting tumors in a cell 
nonautonomous manner, S‑nitroso glutathione (GSno), a no 
donor, reduced the tumor burden in a mouse model of castra‑
tion‑resistant prostate cancer (crPc). Both the abundance of 
anti‑inflammatory M2 macrophages and protein kinase R‑like 
endoplasmic reticulum kinase expression were decreased by 
GSNO, indicating that NO influences TAM activity. GSNO 
also reduced il‑34, indicating that TaM differentiation was 
suppressed. This demonstrates the importance of no in crPc 
tumor inhibition via the TMe (94).

Role of H2S in cancer. H2S is a novel gasotransmitter, which 
regulates cell proliferation and other cellular functions (95). 
it has been revealed that H2S serves an essential role as a 
signal molecule in regulating cell survival (95). it seems 
paradoxical that, on one hand, H2S acts as a physiological 
intercellular messenger to stimulate cell proliferation, and on 
the other hand, it may display cytotoxic activity (96). H2S, at 

physiologically relevant concentrations, hyperpolarizes the 
cell membrane, regulates cell proliferation, relaxes blood 
vessels and modulates neuronal excitability (95). increased 
expression of various H2S‑producing enzymes in cancer cells 
of different tissues has been reported, and novel roles of H2S 
in the pathophysiology of cancer have emerged (9). This is 
mainly observed in some cancer types, such as breast, lung, 
gastric, colorectal, bladder, prostate, oral, bone and thyroid 
cancer, where the malignant cells both express high levels of 
cBS and produce increased amounts of H2S, which results in 
enhanced tumor growth and spread by stimulating cellular 
bioenergetics, activating proliferative, migratory and invasive 
signaling pathways, and enhancing tumor angiogenesis (97), 
as indicated in Table i, which highlights the research on the 
involvement of no, H2S, and co production enzymes in 
cancer regulation. importantly, in preclinical models of these 
cancer types, either pharmacological inhibition or genetic 
silencing of CBS was sufficient to suppress cancer cell bioen‑
ergetics in vitro, and to inhibit tumor growth and metastasis 
in vivo (9,98). This enhances the antitumor efficacy of front‑
line chemotherapeutic agents, providing a strong rationale 
for the development of cBS‑targeted inhibitors as anticancer 
therapies (99). However, the observation that inhibition of 
H2S biosynthesis exerts anticancer effects is contradicted by 
another study which demonstrated that increasing H2S with 
exogenous donors also exerts antitumor actions (100). H2S 
stimulates the cytoprotective Pi3K‑aKT, p38‑MaPK and 
nuclear factor erythroid 2 (nrF2) signaling pathways when 
present at low concentrations (101). Sulfhydration partially 
promotes a number of biological functions of H2S, including 
aTP‑sensitive potassium (KaTP) channel opening (101). at 
physiological concentrations, H2S can also serve a role in 
stimulating the cellular bioenergetic function by donating 
electrons to the mitochondrial electron transport chain at 
complex ii, leading to increased mitochondrial levels of cyclic 
aMP (102). at higher concentrations, H2S inhibits oxidation 
of cytochrome c, which results in disruption of mitochondrial 

Figure 1. Timeline of key scientific advances during the history of gasotransmitters research and its therapeutic use. CO, carbon monoxide; EDRF, endothe‑
lium‑derived relaxing factor; H2S, hydrogen sulfide; NO, nitric oxide.
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electron transport, and it can also exert pro‑oxidant and 
dna‑damaging effects (103).

Effect of H2S on the TME. H2S acts as a gaseous signaling 
molecule and is endogenously generated by three 
H2S‑producing enzymes, namely cBS, cystathionine γ‑lyase 
and 3‑mercaptopyruvate sulfur transferase. imbalances in 
H2S‑producing enzymes as well as H2S levels are associ‑
ated with malfunctional H2S metabolism, which has been 
increasingly associated with several human pathological 
disorders (104). Several cancer cell lines and specimens 
exhibit upregulation of one or more of the H2S‑synthesizing 
enzymes, and this aberrant expression is suggested to be a 
tumor enhancer (105). By modulation of the expression of the 
H2S‑producing enzyme, the amount of tumor‑derived H2S 
is altered, thereby modifying the TMe and affecting tumor 
expansion and metastasis (106).

numerous mechanisms contribute to the pro‑tumor effect 
of H2S, including the induction of angiogenesis, regulation 
of mitochondrial bioenergetics, acceleration of cell cycle 
progression and anti‑apoptotic functions (107). Furthermore, 
hypoxia is a common feature of the TMe in a number of solid 
tumors, which affects the level of H2S by preventing H2S 
catabolism and consequently stimulating cystathionine γ‑lyase 
gene expression (107). Furthermore, under the influence of 
hypoxia in the microenvironment, the levels of H2S‑producing 
enzymes are upregulated, and the H2S‑producing enzymes 
are transferred toward the mitochondria, which results in 
increased H2S production (106). angiogenesis, which is an 
important process in cancer progression, is stimulated by 
paracrine signaling between stroma in the TMe and epithelial 
tumor cells (108).

Previous evidence has demonstrated that H2S is an 
endogenous stimulator of ischemic‑induced angiogen‑
esis by promoting the upregulation of hypoxia‑inducible 
factor 1 (HiF‑1)‑α via activation of different pathways, 
including the VeGFr2/mTor and Pi3K/aKT signaling 
pathways (105,109,110). H2S appears to support tumor cell 
proliferation by increasing vascular endothelial growth factor 
(a critical growth factor in angiogenesis) expression in kidney 
and ischemic tissues (111,112). an in vivo study conducted on 
nude mice revealed that silencing of cBS expression markedly 
decreased tumor growth. The researchers concluded that 
the reduction in tumor growth was associated with both the 
suppression of cancer cell signaling and metabolism, as well as 
the paracrine mechanism in the tumor environment (113).

in colon cancer, cBS‑derived H2S promotes angiogenesis 
and vasorelaxation, thereby supporting tumor growth (113). in 
ovarian cancer, cBS knockdown reduces the number of blood 
vessels, resulting in tumor growth (97). Taken together, these 
results indicate that cBS serves an essential role in promoting 
angiogenesis and tumor growth. Therefore, cBS could be a 
promising molecular target for cancer therapy. recently, 
researchers have developed a novel strategy to improve 
chemotherapy in patients with colorectal cancer by remod‑
eling the TMe through reduction of the high levels of H2S 
in colon tissues using copper iron oxide nanoparticles (114). 
another strategy for cancer treatment is destroying the tumor 
metabolism symbiosis. This method successfully affects 
cancer cells with minimum impairment to healthy cells by 

using a zero‑waste zwitterion‑based H2S‑driven nanomotor 
that generates acidosis in cancer cells within the TMe, and 
consequently, the tumor growth will be suppressed (115).

one of the important characteristics of cancer cells is 
the acidic microenvironment (reduced intracellular pH) due 
to accumulation of lactic acid that results from a high rate 
of glycolysis. H2S donors trigger the activation of cellular 
transporters, such as glutamine transporter‑1 (GlT‑1) and 
aTP‑binding cassette transporter a1, which directly regulates 
the aerobic glycolysis, which is a metabolic indicator of 
cancer (116). nevertheless, activation of GlT‑1 has both a 
promoting and an inhibiting effect depending on the cancer 
cell type, and thus, further studies are required to clarify the 
consequent responses (8).

it has been demonstrated that most cancer cells exhibit 
increased uptake of glucose and high lactate production, 
known as the Warburg effect, due to glycolysis that causes 
the acidic TMe, which enhances tumor progression (117). 
Previous studies have demonstrated that continuous exposure 
of cancer cells to a low concentration of H2S results in inhibi‑
tion of cancer progression. This anticancer effect is mainly 
due to an increase in metabolic lactic acid production by H2S 
and diminishes the pH regulatory system, which consequently 
leads to intense intracellular acidification and eventually 
drives cancer cell death (107,118).

Within the TMe, there are key proteins and enzymes, such 
as matrix metalloproteinase, adhesive enzymes (e‑cadherin) 
and integrins, which serve an essential role in the migration 
and metastasis of cancer cells (119,120). Tumor cells that enter 
the stroma within the TMe after detaching from the main 
tumor move into the blood vessels and ultimately reach the 
other organs in the body (121). H2S donors have been used in 
different studies and have been demonstrated to successfully 
prevent migration and invasion by decreasing proteins and 
enzymes involved in migration and invasion in different cancer 
types (8,122,123). For example, it has been reported that treat‑
ment of hepatocellular carcinoma cells with 600‑1,000 µM 
sodium hydrosulfide (NaHS), which is an H2S donor, efficiently 
reduces migration and invasion in a concentration‑dependent 
manner via modulation of the eGFr/erK/MMP‑2 and 
PTen/aKT signaling pathways (124). Similarly, naHS 
treatment prevents migratory activity in thyroid cancer cells 
by deactivating the Pi3K/aKT/mTor and MaPK signaling 
pathways (125). Furthermore, naHS reduces the MMP‑2 
protein levels in gastric cancer (126). additionally, H2S serves 
a role in a different stage of cancer development and is involved 
in modulation of the TMe, which regulates the rate of cancer 
progression and the effectiveness of therapy (106).

Role of CO in cancer. co is best recognized for being a toxic 
gas produced by the burning of fossil fuels. on the one hand, 
co poisoning is associated with high mortality rates, and thus, 
it attracts a lot of attention (127). on the other hand, co has 
been conclusively demonstrated to be a gasotransmitter with 
physiological activities in mammals (128,129). co is now 
accepted as a potential therapeutic agent along with its physi‑
ological roles and has entered multiple clinical trials (130,131). 
co is produced in all cells by Ho‑1 and Ho‑2 (132). each 
possesses strong cytoprotective functions for the cell, 
evidenced by the fact that the absence of either, particularly 
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the stress‑response isoform Ho‑1, is detrimental to the cell 
and organism (133,134). The inducible Ho isoform (Ho‑1) can 
be upregulated in response to various stimuli, including heme, 
oxidative stress, ultraviolet irradiation, heat shock, hypoxia and 
no (135). The constitutive Ho isoform (Ho‑2) is expressed 
in several tissues, including the brain, kidney, liver and 
spleen (6). low co concentrations also activate KaTP channels 
and influence various intracellular kinase pathways, including 
the Pi3K‑aKT and p38 MaPK signaling pathways (128). co 
exerts adverse biological effects at higher concentrations, 
which, in vivo, are mainly attributed to the binding of co to 
hemoglobin. The resulting carboxyhemoglobin reduces the 
o2‑carrying capacity of the blood and leads to tissue hypoxia. 
In vitro, co inhibits mitochondrial electron transport by 
irreversibly inhibiting cytochrome c oxidase (128).

cellular and animal pharmacological experiments 
suggest numerous therapeutic indications where Ho‑1 or co 
administration imparts benefits in treating conditions such 
as sepsis, bacterial infection, cancer, inflammation, circa‑
dian clock regulation, stroke, erectile dysfunction and heart 
attack (131). Some of the best‑characterized physiological 
effects of CO include anti‑inflammatory, antiproliferative, 
anti‑apoptotic and anticoagulative responses. By contrast, 
at higher concentrations, co becomes cytotoxic (136). in 
contrast to no, the cytoprotective and cytotoxic effects of 
co are intimately intertwined. For example, a low level of 
co‑mediated inhibition of mitochondrial activity, followed 
by a slight increase in intracellular reactive o2 species produc‑
tion, is important in co‑mediated cytoprotective signaling 
events (137,138). in a way, the cytoprotective effects of co 
resemble the protective effects of pharmacological precon‑
ditioning. a short, relatively mild insult triggers a secondary 
cytoprotective phenotype via activation of the prototypical 
antioxidant response element nrF2‑related factor. Thus, a 
protective cellular phenotype is maintained in the cell for 
a long time after co has already been cleared from the 
biological system (6).

Gasotransmitter signaling significance. To highlight the 
significance of gasotransmitter signaling cascades in tumor 
growth and the chemotherapeutic response, network analysis 
approaches were utilized to identify the gasotransmitter‑tumor 
signaling signature. utilizing the PubMed (https://pubmed.
ncbi.nlm.nih.gov/) and Web of Science (https://clarivate.
com/webofsciencegroup/solutions/web‑of‑science/) databases, 
~127 candidates (genes and proteins) were identified, which 
were significantly related to the gasotransmitters and 
tumorigenesis simultaneously. using the selected list of candi‑
dates, the present network analyses were applied using the 
enrich r (https://maayanlab.cloud/enrichr/) and Metascape 
(https://metascape.org/gp/index.html#/main/step1) databases 
to identify all possible genes, proteins and pathways that may 
represent tumor‑gasotransmitters interrelated signaling. as 
shown in Fig. 2a and B, the most relevant enriched pathways 
in the present analysis were ones related to cancer, which 
in turn, justifies the relevance and accuracy of the selected 
candidate list and highlights the significance of gasotrans‑
mitter signaling cascades in tumor development and growth. 
additionally, different essential cellular signaling pathways 
were significantly enriched, such as the ‘positive regulation 

of locomotion’, ‘TnF signaling pathway’, ‘apoptotic signaling 
pathway’ and ‘HiF‑1 signaling pathway’. These pathways serve 
an essential role in driving the fate of cancer cells and their 
response to different treatment modalities (139). Therefore, 
it is reasonably relevant to investigate the crosstalk between 
gasotransmitters and tumor cells.

This pathway analysis was further validated using the 
evinet database (https://www.evinet.org/). The detected 
enrichment signature was similar to the one identified using 
enrich r and Metascape (data not shown). Furthermore, a 
deeper enrichment analysis revealing protein‑protein interac‑
tions was performed considering three direct and physical 
connections at the minimum (Fig. 3a and B). accordingly, 
the candidates were clustered into three densely connected 
networks upon applying the molecular complex detection 
algorithm using the Metascape annotation database. each 
group or individual candidate within the group may represent 
a platform for molecular‑mechanistic studies to investigate the 
interaction between the group members and gasotransmitters 
and their impact on cancer cell proliferation and response to 
treatment.

The present review investigated links between the current 
candidate list and a drug signature database containing annota‑
tions regarding drug induction or inhibition of gene expression. 
As shown in Table SII, the present candidate list was signifi‑
cantly enriched and associated with different anticancer or 
cancer‑related drugs. The odds ratio ranking method is simply 
the odds ratio; however, the combined score is the odds ratio 
multiplied by the negative natural log of the P‑value derived 
from Fisher's exact test and the enrichr z‑score (combined 
score=log(p)*z). overall, this suggested that gasotransmitters 
serve essential roles in drug response signaling by cancer cells. 
Therefore, well‑designed mechanistic studies are required to 
elucidate such roles and open novel avenues for drug discovery 
and cancer treatment modalities.

4. Effectiveness of gasotransmitters in chemotherapeutic 
drug treatment

Following the crucial discovery of gasotransmitters as funda‑
mental biological molecules, their physiological significance 
has become a debated topic in recent decades. utilizing 
gasotransmitters as therapeutic aids is justified by their roles 
in carcinogenesis, including enhancement of apoptotic stimuli, 
inhibition of metastasis and inhibition of angiogenesis. 
Therefore, using them alone or in combination with cytotoxic 
agents is an essential research platform for researchers and 
clinicians in cancer therapy (6,140‑142).

Platinum compounds have been investigated extensively, 
and several studies have demonstrated that tumor cells are 
sensitized to cisplatin compounds by no donors (143,144). 
In vitro, combination of cisplatin with natural no gas or 
the no donors diethylamine nonoate (dea nonoate) or 
1‑propanamine, 3‑(2‑hydroxy‑2‑nitroso‑1‑propylhydrazino) 
nonoate increased the killing efficacy of cisplatin by 
50‑1,000 times compared with cisplatin alone, and the effect 
lasted for a number of hours (145). Furthermore, the combina‑
tion treatment of cisplatin and diethylenetriamine nonoate 
reverses resistance and induces apoptosis in prostate cancer 
cell lines (146) and metastatic human colon carcinoma cell 
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lines (147). no‑producing aspirin compounds that can emit 
no for several hours have also been investigated. For example, 
in a clonogenic assay, nitroaspirin exhibited dose‑dependent 
cytotoxicity and greatly boosted cisplatin cytotoxicity in both 
resistant and susceptible cells (148).

carmustine is a chemotherapeutic drug that is combined 
with a no source (the donor drug dea nonoate), and the 
combination of chlorotoxin‑no, carmustine, or temozolomide 
enhances glioma cell death. Two variables that contributed 
to the enhanced cytotoxic activity of these cells were the 
production of active levels of the cytoprotective enzyme 
o6‑methylguanine‑dna methyltransferase activity and 
altered p53 activity (149). 

in the same year, Shami, Saavedra, Wang, Bonifant, 
diwan, Singh, Gu, Fox, Buzard, citro, Waterhouse, 
davies, Ji and Keefer (150) created glutathione/glutathione 
S‑transferase‑activated nitric oxide (JS‑K), a selective targeted 
no donor that was active in vitro and in vivo against human 
Hl60 leukemia cells, following its reaction with glutathione 

to produce no in vivo. JS‑K acts as a chemosensitizer for 
doxorubicin‑induced cytotoxicity in renal (151), prostate (152) 
and bladder cancer cells (153).

nF‑κB and noS activation make HT29 human colon 
cancer cells more sensitive to doxorubicin cytotox‑
icity (154). Simvastatin increases nF‑κB activity and no 
production, while also increasing doxorubicin intracellular 
accumulation and cytotoxicity (154). The enhanced intra‑
cellular accumulation of doxorubicin is caused by tyrosine 
nitration in P‑glycoprotein and multidrug resistance protein 
1 by no (155). in mice with triple‑negative breast cancer, 
no‑releasing nanoparticles in combination with doxorubicin 
or a doxorubicin nanoparticle carrier decreased cell survival, 
caused apoptosis, elevated doxorubicin intracellularly, 
compromised lysosomal membrane integrity and suppressed 
tumor growth (156). Subsequently, an S class nanocarrier of 
no (nano‑no) was developed, and successfully targeted no 
to hepatocellular cancer (157). nano‑no has improved the 
administration and efficacy of chemotherapy. Additionally, 

Figure 2. Pathway enrichment analysis. (a) Bar graph of enriched pathways across input gene lists, the top 20 clusters are arranged according to the degree of 
significance (P‑value). (B) Network of the top 20 enriched pathways. The members with the best P‑value from each of the 20 clusters were selected with the 
constraint that there are not >15 members per cluster and not >250 terms in total. each node represents an enriched member and is colored accordingly. Go, 
Gene Ontology; HIF‑1, hypoxia‑inducible factor 1; PID, primary immunodeficiency.



Molecular Medicine rePorTS  26:  233,  2022 13

combining nanomaterials with no donors, as shown by 
Housein et al (78) and others (158), has improved the method 
of no delivery. The aforementioned nano‑no make tumor 
cells more susceptible to chemotherapy.

GTn in combination with vinorelbine and cisplatin 
increases the response in patients with lung cancer and reduces 
the median time to tumor progression (159). additionally, the 
combination treatment of GTn and valproic acid results in 
the inhibition of Bcl‑2 as well as the expression of Bax and 
caspase‑3 in human K562 cells (160). STaT3 is associated with 
a number of the substituted NO‑releasing quinolone‑1,2,4‑tri‑
azole/oxime derivatives (161). in melanoma with the B‑raf 
V600e mutation and vemurafenib‑resistant melanoma, STaT3 
inhibitors have shown efficacy (161). Poly‑S nitrosylated 
human albumin alters colon cancer cell resistance to bevaci‑
zumab (162). Furthermore, the combination of bevacizumab 
with S‑nitrosylated human albumin exhibits antitumor effects 
both in vitro and in vivo (163).

long‑term (3‑5 days) exposure of cancer cells to low levels 
of H2S (30 M; sustained >7 days) using the slow‑releasing 
H2S donor GYY4137 causes cancer cell death in vitro by 
activating caspase activity and causing apoptosis (164,165). 
in a mouse xenograft model, GYY4137 caused a reduc‑
tion in tumor volume, and this had no apparent deleterious 
effects on physiological functions (165). a previous study, 
which was performed on 11 cancer cell lines, revealed that 
H2S‑releasing non‑steroidal anti‑inflammatory drugs inhib‑
ited the proliferation of all 11 cancer cell lines that were 
tested (102), providing further evidence of the potential of 
H2S as an anticancer agent. Using sulfide salt NaHS, which 
releases large amounts of H2S instantaneously in an aqueous 
solution (≤400 µM; detected within first 1.5 h), caused only 
a minimal growth inhibitory effect in cancer cell lines, 
indicating the possibility that a long period of continuous, 
low‑level H2S exposure is required for its efficient anticancer 
function (118). Based on these findings, it is hypothesized 

Figure 3. Protein‑protein interaction enrichment analysis using the BioGrid, inWeb_iM and omniPath databases. The network contains the subset of proteins 
that form physical interactions with at least one other member in the list. The Mcode algorithm was applied for each network containing at least three 
proteins to identify densely connected network components. (a) Three Mcode clusters and corresponding protein members. red, proteins enriched in the 
two best scoring pathways by P‑value (‘cancer Pathways’ and ‘endocrine resistance’); blue, two best scoring pathways by P‑value (‘colorectal cancer’ and 
‘Hepatitis B’), and the green cluster represents three pathways: ‘regulation of hematopoiesis’, ‘regulation of myeloid cell differentiation’ and ‘Hepatitis B’. 
(B) Protein‑protein interaction network showing proteins in the three enriched Mcode modules and other candidate proteins, which have one physical contact 
with each other at the minimum. Mcode, molecular complex detection algorithm.
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that the anti‑proliferative effect of H2S is selective, meaning 
it affects cancer cells but not normal cells.

one must remember that the three gasotransmitters do 
not work alone. instead, they work together. This coop‑
eration occasionally occurs using overlapping signaling 
pathways (for instance, both no and co stimulate the sGc 
pathway). no directly stimulates the sGc pathway, and 
H2S concurrently blocks cGMP via inhibition of cGMP 
phosphodiesterase (166). one of the few studies of this 
contest demonstrated the anticancer effect of a combined 
no‑ and H2S‑donating compound, nitric oxide and hydrogen 
sulfide‑releasing hybrid‑aspirin, both in vitro and in vivo (6). 
The impact of no and H2S on the TMe is displayed in Fig. 4, 
and several gasotransmitter‑based drugs targeting the TMe 
are currently being investigated in clinical studies (167‑169). 

To further investigate and understand the nature of these 
interactions, more comprehensive studies are required, 
mainly in the context of cancer, which may be utilized for 
therapeutic benefits in the future.

5. Conclusions

More than three decades of studies in the field of the three 
gasotransmitters no, co and H2S have resulted in the identifi‑
cation of several pathophysiological paradigms and associated 
experimental therapeutic approaches that may be ultimately 
suitable for clinical translation. in particular, the initial 
perplexing observation that both gasotransmitter‑synthesis 
inhibitors and donors appear to have anticancer effects, which 
the complex biology and bell‑shaped pharmacology of no, 

Figure 4. impact of no and H2S on the TMe. Several gasotransmitter‑based drugs targeting the TMe are currently being tested in clinical trials. dea 
nonoate, PaPa nonoate, deTa nonoate, JS‑K, nano‑no and GTn are no‑releasing drugs, GYY4137 and naHS are H2S‑releasing drugs, and 
noSH‑aspirin releases noSH into the TMe. When used in combination, these drugs increase the cytotoxic activity of various chemotherapeutic drugs. 
3‑MST, 3‑mercaptopyruvate sulfurtransferase; cBS, cystathionine‑β‑synthase; cSe, cystathionine‑γ‑lyase; dea nonoate, diethylamine nonoate; deTa 
nonoate, diethylenetriamine nonoate; GTn, nitroglycerin; H2S, hydrogen sulfide; JS‑K, glutathione/glutathione S‑transferase‑activated nitric oxide; NaHS, 
sodium hydrosulfide; Nano‑NO, nitric oxide nanoparticles; NO, nitric oxide; NOS, nitric oxide synthase; NOSH, nitric oxide and hydrogen sulfide‑releasing 
hybrid; PaPa nonoate, 1‑propanamine, 3‑(2‑hydroxy‑2‑nitroso‑1‑propylhydrazino); TMe, tumor microenvironment.
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co and H2S can explain, should not be considered as a barrier 
to translation into clinical settings. Their critical functions 
in normal cells compared with cancer cells open avenues for 
combinatorial treatment approaches together with chemo‑
therapeutic drugs, aiming for improved clinical significance.
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